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RAČUNALNIŠKE TEHNOLOGIJE – EXERCISES 

 

Milan Ambrožič, Rok Žitko 

 

 

1 OSCILLATIONS AND WAVES 

 

 EX. 1.1 

Instead of using equation x = A sin(t + ) the displacement in harmonic oscillation can be 

generally written as a sum of sine and cosine parts:  

)cos()sin( 21 tAtAx    

Calculate partial amplitudes A1 and A2 in the case A = 8 cm and  = /6. 

 

With the use of the formula sin( + ) = sin  cos  + cos  sin , we obtain: A1 = A cos  = 

6,93 cm, A2 = A sin  = 4 cm.  

 

 EX. 1.2 

Find direct connection between displacement x = x0  sin(t + ) and velocity. What part of 

maximum velocity has the pendulum at the moment, when the displacement value is a quarter 

of the amplitude? 

  

Let’s write again the displacement and velocity: 

)sin(0   txx    

)cos()cos( 00   tvtxxv   

Here the velocity amplitude v0 =  x0 has been introduced. Divide first equation by x0, second 

equation by v0, then square both of them and sum. We obtain: 
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In the case x = x0/4 we obtain: 
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Both signs are sensible since the pendulum can move to the left or right.  

 

 EX. 1.3 

The equation for displacement in the case of damped harmonic oscillation is:  

)/π2sin()/exp(   TttAx  

T is time period and  is relaxation (characteristic damping) time, supposed to be known. 

Express parameters A and  with initial conditions: x(0) = x0, v(0) = v0. 

 

First we express velocity: 

 )/π2cos()/π2()/π2sin()/1()/exp(   TtTTttAxv   

Next we use initial conditions: 

0sin)0( xAx    

  0cos)/π2(sin)/1()0( vTAv    

Parameter A is eliminated by dividing equations and then rearranging to obtain : 


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π2
cot
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0




x

vT
arc  

Finally we calculate amplitude: A = x0/sin .  

 

For comparison, we solve the problem with complex numbers. Using Euler formula exp(i) = 

cos  + i sin  we can set displacement x as an imaginary part of complex number z: x = 

Im(z). Thus we use complex displacement, where parameters A and  remain real: 

 )/π2/(iexp   TttAz    
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 ))/π2/1((iexp   tTAz  

The complex velocity V is: 

 ))/π2/1((iexp)/π2/1(i   tTTAzV   

Use initial conditions: 

   )iexp(Im)0(Im)0( Azx   

0sin)0( xAx    

     )iexp()/π2/1(Re)iexp()/π2/1(iIm)0(Im)0(  TATAVv   

  0cos)/π2(sin)/1()0( vTAv    

We obtain the same equations for A and  as above.  

 

 EX. 1.4 

We can use oscilloscope to track time evolution of two voltages simultaneously. One of them 

is presented at horizontal axis, the other at vertical axis; we obtain the corresponding 

diagrams. Let’s take: Vx = Vx0  sin( t), Vy = Vy0  sin(k  t + ), where k is rational number. 

Some examples are shown on Figs. R1, and the code in Mathematica is added. 
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Fig. R1 a: Graph of Vy(Vx) for Vx0 = 2Vy0, k = 1 and  = 0  1D case 

 

 

Fig. R1 b: Graph of Vy(Vx) for Vx0 = 2Vy0, k = 1 and  = /2  ellipse 

 

Fig. R1 c: Graph of Vy(Vx) for Vx0 = 2Vy0, k = 3 and  = 0  cubic function Vy = (Vx/2) [3 – 

4(Vx/Vx0)
2
] 
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Fig. R1 č: Graph of Vy(Vx) for Vx0 = 2Vy0, k = 3 and  = /2  symmetrical closed curve 

 

 

Fig. R1 d: Graph of Vy(Vx) for Vx0 = 2Vy0, k = 3 and  = /5  asymmetrical closed curve  
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 EX.  1.5 

Calculate oscillation time of pendulum with mass m for small values of displacement around 

equilibrium position x = 0, if the dependence of potential energy (potential) on coordinate is 

hyperbolic cosine: V(x) = V0 cosh(k x). 

 

We use the Taylor series. Hyperbolic functions cosh x and sinh x are derivatives of each other: 

(cosh x)' = sinh x, (sinh x)' = cosh x. Therefore, the Taylor series is: 

...0cosh
!4

1
0sinh

!3

1
0cosh

!2

1
0sinh

!1

1
0coshcosh 432  xxxxx  

There also holds cosh 0 = 1 and sinh 0 = 0, so we obtain: 

...
24

1

2

1
1cosh 42  xxx  

The potential is thus: 









 ...)(

24

1
)(

2

1
1)( 42

0 kxkxVxV  

The force is the negative derivative of potential with respect to coordinate x: 









 ...

6

1
)(')( 342

0 xkxkVxVxF  

In the case of small x (more exactly kx << 1) we keep only the first term: F  k
2
V0x. From 

Newton law ma = F the differential equation follows: 

00

2

 x
m

Vk
x  

This is equation for harmonic oscillation with squared angular frequency: 2
 = k

2
V0/m. The 

time T = 2/ is: 

0

π2

V

m

k
T    

 

 

  



7 
 

 EX. 1.6 

Rotational pendulum (swing-wheel with spring) oscillates according to:  = 0  sin(2t/T). 

Damping is neglected. Here  denotes the angle of deflection of any pendulum point out of 

equilibrium, with amplitude 0 = 120 = 2/3. Period time T depends on inertial moment J 

and on spring coefficient D: T = 2(J/D)
1/2

. Let the swing-wheel be steel cylinder with radius 

R = 10 cm, height h = 2 cm and density  = 7,8 kg/dm
3
, its moment is J = mR

2
/2. The spring 

coefficient is defined as D = M1/1, where M1 is some external torque needed to deform the 

spring by the angle 1. Let’s take 1 = 0 = 2/3, M1 = 2 N m. Calculate T. Draw together the 

dimensionless graphs of time dependence of coordinates x and y of some point at the edge of 

cylinder. This point is on the x axis at rest, so x = R cos , y = R sin . 

 

Data: 

0 = 1 = 2/3 

R = 10 cm 

h = 2 cm 

 = 7,8 kg/dm
3
 

M1 = 2 N m 

----------------- 

T = ? 

 

Calculate T first: 

20

3

0

22

0

2 π2

2

)π(
π2

2
π2π2 R

M

h

M

RhR

M

mR

D

J
T 


 = 1 s 

Equations for coordinates are: x = R cos[0  sin(2t/T)], y = R sin[0  sin(2t/T)]. We have 

obtained slightly unusual periodic functions (Figs. R2).
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Fig. R2: Graphs of x(t) (blue) and y(t) (red) in dimensionless form 

 

Try to understand by yourself why the function x/R does not reach minimum value 1 and 

why the curve y/R includes »small valleys« in maxima and minima.  

 

 EX. 1.7 

Physical pendulum is made of two equal sticks with length L joined to form the letter T. Axis 

(Os) of oscillation is at the upper end (Fig. R3). What’s the oscillation time? 

 

 

Fig. R3: Pendulum in the shape of T 
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First we find the position of the mass center (point T) of the composition of sticks: 

LL
L

m

mymy
r

4

3
)

2
(

2

1

2
* 21 


  

Inertial moment is the sum of both moments, but we must also use Steiner rule: 

22222

2

2

1
2

1
)

2
(

12

1
2*2 mLmL

L
mmLmymyJJ   

Oscillation time:
 

g

L

mgr

J
T

3

2
2

*
2     

Equation reminds us of the mathematical pendulum; we only have additional factor 2/3 under 

the square root. This similarity is typical for all physical pendulums made of homogeneous 

material.  

 

 EX. 1.8 

Futuristic engineers have thought of some train for long distances that is driven by the gravity. 

Initial (ZP) and finial (KP) stations (with no intermediate stations) are connected by straight 

evacuated tunnel (Fig. R4). How long does it take from ZP to KP?  

 

Fig. R4: Position of train at the moment (blue point) and the gravitation force 
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Equilibrium point halfway between both stations is denoted by 0, and the center of Earth by S. 

The position of the train at the moment is given by coordinate x, but the distance between the 

train and the center of Earth is r. We suppose that the acceleration of gravity inside the Earth 

is linear with r: g = g0r/R, where g0 is its value at the surface of Earth and R is the Earth’s 

radius. The train feels the gravity force Fg = mg0r/R towards the center S. But we must take its 

component in the direction of x (along the tunnel), while friction and air resistance are 

neglected. The equation is: ma = Fgx =  mg0r/R  sin  =  mg0x/R. So we got the equation 

for harmonic oscillation: 

00  x
R

g
x  

We have: 2
 = g0/R, and for oscillation time T = 2/: 

0

π2
g

R
T   

We must take half of this: 

0

π
g

R
t   = 42 min 

We have inserted: g0 = 9,8 m/s
2
, R = 6400 km.   

 

 EX. 1.9 

Electric oscillation circuit is composed of flat capacitor with plates of area 1 dm
2
 at distance 1 

mm, and of the coil with length 10 cm, 200 turnings and cross-section 1 cm
2
. What’s the 

frequency of oscillation of this circuit? What’s the initial energy of oscillations if the 

capacitor has been loaded at the voltage 15 V? After how many oscillations does the energy 

fall to 1 % of the initial value, if the circuit contains Ohm resistance so that the coefficient of 

damping is  = /10? 

 

Data: 

S1 = 1 dm
2
 

d = 1 mm 

l = 10 cm 

N = 200 

S2 = 1 cm
2
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U0 = 15 V 

 = /10 

W/W0 = 1 % 

----------------- 

 = ? 

W0 = ? 

Nnih = ? 

 

The capacity of the capacitor is C = 0S1/d, with 0  8,85  10
12

 As/Vm. The inductivity of 

the coil is L =  0N
2
S2/l, with 0 = 4  10

7
 Vs/Am. The angular frequency is then: 

dl

SS
N

LC 212

00

11



   = 1,5  10
7
 s
1

, 

The frequency is:  = /(2) = 2,4 MHz. The energy is the initial electric energy of the 

capacitor, because electric and magnetic energy are repeatedly transformed into each other: 

d

USCU
W

22

2

010

2

0 
  = 9,96 nJ 

Lastly we have: 

100ln
10

ln
1 0

0


  

W

W
teWW t

 = 3,07 s
 

 

The corresponding number of oscillations is: 

100ln
2

10

2
ln

1 0








W

W

T

t
Nnih  = 7,33

 

 

In reality, when the damping is present, the angular frequency is not exactly the same as 

calculated above, but a little smaller. However, the difference is not significant for  << . 

Some comment about : it was defined here so that the equation for oscillating physical 

quantity, such as electric current in our case, includes also exponential factor exp(t/2)  
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exp(t/). Twice larger exponent in the equation for energy comes from the fact that the 

energy is proportional to the square of the amplitude of the electric current. 
 

 

 

 EX. 1.10 

Prove that the following relations hold for the operation of conjugating complex numbers: a) 

(z1  z2)* = z1*  z2*, b) (z1z2)* = z1*z2*, c) (z1/z2)* = z1*/z2*! Prove the following rules for 

absolute values of complex numbers: č)  z1  z2  z1  z2  z1 + z2, d) z1z2 = z1 

 z2, e) z1/z2 = z1/z2! 

 

Take complex numbers z1 = a1 + b1i, z2 = a2 + b2i. Conjugation changes the sign of imaginary 

component, say z1* = a1  b1i. 

Proofs: 

a) (z1 + z2)* = (a1 + b1i + a2 + b2i)* = ((a1 + a2) + (b1 + b2)i)* = a1 + a2  (b1 + b2)i = (a1 

 b1i) + (a2  b2i) = z1* + z2*. Similarly for the difference! 

b) (z1z2)* = ((a1 + b1i)  (a2 + b2i))* = (a1a2  b1b2 + (a1b2 + a2b1)i)* = a1a2  b1b2  (a1b2 

+ a2b1)i = (a1  b1i)  (a2  b2i) = z1*z2* 

c) It is enough to take only the special case, (1/z)* = 1/z*, since the rule (b) can be 

consequently use to generalize the rule: 

*

1

i

1i
)*

i
()*

i

1
()*

1
(

2222 zbaba

ba

ba

ba

baz
















  

Next, z
2
 = zz*. Let’s prove the rule (d), since the proof of (e) is similar: z1z2

2
 = (z1z2)( 

z1z2)* = (z1z2) z1*z2* = z1z1*z2z2* = z1
2
 z2

2
  z1z2 = z1  z2. Rule (č) is slightly more 

complicated: 

z1 + z2
2
 = (a1 + a2)

2
 + (b1 + b2)

2
 = a1

2
 + a2

2
 + b1

2
 + b2

2
 + 2(a1a2 + b1b2) 

(z1 + z2)
2
  = z1

2
 + z2

2
  + 2z1 z2 = a1

2
 + a2

2
 + b1

2
 + b2

2
 + 2z1 z2 

Let the difference of both expressions be :  

))((2 2121

2

2

2

2

2

1

2

1 bbaababaΔ   

The positivity of  can be checked by comparing the two terms; the exercise is left for the 

student. If the rule holds generally for z1 + z2, it also holds for z1  z2; we only have to 

substitute z2  z2. This was the way for proving the right non-equality; the proof for the left 

non-equality goes similarly.  
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 EX. 1.11 

Prove Euler relation exp(i) = cos  + i sin  with Taylor series for all the three functions.  

 

Taylor series for exponential function: e
x
 = 1 + x + x

2
/2 + x

3
/6 + … In our case: 

...)i(
!6

1
)i(

!5

1
)i(

!4

1
)i(

!3

1
)i(

!2

1
)i(1 65432i  e  

...
!6

1

!5

1

!4

1

!3

1

!2

1
)i(1 65432i   iie  

We write separately the real and imaginary part of this: 

...
!6

1

!4

1

!2

1
1Re 642i  e  

...
!5

1

!3

1
Im 53i  e  

But these are just Taylor series for cosine and sine functions.  
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 EX. 1.12 

Oscillation of atoms in the aligned molecule CO2 can be treated with mechanical model. 

There is a carbon atom with mass m in the middle, and to the left and right from it oxygen 

atoms each with mass M are positioned. There is a spring between carbon and each oxygen 

atom, its coefficient being k (Fig. R5). Equilibrium distance C – O is a (however, this piece of 

data will play no role in the calculation) which corresponds to the length of un-stretched 

spring. Consider linear oscillations of these atoms. 

 

Let’s denote the displacement of the left oxygen atom from its equilibrium to the right by xL, 

the displacement of the right oxygen atom by xD, and of carbon atom by y (positive values all 

mean displacement to the right). Let’s imagine increasing displacements to the right: xL < y < 

xD. Then both springs are elongated, so that they tend to shrink again and correspondingly act 

with forces and atoms (see figure). Let’s write the second Newton law for all three atoms: 

)( LL xykxM   

)2()()( DLDL yxxkyxkxykym   

)( DD xykxM   

As regards the oxygen atom, we have to consider both springs: one of them pulls to the left 

(negative force), the other to the right (positive force). We expects all the atoms to oscillate 

with the same frequency, but with different amplitude and phase shift. It’s appropriate to write 

the displacements in complex: xL = A exp(it), y = B exp(it), xD = C exp(it), where also the 

amplitudes A, B and C may be complex numbers. We also divide equations by masses and 

define the following angular frequencies: M = (k/M)
1/2

, m = (k/m)
1/2

. Oxygen atoms have 

larger mass than carbon, M > m, so we have M < m. The upper differential equations turn to 

usual algebraic equations for A, B and C: 

)(
22 ABA M    

)2(
22 BCAB m    

)(
22 CBC M    

This is the system of three homogeneous linear equations, rewritten as: 

00)(
222  BA MM   

0)2(
2222

 CBA mmm   

0)(0
222

 CB MM   
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In fact, besides the coefficients A, B and C also the angular frequency  is unknown, but it 

can be treated as a parameter rather as an unknown. Homogeneous system of linear equations 

has solutions which are not trivial (exactly zero) only when the determinant of the matrix is 

zero: 

0

0

2

0

det
222

2222

222

























MM

mmm

MM







 

We obtain an equation of the third degree in 2
: 

  0)2()(2
22222242  mMMmM   

First solution, 2
 = 0, means only the translation of the molecule as whole, and it is of no 

interest. We can easily check that it corresponds to equal displacements: A = B = C. The other 

two solutions are significant and simple: 

22

1 M   

 
222

2 2 mM    

Since the angular frequency is taken as positive by definition, we finally obtain: 

M 1  

 
22

2 2 mM    

Physical interpretation of both solutions is easy when we insert both frequencies in the upper 

system of equations and express the corresponding relations between the coefficients. In the 

first case, where  = 1 = M, we find: C = A, B = 0. This means that the carbon atom is at 

rest, while the oxygen atoms oscillate in the opposite phase; this is correct since the mass 

center of the whole molecule remains still in this case. In the second case,  = 2, all the 

atoms vibrate: C = A, B = 2(m
2
/M

2
)A = 2(M /m)A. Now, the oxygen atoms oscillate in the 

same phase, but the carbon atom moves in the opposite direction with larger amplitude. Again 

the mass center of the molecule is at rest: AM + Bm + CM = 0.  
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Fig. R5: Molecule CO2 as a system of three bodies and two springs; displacements to the 

right are shown. But this is allowed in reality only if the translation of the whole molecule is 

also included. The forces of the springs are shown with red arrows. 

 

Although the frequencies 1 and 2 cannot be calculated directly because we don’t know the 

coefficient k or atomic forces, their ration is independent of k: 

m

M

M

m 2121
2

2

1

2 







 

This ratio which can be checked experimentally, for instance with absorption of 

electromagnetic waves with appropriate wavelengths, depends only on the known masses of 

both types of atoms in the molecule: 

12

16
21

1

2 



 = 1,91   

 

 EX. 1.13 

Show that the common function (x, t) = 1(x  ct) + 2(x + ct) really satisfies the wave 

equation:
2

2
2

2

2

x
c

t 






 
for any functions 1 and 2. 

 

We’ll use the fact that the functions 1 and 2 are usual functions of intermediate parameters 

(phases) 1 = x  ct and 2 = x + ct. Let’s calculate step by step all necessary derivatives (take 

care about signs for usual and partial differentiations!): 
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Both second partial derivatives really satisfy the wave equation above.  
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 EX. 1.14 

Derive the wave equation and the corresponding speed for the transversal wave on the string 

which is loaded with the longitudinal force F. The string is homogeneous: its cross-section is 

S and the density of the material is . 

 

Consider the forces that act on the short section of the string with length dx and mass dm = 

Sdx. Axis x is directed along the non-deformed string (Fig. R6). To keep the geometrical 

imagination we denote the displacement of the string by coordinate y. We stress in advance 

that the shape (curvature) of the string is relevant here, rather than the (average) displacement 

itself or the (averaged) angle with the x axis. The shown piece has the shape of convex 

increasing function, so that the inclination of its left end, tan (x)  y/x(x), is smaller than 

that at the right end, tan (x + dx)  y/x(x + dx). What’s about (non)equilibrium of forces on 

such piece? Usually the displacement are small so that the angle  Is also small everywhere. 

The component of the force F in x direction is Fx = Fcos   F. Therefore, in regard to x 

direction we have practically equilibrium and we can disregard the movement in this 

direction. It’s different about y direction: the difference of the components of the forces at 

both ends is: Fy = Fsin (x + dx)  Fsin (x). According to Newton law dm  ay = Fy it 

follows: 

 )(sin)(sind
2

2

xdxxF
t

y
m  




  

Since  is small, we can take sin   tan  = y/x: 























 )()(d

2

2

x
x

y
dxx

x

y
F

t

y
xS  

At last, we divide with mass dm = Sdx and take into account that dividing the difference of 

the first derivative at nearby points by dx on the right side of equation actually means the 

second derivative: 

2

2

2

2

x

y

S

F

t

y











 

Indeed, we got the wave equation with the wave speed: 

S

F
c


  
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Fig. R6: Forces in the derivation of the wave equation; the shown displacements and angles 

are exaggerated for the sake of evidence.  

 

 EX. 1.15 

Steel string of length 80 cm has the diameter 0,2 mm. The density of steel is 7,8 kg/dm
3
. What 

force must we use to stretch the string in order to achieve the fundamental frequency 400 Hz? 

 

Data: 

l = 80 cm 

r = 0,1 mm 

 = 7,8 kg/dm
3
 

1 = 400 Hz 

----------------- 

F = ? 

 

The speed of wave is expressed in two ways: 

111 2  lc   

2πr

F
c


  

We can eliminate c to calculate the force: 
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2

1

22π4  rlF   = 100,4 N  

 

 EX. 1.16 

What’s the mechanical energy of oscillation of the string tied at both ends in the n-th wave 

mode? The equation for displacement is: n = An sin(kn x) sin(n t), where the coordinate x 

has values in the interval 0  x  L. It doesn’t matter for the time factor whether we choose 

sine or cosine function. Express energy with the data for amplitude An, force F, length L, 

density  and thickness (diameter) D. 

 

Mechanical energy of oscillation (standing wave) at any moment is the sum of elastic and 

kinetic terms. In practice, it can be calculated as the maximum elastic energy (at limiting 

position) or as maximum kinetic energy (when string passes the equilibrium position). The 

most direct way is the calculation of the latter. But first the velocity in transverse direction for 

every piece of the string must be expressed: v = /t = nAn sin(knx) cos(nt). At time t = 0 

we have the maximum of the velocity: v0 = nAn sin(knx), but this still depends on coordinate 

x, where the piece is positioned. The entire kinetic energy is calculated by the following 

integral: 

  

L

nnn

m

n xkAxSmvE
0

22

0 )sin()d(
2

1
d

2

1
  



L

n
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n xxk
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E
0

2

22

d)(sin
2


 

We needn’t bother much with this integral, since it is known that integrating the square of sine 

or cosine function over the interval L, which is the multiple of half-period (what is true in our 

case), gives simply the result L/2. The angular frequency is: n = 2n = 2c/n = 2c/(2L/n) 

= nc/L. So, the energy is: 

2
22222

2

2

4

π

4

π

2
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π
(

2
n

nn

n A
L

Fn

S

F

L

nSAL

L

cnSA
E 




 

In the case of fundamental wave mode (n = 1) we have: E1 = (
2
/4)FA1

2
/L  2,47 FA1

2
/L. 

Although in fact the string vibrates in several wave modes simultaneously (this depends on 

initial conditions), the energy of the first mode strongly prevails in most cases, because the 

amplitude A1 is usually much larger than others.  
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 EX. 1.17 

This example is served as a confirmation of the calculation of maximum kinetic energy and 

the entire energy in the previous case. Let’s calculate the true elastic energy in “null” position 

and in simplified limiting position for n = 1, where we take triangular shape instead of sine 

function (Fig. R7). The difference between the elastic energies in both positions can be the 

guide for the maximum kinetic energy. 

 

We can take the elastic energy of linear spring: Epr = Kx
2
/2 = F

2
/(2K), if the force on spring is 

F and its elongation is x. We have used the symbol K for the spring coefficient instead of k, to 

avoid confusion with the wave vector. Straight wire with the Young modulus E is not a 

spring, but nevertheless the analogy between them may be used to find the relation between 

the force and elongation: F = Kx for the spring and F = ESx/L0 for the wire (string). Thus we 

can introduce K = ES/L0, where L0 is the length of the wire before stretching. Thus, the elastic 

energy of the string is: Epr = Kx
2
/2 = ESx

2
/(2L0) ali Epr = F

2
/(2K) = F

2
L0/(2ES). It holds: L > 

L0. We then write: L = L0 + x0, where x0 means the string elongation in null position, »null« 

elastic energy is then Epr0 = ESx0
2
/(2L0). Next, we displace the string so that the perpendicular 

displacement at the middle is A. We look at the isosceles triangle and find for the new string 

length: L' = (L
2
 + 4A

2
)
1/2

. New elongation is then x = L'  L0 and the new elastic energy is Epr 

= ESx
2
/(2L0). Their difference is:  

   )'(2'
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E   

Take A << L and (1 + )1/2
  1 + /2 for  << 1, and we find:  
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E   

The final result remind us of that in the previous exercise for n = 1, but now we have the 

factor 2 instead of 2,47 because of the different string shapes. 

 

Fig. R7: Elongation of the string  
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 EX. 1.18 

Derive wave equation and the speed for sound as longitudinal wave in matter. Solid matter 

has the modulus of compressibility K and the density . The modulus K is defined so: if the 

small piece of the material with the volume V is additionally compressed with external contact 

forces (so we have negative change of its volume, V), additional pressure appears in the 

material, proportional with the relative volume change: p = KV/V. 

 

Take a look at forces acting on the piece of matter with length dx and mass dm = Sdx (see 

Fig. R8). Here, S is optional cross-section of the matter. This time the displacement of the 

pieces of matter from equilibrium at x for every point is denoted by . What about the 

(non)equilibrium of the forces? The difference of the pressure at both ends of the piece is 

relevant! This difference is proportional to the resultant force. Let in our case the “left” force 

FL = Sp(x) be larger than the “right” force FD = Sp(x + dx); the forces act in opposite 

directions. This also means that additional pressure is larger on the left side, i. e., the matter is 

more compresse on the left side (only at the given moment!). The Newton law dm  a = FL  

FD gives: 

 )()(d
2

2

dxxpxpS
t

m 






 

Take the definition of the K modulus: 





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
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Here, we must be careful about the interpretation of relative volumes on the right side of the 

last equation. For instance, the symbol V now does not represent the entire volume of the 

piece in the figure, but only its much smaller part, on the left and right side; the similar holds 

for the change V. Suppose that the matter does not move in the transverse directions (this is 

also an approximation and is not self-evident!). Therefore, the changes in the volume appear 

only due to displacement in x direction: V/V = b/b  /x. Thus:  























 )()(d

2

2

x
x

dxx
x

SK
t

xS


  

Divide equation by mass dm = Sdx: 

2

2

2

2

x

K

t 






 




 

We’ve really got wave equation and the wave speed is: 
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

K
c   

Finally, we mention that for fluids and gasses we can use K (for adiabatic change), but for 

elastic solid matter we must substitute K with Young modulus E.  

 

Fig. R8: Forces on the piece of matter with regard to sound 

 

 EX. 1.19 

Consider sound wave in the ideal gas. To calculate the modulus Kad for adiabatic compression 

use the adiabatic relation: pV

 = C, where p is pressure, V volume, C some constant (given by 

mass and type of the gas, not relevant here) and  = cp/cV is the ratio of specific heats at 

constant pressure and volume, respectively. Calculate the sound speed in nitrogen at 273 K. 

Write expressions for oscillations of position, pressure and density. 

 

Let write equation p = KadV/V in differential form: dp = KaddV/V. In this way, the 

modulus K can be calculated by: 

pCVCVV
V

CV
V

V

p
VK  



 


)(
d

)d(

d

d 1

ad  

Therefore, the adiabatic modulus for ideal gas can be expressed directly with pressure. We 

also use pV = (m/M)RT, where m is the mass of gas, M kilomole mass, T absolute temperature 

and R = 8314 J/(kmol K) the gas constant. From this equation the density follows:  = m/V = 

Mp/(RT). The sound speed is: 

M

RTK
c




 ad  

The nitrogen molecule N2 contains two atoms with atomic mass 14, so M = 28 kg/kmol. For 

two-atomic gasses we have  = 1,4. The speed of sound at 273 K is then 337 m/s. We also 
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mention, that the kinetic theory of gases gives the following average speed of individual gas 

molecules: 

M

RT
v

3
RMS   

This is 493 m/s for nitrogen at 273 K. Thermal speed of molecules and the sound speed are 

thus of the same order for gasses. If we are more exact: the average speed expressed above is 

in fact the square root of the statistical mean value of the square of the speed; that’s why we 

have used the symbol RMS (root mean square). 

 

Consider now the sound in the gas as a harmonic wave and write the equation for the 

displacement of the parts of air from their equilibrium positions as: 

)sin(0 kxt     

If the part of the gas with some mass m experiences the increment of the volume by some 

small proportion, its density is simultaneously decreased by the same relative proportion; in 

differential form: d/ = dV/V. This can be easily proved from  = m/V with the use of 

differential. In the previous example (derivation of the speed of sound in the matter) we have 

used the following relation: V/V = /x. Use this for the density now: 

)cos(0

0

kxtk
x





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







 

Here  is meant as the deviation of the gas density from its equilibrium (mean) value 0, i. 

e., the density without sound perturbation. The actual density is thus varied as: 

)2/sin()cos( 0000000   kxtkkxtk  

The amplitude in the density variation is ()0 = k00, while the phase shift is /2, the 

quarter of the oscillation. The pressure oscillates with the phase of density: 

)2/sin(00

0

ad 






 kxtkpKp  

In total: 

)2/sin(0000   kxtkppppp  

The pressure oscillation amplitude is also proportional to the amplitude of displacements: 

(p)0 = kp00. 
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Let’s say something about the sound energy. The energy flux density in the flat mechanical 

wave is j = P/S = (1/2)20
2
c. In the case of sound,  is the gas density,  = 2, c is the 

sound speed, 0 the displacement amplitude; the quantity j is also called the intensity of 

sound. Take again nitrogen, p = 1 bar = 10
5
 Pa, T = 273 K. Let the frequency be  = 1 kHz, 

and the intensity j = 10
12

 W/m
2
, this is typically at the threshold of human sound perception. 

We calculate: 0  10
11

 m, ()0  2  10
10

 kg/m
3
, (p)0  3  10

5
 Pa = 3  10

10
 bar. These 

are extremely small values which demonstrate the sensitivity of human ear. By the way, we 

have also used the relation for the wave vector: k = 2/ = 2/c.  

 

 EX. 1.20 

Displacement in the harmonic wave is: (x, t) = A cos[2(x/  t/T)], where  is the 

wavelength, and T = 5 ms oscillation time. Find positive solutions for time t, such that the 

displacement at x = /4 has the value  = A/2. 

 

Let’s make an arrangement for  at x = /4:  = A cos(/2  2t/T) = A sin(2t/T). Two of the 

solutions are obtained as: 

2

1
arcsinarcsin

π2


AT

t 
 

The first solution is: 2t1/T = /6  t1 = T/12, another one is: 2t2/T = 5/6  t2 = 5T/12. All 

other solution are obtained by adding the integer multiple of oscillation time. For positive 

solutions we have: T/12, 5T/12, 13T/12, 17T/12 …   

 

 EX. 1.21 

A pair of synchronized sound speakers produces sound with frequency 100 Hz. The speed of 

sound is 340 m/s. What should be the distance between the sound speakers in order to find the 

first order sound amplification at the angle 40 with respect to the symmetry axis? What are 

the angles for amplification of higher orders? 

 

Data: 

 = 100 Hz 

c = 340 m/s 

1 = 40 
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----------------- 

a = ? 

2 , … = ? 

 

The task is simple: 

 
1

1
sin

sin



c

a
c

a   = 5,29 m
 

Other angles can be calculated directly from the first one: 

1sinsin  NN    

But there no other solutions for our data. This is also seen from: 

1

max
sin

1




a
N  = 1,56  1 

If we want to have at least the second solution, we should have 1 < 30.  

 

 EX. 1.22 

Derive the dependence of the light intensity on the angle  with respect to symmetry axis in 

the Young experiment with N elongated thin slits in equal distances a. Use the expression for 

the spherical wave from each slit: j = exp(ikrj), j = 1 – N, where k = 2/, rj is the distance 

between each slit and the point on the screen (Fig. R9). 
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Fig. R9: Geometry of the interference experiment with N slits with equal spacing; the slits are 

shown as point sources of waves (black circles), but in reality they are elongated in the 

direction perpendicular to the plane of drawing. 

 

The time part of the wave function was omitted since we consider the coherent wave which 

hits the piece with slits. So the time factor is equal for all the slits and cancels in the final 

expression for the intensity. The common function for all the slits is (at point T): 





N

j

jkr
1

)iexp(  

In order to simplify the calculation we must write the distances rj as simply as possible. Let 

the size of the piece with slits be small as compared to coordinates x and y which determine 

the point T on the distant screen. Denote: r = (x
2
 + y

2
)
1/2

. Vertical coordinates with respect to 

the centre of the piece are denoted by yj. Continue with rj: 

222222 /2122)( ryyryyryyyxyyxr iiiij   

We have neglected the smallest term yi
2
. We use the old trick (1   )1/2

  1  /2: 

sin/)/1( 2  jjjj yrryyrryyrr  

The wave function is: 

 



N

j

jyrk
1

)sin(iexp   

Summing over the index j can be made simpler if we write all y-coordinates of slits with 

respect to the coordinate of the first slit: yj = y1 + (j  1)a. Go on: 

     
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1

1 sin)1(iexp)sin(iexp)sin))1(((iexp   

The factor in front of the sum has the absolute value 1 and has no effect on the final results, so 

we omit it: 

 



N

j

jka
1

sin)1(iexp   

This is the sum of terms of geometric series: 1 + q + q
2
 + … + q

N  1
, where q = exp(ika sin 

). This sum is (q
N
  1)/(q  1), in our case: 
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Intensity of light at some place is proportional to the square of the absolute value of the 

complex wave function. We are not going to deal with the factor of proportionality since the 

wave function itself was not normalized in an appropriate way. So we prefer to write: 

1)siniexp(

1)siniexp(

1)siniexp(

1)siniexp(
* 00
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Multiply and consider Euler, (exp(iz) = cos z + i sin z), to get: 
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Cancel 2, take sin
2 = (1  cos(2))/2, then k = 2/ and we land at the expression: 
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Graphs I() in the case a = 10 and for different numbers of slits N are show on figure 

bottom. In the case a sin = M (M is integer) the denominator for I is zero. This is the known 

condition for amplification (here we have used M instead of N). Find intensity for these 

maxima! We encounter the typical problem of division 0/0. So we use L'Hospital rule: in the 

case of division 0/0 we can separately differentiate nominator and denominator, etc. We 

prefer to work with x = a sin /: 

M
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
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The final result for intensity in maxima is simple: I = N
2
I0. All maxima have equal intensity, 

but in reality also the width of the slits (neglected here) influences them; in general, the 

maxima are getting lower for higher M. For very narrow slits, Fig. R10 shows something else: 

all maxima are increased for larger number of slits N ant they get narrower at the same time; 

additional small local maxima appear. 
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Fig. R10: Graphs of normalized intensity as a function of the angle for three numbers of slits: 

N = 2 (blue curve), N = 5 (red) and N = 10 (violet). For better comparison all values of 

intensity were divided by N
2
. Comment: “stop” at horizontal axes for the angle  is meant as 

degrees.  

 

 EX. 23 

The wave packet can be represented as a sum of several partial waves with slightly different 

wavelengths and frequencies. Let’s take normalized values of all parameters, so that we write 

the wave packet with 2n +1 partial waves as: 

 



n

ni

i ctxk )(sin  

We also simply take: ki = 1 + ik, k << 1. Suppose there is no dispersion, c = 1 independent 

of k). 

 

Graphs are drawn numerically, with the use of Mathematica or something else. The bottom 

figure represents the cases with n = 2 (5 partial waves) and n = 5 (11 partial waves); k = 

0,05. The packets are moving to the right; it is enough to show them at the moment t = 0. 
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Fig. R11: Two wave packets without dispersion at t = 0  
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2 PARTICLES, LIGHT, RADIATION AND INTERACTIONS 

 

 EX. 2.1 

The distribution of some random physical quantity x is described by exponential probability 

density (Fig. R12): p(x) = C exp(x/x0). Here, x0 is a characteristic (scale) parameter (with the 

same physical unit as x), C normalization constant, and the allowed values of x fall in the 

interval 0  x < . The meaning of the function p(x) is the following: p(x)dx is a (very small) 

probability that the value of the variable x chosen randomly will be in the interval (x, x + dx), 

supposing dx to be very small width of the interval. Normalize the function p(x) with the 

correct value of the constant C. What’s the probability for x to be in the interval 0  x  x0? 

What about the interval x0  x  2x0? What’s the mean value of x? What’s the mean value of 

x
2
? What’s the standard deviation of x?  

 

Fig. R12: Exponential distribution function with dimensionless variable x; x0 = 2. Calculation 

of probability for x0  x  2x0 is illuminated. Comment: “ploscina” = area.  

 

Geometrical meaning of given distribution function is sketched on figure. If p(x)dx is the 

probability to find x in the small interval, we obtain the probability for broader interval with 

the integral. For instance, the probability for a  x  b is equal to:  
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a

xxpbxaP d)()(  

The probability to find x anywhere in the allowed region is equal to 1, thus we normalize 

integral accordingly. In our case: 
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0 


xxxC  

1
0

)/exp( 00 
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According to given definition we can also write p(x) = dP/dx. Let’s calculate the probabilities 

for the given intervals: 
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We would obtain similar results for next intervals of width x0. Average (mean, expected) 

value of any function f(x) can be calculated with given probability density p(x) by the 

following integral: 


max

min

d)()()(

x

x

xxpxfxf  

where xmin and xmax are the smallest and the biggest allowed value of x, respectively. In our 

case, we are going to express the mean value <x
n
> for any natural exponent n. 



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0 00

d)exp(
1

x
x

x
x

x
x nn

 

We use integration per partes: u = x
n
, dv = exp(x/x0)  du = nx

n  1
, v = x0 exp(x/x0). So 

we obtain: 
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The first part is zero at both limits, thus: 

 1

0

nn xnxx  

This is a useful recursive relation, so we can proceed in steps: <x
0
> = 1; <x> = x0  <x

0
> = x0, 

<x
2
> = 2x0  <x> = 2x0

2
; <x

3
> = 3x0  <x

2
> = 6x0

3
 etc. Standard deviation can be calculated as: 

0

2

0

2

0

22 2 xxxxxx   

Therefore, here the standard deviation is just equal to the mean value of the variable.  

 

 EX. 2.2 

The following equation holds for the spectral density of the black-body radiation at 

temperature T: 













1)exp(

π2

d

d

5

2






kT

hc

hcj
  

The meaning of the symbols: j is the light intensity, j = P/S,  is the wavelength, h Planck 

constant, c speed of light, k Boltzmann constant. The temperature of the star surface is 8000 

K. At which wavelength has dj/d maximum? What’s the light intensity only in the relatively 

narrow interval m  50 nm around maximum m? What part of the whole spectrum is this? 

 

A warning before solving the problem. The function dj/d has an analogous meaning to the 

probability density p(x) in previous example, but not quite the same. Integration of p(x) over 

some interval gives true probability, while the integration of spectral density dj/d over the 

interval of wavelengths gives the physical quantity j. Thus the unit for spectral density is 

W/m
3
. Of course, appropriate normalization can make some kind of probability density from 

spectral density, as we will show. 

 

Maximum of spectral density is given by Wien law: m = kW/T = 2,9  10
3

 m K/(8000 K) = 

362 nm. Let’s make denotation  = 50 nm. Intensity j in the area m  50 nm can be 

formally calculated by integral: 
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This must be done numerically since the analytical solution exists only for the entire area (0, 

), from which also the Boltzmann-Stefan law originates. However, for small interval we can 

use approximation: j  (dj/d)( = m)  2. Compare first dj/d for the three key values of 

wavelength: 312 nm, 362 nm in 412 nm. Let’s make a convenient denotation: 

1e1e

)(π2

d

d 55

34

5



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xx

x
A

x

ch

kTj


 

where x = hc/(kT). It suffices to observe relative differences in spectral density, i. e., to 

compare only the expression x
5
/(e

x
  1). This has the values 20,07, 21,20 (at maximum) and 

20,37. Just take the average of the three values: 20,55. So, our approximation is justified: j = 

20,55  A  100 nm = 4,13  10
7
 W/m

2
. The whole intensity is: jtot = T

4
 = 2,32  10

10
 W/m

2
. 

The corresponding ratio is j/jtot = 1,78  10
3

. If the spectral density is divided by jtot, we really 

obtain the probability distribution: 
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so that it also holds: 
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p  

Finally, we mention that the distribution function over frequencies (instead over wavelengths) 

are not correctly obtained simply by substitution  = c/ in the function p(). Instead, we 

make transformation p()  p() with the following trick: 
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Thus the substitution  = c/  must be accompanied by multiplication of p with the factor c/2
. The 

result is: 
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so that it holds: 
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
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p   
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 EX. 2.3 

Energy of the photon with wavelength  is Ef = hc/, and the energy flux of the 

monochromatic light of wavelength 500 nm is 500 W/m
2
. How many photons strike in time 1 

min the screen with area 1 cm
2
, which is perpendicular to the light beam? What amplitude of 

the electric field and magnetic field corresponds to this electromagnetic wave? 

 

Data: 

 = 500 nm 

j = 500 W/m
2
 

S = 1 cm
2
 

t = 60 s 

----------------- 

N = ? 

E0 = ? 

B0 = ? 

 

Number of photons is the ratio between the whole incident energy within time t and the 

energy of a single photon: 

hc

jSt

hc

jSt

E

E
N






/f

 = 7,6  10
18

 

Amplitude of electric field is denoted by E0; we must not confuse it with energy. We have: j = 

0E0
2
c/2, with 0 = 8,85  10

12
 A s/V m. So: 

c

j
E

0

0

2


  = 614 V/m  

For magnetic field we use: 

c

E
B 0

0   = 2,05  10
6

 Vs/m
2
 = 2,05 T  
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 EX. 2.4 

Use dimensional analysis to derive the relation between light speed c and constants 0 = 8,85  

10
12

 A s/(V m) and 0 = 4  10
7

 V s/(A m). Dimensional analysis in general does not 

provide also additional dimensionless numerical factor, but this turns out to be just 1 in our 

case. Calculate light speed numerically. 

 

Use the typical setting: c = 0
x
  0

y
, where x and y are still unknown exponents. We insert in 

the equation the physical units for these quantities: 

yx )
Am

Vs
()

Vm

As
(

s

m
  

From this it is easily evident that both exponents are equal, so that the units A and V on the 

right side of equation cancel. Comparison of units m and s in both sides of equation then 

shows: x = y = 1/2. Thus we obtain: 

00

1


c  = 3  10

8
 m/s  

We mention that today the constants c and 0 are defined mathematically exact (the unit meter 

was redefined), while 0 can be calculated from them optionally accurately. 

 

 EX. 2.5 

“Knockout work” for electrons in some metal is 2 eV (eV = 1,6  10
19

 J ). What is the 

corresponding limiting wavelength m of photons? This metal is illuminated with the light of 

wavelength tri times smaller than the limiting value. What’s the speed of the fastest knocked 

electrons? What’s the ration between energy of photons and kinetic energy of electrons? 

What’s the ratio of their linear momenta? What stopping voltage prevents the electrons from 

reaching opposite electrode? 

 

Data: 

 = 2 eV = 3,2  10
19

 J 

 = m/3 

m = 9,1  10
31

 kg 

----------------- 

m = ? 
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v = ? 

Ef/Ekin = ? 

pf/pe = ? 

Uzap = ? 

 

Limiting wavelength of photons corresponds to zero kinetic energy of knocked electrons. 

Thus it holds: hc/m = , so that m = hc/ = 620 nm. Photons with 3times smaller 

wavelength have triple energy: Ef = 6 eV. So, there remains kinetic energy Ekin = 4 eV for 

electrons. Therefore, the ratio of corresponding energies is Ef/Ekin = 1,5. Electrons with 

kinetic energy 4 eV are stopped with the voltage Uzap = 4 V (there’s no need to transform 

energy units!). But to calculate the speed we must of course take kinetic energy in joules:    

m

E
v

mv
E kin

2

kin

2

2
  = 1,2  10

6
 m/s 

Finally the momenta: 

mv

cE

p

p /f

e

f   = 3  10
3

  

Although the photon has larger energy than the kinetic energy of electron, its momentum is 

much smaller. These are very different particles. The story is more educative if it’s connected 

with special theory of relativity. The rest energy of particle with mass m is E0 = mc
2
. The 

electron momentum can be expressed so: pe = mv in Ek = mv
2
/2  pe = (2mEk)

1/2
. 

The ration of momenta will be now expressed slightly differently from above: 
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mEc

E

p

p
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If the energies Ef and Ekin are of the same order, as it holds in our case, then the ratio of 

momenta is given mainly by the ratio of photon energy and electron rest energy, Ef/E0. 

Electron rest energy is E0  0,5 MeV, much more than Ef = 6 eV.  

 

 EX. 2.6 

The total (kinetic and rest) energy of relativistic particle is twice its rest energy. What’s its 

momentum and speed? 
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Einstein equation holds : 

2222222 )()2( cpmcmcE   

Momentum is thus: 

mcp 3   

The speed can be calculated from equation for energy, E = mc
2
, or from equation for 

momentum, p = mv, with relativistic factor: 

2)/(1

1

cv
  

It’s a little easier to use energy equation: 




 c
E

mc
cv

cv

mc
E

2

3
)(1
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2
2

2

2

 86,6 % c  

 

 EX. 2.7 

In Compton scattering of the photon of X rays with wavelength 0,1 nm on practically still 

electron the wavelength of the photon is increased by   = C(1  cos ), depending on the 

angle. Compton wavelength in upper equation is C = 2,43 pm. What’s the change of the 

wavelength for the angles  = 45, 90 and 180? Calculate also the speed of electron after 

collision (you can use non-relativistic kinetic energy). Use differential in calculation of the 

change of the energy of the photon since the relative change of its wavelength is small. 

 

We express separately the change of the wavelength for the angle  = 90:  = C = 2,43 pm. 

For 180 the change is twice as large, but for 45 it is smaller:   0,293 C = 0,71 pm. 

Kinetic energy of electron after collision is: 

2

f
fkin

d
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

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The corresponding speed is: 

2

e
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2

ee

kin )cos1(222
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


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m
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



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Use also C = h/(mec): 



38 
 

)cos1(2
e





m

h
v  

This speed has maximum for central collision,  = 180: 

e
max

2

m

h
v   = 1,46  10

7
 m/s 

This is about c/20, still in the non-relativistic domain. For 90 the electron speed is 1,03  10
7
 

m/s, for 45 it is 5,57  10
6
 m/s.  
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3 BASIC IDEAS OF QUANTUM MECHANICS 

 

 EX. 3.1 

The vector in Hilbert space is x = (1 + i, 1  i, 1, i). Calculate its magnitude. The second 

vector is y = (1  i, i, i, y4). What should be its component y4, in order for the vectors to be 

orthogonal? 

 

The square of vector magnitude is written in formal mathematical form: 

  61122
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Thus x = 6
1/2

. Vectors x and y are orthogonal when: 
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This holds when y4 = i.  

 

 EX.  3.2 

Find all 5 complex solutions of equation z
5
 = 1. Write the program for numerical solving of 

this equation with Newton method, if we start with optional complex starting point z0 = x0 + 

iy0.  Iteration for the next complex approximation zn+1 from previous one, zn, is calculated as:  

)
1

4(
5

1

5

14
44

5

1

n

n

n

n

n
z

z
z

z
z 


  

Write this separately for real and imaginary component. Check towards which of the 5 

solutions the iterative procedure converges for chosen  initial point z0.   

 

Eq. z
5
 = 1 can be written in polar form, and we also know that the absolute value of the 

solution is equal to 1. So z = exp(i), and the polar equation is: exp(5i) = 1 = exp(2). For 
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one of the solutions we just take 1 = 2/5, while for others (including trivial solution z = 1) 

we take the integer multiple of this angle. Solutions j (j = 1  5) are therefore: 

)
5

2
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5

2
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5

2
exp(


  jjjj  

If the approximation is written as zn = an + ibn, then the upper iteration equation gives: 
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with 

n

n

n
a

b
arctan  

But we must take care that the »phase« n really corresponds to right quadrant of the number 

zn in complex plane, according to signs of components an and bn. 

 

We mention as an interesting point that by using the upper method a beautiful fractal sample 

(with 5 extensions in our case) can be drawn. The trick is simple: according to the final 

solution j to which the iteration converges for given initial z0, we paint the point that 

corresponds to z0 in complex plane with one of the 5 colors. The fractal is shown on Fig. R13.  
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Fig. R13: 5-fold fractal  

 

 EX. 3.3 

What are the eigenvalues, determinant and trace of rotational matrix and the matrix of 

mirroring across the plane? Use concrete examples. 

 

Since it is known that the eigenvalues of the true tensor of second rank are independent of the 

choice of coordinate system, we can take the simplest case for both cases. Let the rotational 

matrix rotate around z-axis by angle : 


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
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




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

100

0cossin
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



R  

All the three complex eigenvalues are found by setting to zero the determinant of “shifted” 

matrix, det(R  I) = 0: 

0

100

0cossin

0sincos















 

This results in simple cubic equation: 
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  0sin)(cos)1( 22    

or: 

  01cos2)1( 2    

Its solutions are: 

11   

 sincos3,2 i  

The first eigenvalue, 1 = 1, has obvious meaning: vectors that are on rotational axis (in our 

case z), are left unchanged. Second and third eigenvalues are complex, except for  = 0 

(trivial unit matrix) and  =  (rotation by angle 180). 

 

The determinant is the product of eigenvalues: det R = 123 = 1. The trace can be calculated 

either as the sum of diagonal elements or as the sum of eigenvalues (what always comes out 

the same): sl R = 1 + 2cos. 

 

Simple mirror matrix reflects over the plane (x, y), so only the coordinate z of any vector 

changes sign: 


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

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
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

100

010

001

Z  

The matrix is diagonal and eigenvalues are just diagonal elements: 1 = 2 = 1, 3 = 1. 

Determinant is 1 and so is the trace.  

 

 EX.  3.4 

What do we get if there act on some 3D vector one after one two matrices: R from previous 

example and matrix A below? Is the order of operating of both matrices on the vector 

relevant? For additional evidence use some simple vector. 

























200

020

002

A  
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If two matrices commute, i.e., if it holds AR = RA, then the order of operating of them is not 

relevant. Our matrix A is not only diagonal, but also all its diagonal elements are equal; thus 

we call it scalar matrix. This means: if the vector is multiplied by it, it is the same as if the 

vector is multiplied by the scalar (in our case 2). Matrix A thus increases the magnitude of 

any vector by factor 2, but it also turns its direction to opposite side due to minus sign. We 

can easily check by matrix multiplication that scalar matrices like A commute with all 

matrices. Therefor the order of acting both matrices is in our case not relevant. Matrices R and 

A work so that they rotate it by angle  around axis z, then elongate it by factor 2, and at last 

turn it to opposite direction (order of these three operations doesn’t matter). 

 

Let’s take the vector: )0,0,1(a


. Make operations on it:    











































































 



0

sin

cos

000010

000cos1sin

000)sin(1cos

0

0

1

100

0cossin

0sincos













aR


 

































































0

sin2

cos2

0

sin

cos

200

020

002

)( 







aRA


 

 

 

 EX. 3.5 

Prove that rotational matrix preserves the scalar product of transformed vectors. 

 

Let’s choose again the simplest representation of the rotational matrix: 















 



100

0cossin

0sincos





R  

Multiply by it both vectors: 























































 



z

yx

yx

z

y

x

a

aa

aa

a

a

a

aR 







cossin

sincos

100

0cossin

0sincos

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





















































 



z

yx

yx

z

y

x

b

bb

bb

b

b

b

bR 







cossin

sincos

100

0cossin

0sincos


 

The scalar product of them is: 

 






















z

yx

yx

zyxyx

b

bb

bb

aaaaabRaR 



 cossin

sincos

cossinsincos


 

bababababRaR zzyyxx


  

The reader is invited to check details.  

 

 RAČUNSKI ZGLED 3.6 

To which matrix corresponds the sequential operation of rotation first by angle 1, and then 

by angle 2, both around axis x? 

 

Let the new matrix be named X. We guess that this is the rotational matrix corresponding to 

angle 1 + 2 around x, but let’s prove this formally by multiplication of matrices: 





















































22

22

11

11

333231

232221

131211

cossin0

sincos0

001

cossin0

sincos0

001









xxx

xxx

xxx

 

We quickly see that x11 = 1, x12 = x13 = x21 = x31 = 0. Let’s check the right bottom 2  2 part of 

X. Because of similarity it suffices to check only 2 components of 4: 

x22 = cos1  cos2  sin1  sin2 = cos(1 + 2) 

x32 = sin1  cos2 + cos1  sin2 = sin(1 + 2) 

So X is: 





















)cos()sin(0

)sin()cos(0

001

2121

2121



X  

and really corresponds to rotation by 1 + 2 around axis x.  
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 EX. 3.7 

Prove in general (also for two different rotational axes in 3D space) that the product of two 

rotational matrices is again rotational matrix. Next, calculate to which rotation (axis and 

angle) corresponds the following sequence of operation of two matrices on any vector: first 

rotation by 30 around axis x and then rotation by 45 around axis z (both rotations are in 

positive sense). 

 

There are two fundamental characteristics of every rotational matrix: 1) preserves the scalar 

product of transformed vectors 2) its determinant is 1.From these two properties all other 

follow, e.g., that one of the eigenvalues is 1. Take two rotational matrices R1 and R2 and any 

two vectors a and b. The product of matrices is R = R1R2. Check the scalar product:  Ra  Rb  

(Ra, Rb). Use the fact that R1 in R2 do satisfy the required condition:   

(Ra, Rb) = (R1R2a, R1R2b) = (R1(R2a), R1(R2b)) = (R2a, R2b) = (a, b). 

In the intermediate step we took the fact that R2a and R2b are just vectors as all other, so that 

the matrix R1 must preserve the scalar product. 

The proof of the second rule is even simpler: det(R) = det(R1R2) = det(R1)  det(R2) = 1  1 = 1.  

Now, let’s take the suggested examples: 

















































2

3

2

1
0

2

1

2

3
0

001

6
cos

6
sin0

6
sin

6
cos0

001

1




R  





















































100

0
2

2

2

2

0
2

2

2

2

100

0
4

cos
4

sin

0
4

sin
4

cos

2





R  

We must take the correct sequence of factors: R = R2R1; this is, because: Ra = (R2R1)a = 

R2(R1a).  

Let’s calculate the product: 
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
















































































2

3

2

1
0

4

2

4

6

2

2
4

2

4

6

2

2

2

3

2

1
0

2

1

2

3
0

001

100

0
2

2

2

2

0
2

2

2

2

12RRR  

How can the angel of rotation and the rotational axis be calculated from this? In Ex. 3.3 we 

have found that the trace of rotational matrix is: sl R = 1 + 2cos. So we see that the angle can 

be calculated directly from the trace:  


















 )1

2

3

4

6

2

2
(

2

1
arccos)1(

2

1
arccos slR  = 53,65 

It’s good to comment different solutions for . Because cosine function is even, we could also 

take the angle with opposite sign, but in 3D space this is the same as turn the axis of rotation 

to opposite direction. So the angle can always be limited to interval 0    , but we must 

then take care for correct orientation of the axis of rotation. 

This axis corresponds to eigenvectors with eigenvalue  = 1. These vectors differ in size and 

in the possibility of opposite directions. So we’ll choose the vector with magnitude 1. We 

write Rx = x = x in full matrix form: 

































































3

2

1

3

2

1

2

3

2

1
0

4

2

4

6

2

2
4

2

4

6

2

2

x

x

x

x

x

x

 

Write this in a different way: 



































































0

0

0

1
2

3

2

1
0

4

2
1

4

6

2

2
4

2

4

6
1

2

2

3

2

1

x

x

x

 

This is homogeneous system of linear equations for unknowns x1, x2 and x3. In order to obtain 

non-trivial solution the determinant of the matrix should be zero. But we already know that 

det(R  I) = 0 really holds. The three equations are then not independent (in practice the two 

of them are sufficient), and also x1, x2 and x3 are not unique (in practice we can choose one of 

unknowns). Let’s choose x3 = 1, and consider only the 1
st
 and 3

rd
 equation (the 2

nd
 is ignored): 
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01
4

2

4

6
)1

2

2
( 21  xx  

01)1
2

3
(

2

1
2 x  

Calculate x2: 

322 x  

Then calculate x1: 

63222
)22()22(

)22)(622(

22

622
1 









x  

Our vector at the moment is: 

)1,32,63222( x


 

Let’s normalize it to unit magnitude: 

2

3

2

2

2

1

321 ),,(

xxx

xxx
xN





 

In our case: 

)1,32,63222(
6831621429

1



Nx


 

Let’s write it in decimals: xN  (0,53, 0,22, 0,82).  

But we are still not certain if the true vector giving correctly the axis is just the opposite of 

this (i.e., all the components change sign). Be more explicit: positive direction of rotational 

axis is the following one: if we look in the direction along the axis form “above”, i.e., form 

positive half-axis to negative half-axis, we see the rotation of vectors in projection plane in 

counter-clockwise direction by acute angle 53,65.     

One way of checking is to choose some vector a, perpendicular to vector xN, for what we 

have, of course, infinite number of possibilities. For instance, we choose components ax = 1, 

ay = 0, then we find az to make the scalar product zero. We obtain a  (1, 0, 0,65). We don’t 

need to normalize it. Then we calculate: 
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





































































56,0

94,0

48,0

65,0

0

1

2

3

2

1
0

4

2

4

6

2

2
4

2

4

6

2

2

aRb


 

Then we find the vector product: 























94,0

25,0

61,0

56,094,048,0

65,001

kji

bac




  

According to Fig. R14 the vector c which is perpendicular to both vectors , a in b, should be 

parallel to vector xN on rotational axis. This means: c is directed either in the same or in 

opposite direction as xN; if the direction is the same, we have written xN correctly, in other 

case we must multiply it by 1. As we see, vectors xN and c really point in the same direction 

since all the components of both vectors are positive. To be 100 % sure, we show that all 

components are in the same ratio: cx/xNx  1,15, cy/xNy  1,14, cz/xNz  1,15. Everything 

matches, the small difference is only due to rounding of real numbers.  

 

Fig. R14: Vector xN in direction of rotational axis and the rotation of perpendicular vector a 

to the vector b. It holds: a  b  xN. You must imagine the figure in 3D.  

 

 EX. 3.8 

Treat the problem of rotation of coordinate axes around z axis of »old« Cartesian coordinate 

system where the physical vectors remain unchanged. But since the axes i x and y are  rotated, 

both components of the with respect to “new” axes must change. Nothing changes in z 

direction, thus 2D system can be taken. Let the axes x and y be rotated by  = /6 v positive 
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direction, i.e., counter-clockwise. Derive the transformation matrix from beginning, without 

using the rotation matrices treated before. Check the operation of this matrix on unit vectors a 

= (1, 0), b = (0, 1) and c = (1/2)(3
1/2

, 1).  Give the interpretation of mathematical equivalence 

of matrices corresponding to physical rotation of vectors themselves and rotation of 

coordinate axes. 

 

Rotation of coordinate axes is shown on Fig. R15. The initial system is denoted by S, and the 

rotated system by S'. Unit vectors on  old axes are i and j, and those on new axes e and f. 

According to old system S these four vectors are written with such components: i = (1, 0), j = 

(0, 1), e = (cos , sin ), f = (sin , cos ).  Let’s take some vector v = (x, y) according to S. 

Transformation of this vector into vector v' = (x', y') according to S' is most easily found if we 

calculate the new components as orthogonal projections of the vector on new axes: 

x' = e   v = (cos , sin )  (x, y) = (cos )x + (sin )y 

y' = f   v = (sin , cos )  (x, y) = (sin )x + (cos )y 

Both relations can be written in the form: v' = Tv, where the transformation matrix is: 

















cossin

sincos
T  

Matrix T is very similar to rotation matrix in 2D space: 








 






cossin

sincos
R  

This relation is tight – matrices are inverse matrices to each other: T = R
1

. Geometric 

meaning of this is evident on Fig. R15: T is in fact also rotation matrix (we have used 

different letter T only to stress that it is not about physical rotation of vectors). If, for instance, 

we rotate x axis by angle  in counter-clockwise direction, the projection of some vector on 

this axis (what’s the same as the component x) is the same as if the x axis was left intact and 

the vector itself was rotated instead to opposite direction. That’s why the matrices T are R 

inverse to each other. 

The picture is even clearer if the general vector is written as: v = (cos , sin ). Let’s see how 

the matrices change it: 















































)sin(

)cos(

sincoscossin

sinsincoscos

sin

cos

cossin

sincos
















vT


  










































 


)sin(

)cos(

sincoscossin

sinsincoscos

sin

cos

cossin

sincos
















vR


 

As a test we take the vectors mentioned above and the angle  = /6: 
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









































2/1

2/3

sin

cos

0

1

cossin

sincos








aT


 








































2/3

2/1

cos

sin

1

0

cossin

sincos








bT


 































0

1

2/1

2/3

2/32/1

2/12/3
cT


 

Vectors a and b are equal to vectors i and j. However the transformation T doesn’t turn them 

into vectors e and f like rotation R above, but in opposite direction since now we don’t have 

physical rotation of vectors a and b. Vector c makes in system S angle 30 with  x axis and it 

is in first quadrant. But since also the x axis rotates by 30, the vector c just coincides with the 

new x axis. 

 

Fig. R15: 2D sketch of rotation if coordinate axes and the transformation of vector 

components (comment: “os” means axis)   

 

 EX. 3.9 

3D vectors a and b are transformed into vectors a' and b' in the rotation of coordinate system 

by angle  around z axis. How does transform their vector product c = a  b? Consider also a 

physical example of torque: M = r  F. 
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According to definition c' = a'  b'. If a' = Ta and b' = Tb, it is sensible to expect also c' = Tc, 

or written directly Ta  Tb = T(a  b). In words: we obtain equal vector according to system 

S', either if we first transform vectors a and b and then calculate their vector product, or if we 

first calculate vector product in system S and after that transform it into S'. 

 

Check this. Let’s write transformation of vectors in a full form: 

ax' = ax cos  + ay sin , ay' = ax sin  + ay cos , az' = az 

bx' = bx cos  + by sin , by' = bx sin  + by cos , bz' = bz 

The components of the corresponding vector product are: 

cx' = ay'bz'  az'by' = (aybz  azby)cos  + (azbx  axbz)sin   

cy' = az'bx'  ax'bz' = (aybz  azby)sin  + (azbx  axbz)cos   

cz' = ax'by'  ay'bx' = axby  aybx = cz 

We get the same result for the sequence of operations c = a  b  c' = Tc. Prove this: 

cx = aybz  azby  

cy = azbx  axbz)  

cz = axby  aybx  

cx' = cx cos  + cy sin  = (aybz  azby)cos  + (azbx  axbz)sin   

cy' = cx sin  + cy cos   = (aybz  azby)sin  + (azbx  axbz)cos   

cz' = cz 

  

 

 EX. 3.10 

If in the rotation of coordinate system vectors transform as x' = Tx, matrices transform as: A' = 

TAT
1

. This is in accordance with the fact that transformation preserves relations between 

vectors and matrices: y = Ax  y' = A'x'. Prove the written transformation of matrices. 

Transform diagonal tensor of the moment of inertia in the rotation of coordinate system by 

angle /4 around z axis. 
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The proof is easy if we use equations: y = Ax, y' = A'x', x' = Tx  x = T
1

x', y' = Ty  y = 

T
1

y'. Do it: 

y' = A'x'  Ty = A'Tx  T
1

Ty = T
1

A'Tx  y = T
1

A'Tx
 

But since y = Ax holds, we have: A = T
1

A'T. We multiply this equation from left by T, from 

right by T
1

 and finally really obtain: A' = TAT
1

. 

 

Perform transformation on diagonal matrix: 



















33

22

11

00

00

00

J

J

J

J  

where transformation matrix for any angle is: 



















100

0cossin

0sincos





T  

Tensor J' in system S' is then: 















 







































100

0cossin

0sincos

00

00

00

100

0cossin

0sincos

'

33

22

11









J

J

J

J  

Multiplication gives: 























33

2

22

2

111122

1122

2

22

2

11

00

0cossincossin)(

0cossin)(sincos

'

J

JJJJ

JJJJ

J 



 

This is still symmetrical matrix as it should be for most physical tensors of second rank. If we 

take the angle 45, we obtain: 























33

22111122

11222211

00

02/)(2/)(

02/)(2/)(

'

J

JJJJ

JJJJ

J  

Eigenvalues of this transformed matrix are J11, J22 in J33, just as for original diagonal matrix 

since it’s known that transformation of coordinate system does not alter eigenvalues.  
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 EX. 3.11 

When writing vector product c = a  b we sometimes, e.g., in quantum mechanics, use the 

antisymmetrical tensor of rank 3: ijk. Its elements are different from zero only if all three 

indices are equal; out of 27 tensor components there are 6 such: 123 = 231 = 312 = 1, 132 = 

321 = 213 = 1. Using this tensor we can write the components of c as: ci = ijkajbk (with  

Einstein convention of summing over index which appears twice in the expression; thus in our 

case we must sum over indices j and k). Prove the validity of this equation. 

 

Just take the component c1. In the sum over indices j and k there appear components of tensor 

 which begin with the index 1. There are only two of them different from zero: 123 = 1, 132 

=  1. Thus: c1 = 123a2b3 + 132a3b2 = a2b3  a3b2, which is correct. We check similarly the 

other two components: c2 = 231a3b1 + 213a1b23 = a3b1  a1b3, c3 = 312a1b2 + 321a2b1 = a1b2  

a2b1. 

 

For exercise, we use this notation to write the operator of orbital angular momentum of the 

particle in quantum mechanics. In classical mechanics the orbital angular momentum with 

respect to chosen origin of coordinate system equal to vector product of radius vector and 

linear momentum: L = r  p, with r = (x, y, z) and p = (px, py, pz). In quantum mechanics we 

use the corresponding operators: 

prL


   

with operators: 

),,(),,( 321 xxxzyxrr 


 

),,(i),,(ii
321 xxxzyx

p
























 


 

We have used the practical notation: x  x1, y  x2, z  x3. Now we can write: 

n

mjmnj
x

xL



 


i  

We avoided using index i, since imaginary unit i is present in the expression.  

 

 EX. 3.12 

In some equations in quantum mechanics in some equations there appears expression 

exp[2iHt/h], where i is imaginary unit, H Hamilton (energy) matrix, t time and h Planck 
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constant. What does exponential function of the matrix actually mean? Use Taylor expansion, 

so that you can generalize usual functions of one scalar variable to functions of matrices. First 

take for H any diagonal matrix of optional dimension. Next, try to generalize expression to 

non-diagonal matrix. 

 

Since we can multiply square matrix (with equal number of rows and columns) with itself 

with no limit, we may just put matrix in Taylor series instead of scalar. Taylor expansion of 

usual exponential function is: 

exp(x) = 1 + x + x
2
/2 + x

3
/6 + … + x

n
/n! + … 

So we can write similarly for the matrix A: 

exp(A) = I + A + A
2
/2 + A

3
/6 + … + A

n
/n! + … 

The first term is now identity matrix I instead of 1. 

Let’s take now diagonal matrix D of size k  k, and denote its diagonal elements by i, i = 1  

k. Any (m-th) power of diagonal matrix is again diagonal matrix, and its diagonal elements are 

just i
m
, i = 1  k. Therefore, in Taylor expansion for diagonal matrix we obtain individual 

scalar Taylor series for diagonal elements, but these correspond to initial scalar function. So 

we conclude: Any function of diagonal matrix which can be expanded in Taylor series, is just 

equal to new diagonal matrix, the diagonal elements of which are the same function of 

diagonal elements of original matrix. Be now more explicit and take exponent function of 

diagonal matrix 4  4: 









































)exp(000

0)exp(00

00)exp(0

000)exp(

)exp(

000

000

000

000

4

3

2

1

4

3

2

1

















DD    

Take now diagonal matrix H of size n  n with diagonal elements corresponding to energies 

Ei of various stationary quantum states: 













































)/π2exp(000

0...00

00...0

000)/π2exp(

)/π2exp(

000

0...00

00...0

000 11

htE

htE

hHt

E

E

H

nn

 

In principle we can deal even with  matrices n  n, n  . 

 

However, sometimes we prefer to choose in quantum mechanics such a »coordinate system« 

(in fact, it is the system of functions with respect to which we calculate matrix elements), 
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where the matrix H is not diagonal. In this case we can make it diagonal by transformation T 

(see ex. 7.18): H = T
1

HdT, where Hd is diagonal matrix with elements Ei. Before we use  

Taylor expansion, let’s check optional power of matrix H: 

H
m
 = H  H  …  H = T

1
HdT  T

1
HdT   … T

1
HdT 

Since T  T
1

 = I, the expression is simplified: 

H
m
 = T

1
Hd

m
T 

So we have also in Taylor series in each term first factor T
1

, then powers of diagonal matrix 

and lastly factor T. We can write the final result: 

T

htE

htE

ThHt

n

























 

)/2exp(000

0...00

00...0

000)/2exp(

)/2exp(

1

1





   

 

 EX. 3.13 

Some 2-level quantum system has in basic level energy E0, in the higher level energy E1 > E0 

(Fig. R16). Their difference is E10 = E1 – E0 = 5 eV. Basic (low) level is non-degenerate 

(only one quantum state), while degeneracy of higher level is g = 3: this means that there are 

three states with the same energy E1. Let the number of all quantum particles in both levels be 

N, of this 70 % in low level and 30 % in high level (i.e., 10 % in each of the three quantum 

states, left side of figure). If quantum particles are not too close together so that their 

fermionic or bosonic character is nor relevant, their distribution according to energies is given 

by Boltzmann distribution. The simplest way to present this distribution is with ratio of 

numbers of particles in different quantum states (e.g., i-th and j-th state with energies Ei and 

Ej): 

)exp(
kT

EE

N

N ij

j

i


  

Here, k is Boltzmann constant, and T absolute temperature of quantum system. Equation 

indicates that the number of particles in higher energy state is smaller than in state with lower 

energy. We stress: if the quantum energy levels are degenerate, the equation holds for every 

state (even within the same energy level). So the equation can be rewritten: 

)exp(
)(

)(

kT

EE

g

g

EN

EN ij

j

i

j

i


  

Here we sum particles for all quantum states at the same energy, so that the numbers gi and gj 

are the corresponding degrees of degeneracy. To avoid ambiguity, we stress that we will 
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count particles with regard to quantum states (not levels) and we’ll use first equation. What 

must be the temperature, so that the upper data for occupation of states hold? What happens 

with these numbers if the system is disturbed by some external perturbation (e.g., by magnetic 

field), so that the lower state remains non-degenerate, but the energy of higher states splits 

into three different values: E1  E/2, E1 in E1 + E/2 (right part of figure)? Let’s take E = 

E10/10. Do only the numbers of particles in upper three quantum states rearrange, or do some 

particles move from higher state to low energy state or in opposite direction? 

 

First, we solve the first part of the problem. We denote the number of particles in the basic 

level by N0, and the number in each of the three higher states by N1. We then have: 

7ln
)exp(

7

1 1010

0

1

k

E
T

kT

E

N

N 



  = 2,98  10

4
 K 

After energy splitting we must treat all four energy levels. Let the new number of particles in 

basic level be N0' (we don’t know yet whether it is equal to N0 or not). Sum all 4 (now 

different!) numbers of particles and use again Boltzmann distribution: 

NNNNN cba  1110 '  

N
kT

EE

kT

E

kT

EE
N 







 






 )

2/
exp()exp()

2/
exp(1' 101010

0  

 N
kT

E

kT

E
N 















 




 )
20/

exp()
20/

exp(1
7

1
1' 1010

0  

We have exposed factor exp(E10/(kT)) = 1/7 for three terms. Let’s go on: exp(E10/(20kT)) 

= exp(E10/(kT))
1/20

 = 7
1/20

. So we can write: 

  ')771
7

1
1' 0

20/120/1

0 NNN 







    69,934 % N  

Before energy splitting of higher level there were 70 % N particles in low energy level, thus 

0,066 % N went from basic state to higher levels. Exactly how many (instead of 10 %) there 

are in each state, is left for exercise for the student. We finally mention that at ordinary 

temperatures the equilibrium occupations of higher quantum levels are completely negligible 

in comparison with basic state. For instance, at T = 300 K N1/N0 at energy difference 5 eV is 

as small as 1,2  10
84

. In order to have considerable number of particles at higher energy 

levels, we have to »pump« them there artificially (e.g., for operation of lasers). 
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Fig. R16: Splitting of higher energy level  

 

 EX. 3.14 

1D double potential well is introduced by infinite potential well which has in the middle 

narrow and high enough potential barrier (Fig. R17). We have chosen suitable coordinate 

system, so that x = 0 in the middle of the well and V(x) is even function. Then the two 

stationary states with the lowest energies have much lower energy difference than the 

difference between the first and second level in the well without the barrier. The lower state 

has symmetrical (even) wave function S and energy ES, and the higher state has anti-

symmetrical (odd) wave function A and higher energy EA. For very high barrier it holds: E 

= EA  ES << ES, but both functions remind us of sinusoidal stationary solutions of ordinary 

infinite 1D potential well which will be treated later (these functions are slightly distorted 

only in the vicinity of the barrier). The sign before the wave function has no physical 

significance but we optionally choose it for function A so, that the function is positive in the 

right half of the well and negative in the left half. It is characteristic for the function of the 

basic level that it has no zeros inside its definition area (except possibly for edge points x = 

a/2); thus S has everywhere the same sign and we choose the positive value. Functions S 

and A are normalized and also »orthogonal« on each other. We can use them to compose two 

new functions: 

)(
2

1
ASD    

)(
2

1
ASL    

But these do not correspond to stationary states since they we composed of two stationary 

states with different energies. Do the following in connection with the new functions: 

 Prove relation: L(x) = D(x).  

 Prove that they are normalized as are S and A. 
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 Calculate their »overlap integral«, which means their scalar product (defined for 

functions). 

 Calculate the mean value of coordinate x for each of them and comment the result. 

 Calculate 2D Hamilton matrix for this pair of functions. 

Use »bra-ket« notation where it’s sensible. Let for simplicity all the functions be real, what 

can be always done for 1D problems. 

 

Let’s go on step by step: 

)())()((
2

1
))()((

2

1
)( DASASL xxxxxx    

We have used the fact that in changing sign of x symmetrical function retains its value, while 

the sign of anti-symmetrical function is also reversed. Normalization can be checked by the 

following scalar product: 

 ASASDD
2

1
  

  AASAASSSDD 
2

1
 

Use that fact that original functions are »orthonormal«: 

  1100'1
2

1
 DD  

In a similar manner the normalization of L can be shown. Their overlap integral is: 

 ASASLD 
2

1
 

  AASAASSSLD 
2

1
 

  0100'1
2

1
 LD  

The calculation of <x> is also first presented with formal »bra-ket« notation, but then we 

continue with explicit integral to be clear. It suffices to make it for the function D: 

 )(
2

1
ASASDDDD xxxx   

We use this time the symmetry of the scalar product for real functions: 
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  AAASSS xxxx  2
2

1
 

Scalar product of functions is defined as integral: 








2/

2/

a

a

ASAS dxxx   

In general, the integration limits are , but in our case the functions are zero outside interval 

(a/2, +a/2), since the potential is infinite there. It holds: 

0

2/

2/

2
 





a

a

SSS dxxx   

0

2/

2/

2
 





a

a

AAA dxxx   

since we integrate odd functions. So: 








2/

2/

a

a

ASAS dxxxx   

The function under integral is now even, thus: 






2/

0

2

a

ASD dxxx   

The mean value of x for function D is positive, what means that the particle is predominantly 

in the right side of the well (suffix D is from Slovene word “desno” for “right”). Similarly we 

find for particle with function L, which is predominantly in the left half of the well: <x>L = 

<x>D. 

 

We are left with calculation of 4 elements of Hamilton matrix: 

 )(
2

1
11 ASASDDDD HHHH 


 

We take into account that S and A are eigenfunctions of Hamiltonian, as well as their 

orthogonality: 

E
EE

EEH ASAS 



2

)
2

1 AS

AS11   

Similarly: 
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E
EE

HH LL 



2

AS

22 


 

We know from symmetry of matrix H: 

 DLLD HHHH 


2112
 

Let’s calculate these elements: 

 )(
2

1
12 ASAS HH 


 

22
)

2

1 AS

AS12

EEE
EEH ASAS





   

The matrix is: 























E
E

E
E

H

2

2  

 

Fig. R17: Schematic sketch of 1D infinite potential well with potential barrier in the middle; 

the wave functions S and A are approximately shown as sinusoidal curves (dashed lines) 

and also D and L (solid lines). Exact calculation shows that the solutions in the area of 

barrier should have exponential and not sinusoidal form (but at first glance we wouldn’t 

notice qualitative difference, only the function inside barrier would become lower).  
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 EX. 3.15 

Playing dice is ground so that the sides with numbers from 2 to 5 are a little smaller. So, the 

probability to get in the throw numbers 1 and 6 is rised: P1 = P6 = 20  %, P2 = P3 = P4 = P5 = 

15 %. We throw dice twice. What’s the probability that the sum of numbers for both throws 

will be 7? 

 

Among all possibilities we obtain the sum 7 only for these double throws: 1 + 6, 6 + 1, 2 + 5, 

5 + 2, 3 + 4 in 4 + 3. These are disjunctive events, thus the total probability for sum 7 is equal 

to the sum: P = 2P(1, 6) + 4P(2, 5). This is because P(2, 5) = P(3, 4). But two sequential 

throws are taken as independent and we must multiply corresponding probabilities: 

P(sum 7) = 2P1P6 + 4P2P5 = 2P1
2
 + 4P2

2
 = 17 %.  

 

Ex. 3.16 is omitted since it is not so relevant. 

 

 EX. 3.17 

Square wire loop with the side a = 10 cm and mass m = 2 kg is hung on vertical thread, so that 

the plane of the loop is vertical. The loop is composed of many windings so that a large 

current I = 5 A is flowing through it. The loop is positioned in horizontal homogeneous 

magnetic field with strength B = 1 T. In equilibrium the normal to the loop points in the same 

direction as the field. If we rotate it by angle  around vertical axis (torsion due to thread is 

neglected), the torque M = B sin  acts on the loop, tending to return the loop to 

equilibrium direction. Magnetic dipole moment of the loop is  = IS = Ia
2
. When we calculate 

its moment of inertia we imagine the loop as composed of 4 equal thin sticks, two horizontal 

and two vertical. What’s the oscillation time of the loop for small deviation ? 

 

We set »Newton law« for rotation of the rigid body: 

MJ   

 sin)(2 21 BJJ    

The two horizontal sticks rotate around their centers of mass, so each has moment of inertia J1 

= (m/4)a
2
/12 = ma

2
/48. For vertical sticks all their points are (approximately) at equal distance 

from vertical rotation axis, i.e., a/2, so J2 = (m/4)(a/2)
2
 = ma

2
/16. Continue: 
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 sin)
1648

(2 2
22

BIa
mama

   


m

IB

m

IB 6
sin

6
  

Thus, for small angles this is equation for harmonic oscillation with: 

IB

m
T

6
2  = 1,62 s  

 

 EX. 3.18 

Find the simplest possible relation between kinetic energy and orbital magnetic moment and 

between the orbital angular momentum and orbital magnetic moment of the particle with 

charge e and mass m, orbiting in homogeneous magnetic field B in the circle with radius R. 

 

We first find the relation between B, R and the particle speed v by identifying magnetic and 

centripetal force: 

cm FF   

R

mv
evB

2

  

m

eBR
v   

Next we express kinetic energy Ek, angular momentum L and magnetic moment  with 

parameters m and e and variables B and R: 

m

RBe
mvE

22

1 222
2

k   

2eBRmRvL   

m

BReevR
R

vR

e
R

T

e
IS

22
π

/π2
π

22
22   

The required relations are: 

BE k  
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
e

m
L

2
   

 

 EX. 3.19 

In one of the variants of Stern-Gerlach experiment we observe the splitting and vertical 

displacement of the beam of potassium atoms into two partial beams when the 

inhomogeneous magnetic field is entered, due to spin angular momentum and the 

corresponding magnetic moment of the most weakly bound electron in basic state. Gaseous 

potassium is heated in an oven at the temperature 1000 C, and the atoms exit the oven in 

horizontal direction and pass the short area (1 cm wide) of inhomogeneous magnetic field. 

This is directed vertically and is 10 T/cm in the same direction. Both partial beams hit the 1 m 

distant screen or the system of detectors. What’s the distance between the points where the 

beams hit the screen? Atomic mass of potassium is A = 39. 

 

Spin magnetic moment of electron  is equal to Bohr magneton: 

e

0

e

0

B
π42 m

he

m

e



  

where e0 = 1,6  10
19

 A s, h = 6,6  10
34

 J, me = 9,1  10
31

 kg. We have rounded the factor gS 

which appears in the relation between spin orbital momentum and magnetic moment, to the 

value 2. Quantized component of magnetic moment (because of spin ½) in the z axis direction 

(direction of magnetic field) is z = B. Magnetic force of inhomogeneous field on magnetic 

moment is Fz = z  (dBz/dz). Instead of partial derivative with respect to coordinate z we have 

simply written usual derivative, because the field varies only in the direction z. Thus the 

acceleration of the whole potassium atom in vertical direction is: 

z

B

mm

he

m

F
a zz

z
d

d

π4 e

0   

Here m is the mass of the atom. The atom comes to the area of inhomogeneous magnetic field 

with the speed v0, which can be approximated from mean thermal translational kinetic energy: 

m

kT
v

3
0    

Boltzmann constant is k = 1,38  10
23

 J/K, mass of atom is: m = Am1, with atomic mass unit 

m1 = 1 kg/NA, where NA = 6  10
26

/kmol is Avogadro number. The width of the area with 

inhomogeneous field is x, and atoms pass it in time t = x/v0. During this time they acquire also 

vertical component of velocity: 
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0e

0

d

d

π4 v

x

z

B

mm

he
tav z

zz   

When atoms leave small area of inhomogeneous field their paths are declined from horizontal 

direction by angle , where: 

2

0e

0

0 d

d

π4
tan

v

x

z

B

mm

he

v

v
zz
  

It is interesting to note that after inserting the square of initial speed into the expression for the 

angle the mass of atoms cancel and we don’t need this information: 

z

B

kTm

hxe

v

v
zz

d

d

π12
tan

e

0

0

  

The locations of impact of partial beams on X = 1 m distant screen are separated by: 

z

B

kTm

hxXe
XZ z

d

d

π6
tan2

e

0    = 4,5 mm 

It is necessary to take care that there are no ionized atoms in the beam, or as few as possible 

(these carry one positive fundamental charge). This is because the displacement of charged 

particles due to direct magnetic force in characteristic magnetic fields is incomparably larger 

than the displacement due to magnetic dipole moment.  

 

 EX. 3.20 

Pauli spins matrices x, y and z below, which are used in quantum mechanics for particles 

with spin 1/2, are of size 2  2. Calculate their eigenvalues, trace, determinant and products. 











01

10
x   







 


0i

i0
y   












10

01
z  

In the second matrix, i is imaginary unit. 

 

All three Pauli matrices have equal pair of eigenvalues: 1 = +1 and 2 = 1. Prove this for 

one of them: 

  101
1

1
detdet 2,1

2 











 




 Ix  

Find also the corresponding eigenvectors: 
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yx
y

x

x

y

y

x

y

x












































1

01

10
 

Normalized eigenvector belonging to eigenvalue +1 is thus: x
1
 = (x, y) = (1/2

1/2
, 1/2

1/2
). 

Similarly for the second one: 

yx
y

x

x

y

y

x

y

x
















































1

01

10
 

Normalized eigenvector belonging to eigenvalue 1 is thus: x
2
 = (x, y) = (1/2

1/2
, 1/2

1/2
). 

Vectors x
1
 and x

2
 are mutually perpendicular, as they should since they belong to two 

different eigenvalues of Hermitian matrix. It holds for such matrix: A
T
 = A* or in words: 

transposed matrix is equal to complex conjugated matrix. The meaning of transposed matrix: 

(A
T
)ij = Aji.  

Consider now matrix y: 

ixy
y

x

ix

iy

y

x

y

x

i

i











































 
1

0

0
 

The eigenvector: x
1
 = (x, y) = (1/2

1/2
, i/2

1/2
). 

ixy
y

x

ix

iy

y

x

y

x

i

i















































 
1

0

0
 

The eigenvector: x
2
 = (x, y) = (1/2

1/2
, i/2

1/2
). Vectors x

1
 and x

2
 are mutually perpendicular 

also in this case. But now we deal with complex numbers and the scalar product is defined as: 

x
1
  x

2
 = (x

1
)1(x

2
)1* + (x

1
)2(x

2
)2* =  1/2

1/2
  1/2

1/2
 +  i/2

1/2
  i/2

1/2
 = 1/2  1/2  = 0. 

Eigenvectors of the diagonal matrix z are trivial: x
1
 = (1, 0), x

2
 = (0, 1).  

 

Since all matrices have the same eigenvalues 1, also their trace and determinant is the same: 

sl(i) = 1 + 2 = 0, det(i) = 1  2 = 1, i = x or y or z. 

Square of every matrix is unit matrix. For instance: 




























10

01

01

10

01

102

x  

Multiply also two different matrices. For instance: 

zyx i
i

i

i

i
 


















 










0

0

0

0

01

10
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Product of these matrices is anti-commutative, which means that it changes sign when the 

order of factors is reversed: 

zxy i
i

i

i

i
 
























 


0

0

01

10

0

0
 

We have similarly: y  z = z  y = ix in z  x = x  z = iy.  

 

 EX. 3.21 

Two different quantum states in two-level system which are related to qubits are described 

with the following vectors in Hilbert space: 

 1
2

sin)iexp(0
2

cos 1
1

1
1





  

 1
2

sin)iexp(0
2

cos 2
2

2
2





  

Here 0> and 1> are orthonormal stationary states. Express both scalar products of 

composed vectors. Find condition for their orthogonality. 

 

Since <00> = <11> = 1 in <01> = <10> = 0, we find: 

2
sin

2
sin)iΔexp(

2
cos

2
cos 2121

21





   

2
sin

2
sin)iΔexp(

2
cos

2
cos 2121

12





   

We denoted the phase difference  = 2  1. If we want zero scalar product, both real and 

imaginary components must be zero. The imaginary component is zero only if  = 0 or 

integer multiple of ; choose  = 0. Then both scalar products are real; they are zero if: 

π)12(0
2

cos
2

sin
2

sin
2

cos
2

cos 21
212121 


 k


 

Here, k is any integer number, and let’s choose k = 0. So, for now: 2 = 1, 2 = 1 + .  

 

But we must stress that we can define  per modulus of 2 because of periodicity of 

exponential function with imaginary exponent. Since the half angle  appears in the functions, 

it can be in principle defined per modulus of 4. However, when we make transformation  
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 2 + , both sine and cosine change sign. This means that the whole vector (or wave 

function) just changes sign, which is physically the same state. Therefore, it is sufficient to 

limit polar angle  to half interval (0, 2). But if we consider another transformation,    + 

,   2  , we find the following: cosine function in the equation of state changes sign, 

but not the sine function; also the exponential function in sine part changes sign. Again, the 

whole vector only changes sign. So  can be even more limited: 0    . This is a proof that 

Bloch sphere is enough for representation of qubits. We find also something else: if we take to 

orthogonal vectors, two diametral points on Bloch sphere correspond to them. If we want to 

limit  to interval (0, ), we must take for the second vector instead of 2 = 1, 2 = 1 +  

some more suitable pair of angles. Let’s be definite and take the acute angles of the first 

vector: 0 < 1, 1 < /2. Then, it holds for the pair of angles of second vector: 0 < 2 < /2,  

< 2 < 3/2. Then we use transformation mentioned above: 2  2 + , 2  2  2, so we 

get:  < 2 < 3/2, /2 < 2 < . Now we have the desired intervals for all angles: 2 = 1 + , 

2 =    1.  

 

  



68 
 

4 QANTUM CALCULATIONS 

 

 EX. 4.1 

In physics, we often define matrix – the tensor of second rank – as a tensor product of two 

vectors. If we take vectors a = (a1, a2, a3) and b = (b1, b2, b3), we obtain matrix C = a  b, 

with elements: Cij = aibj. In words: the element of i-th row and j-th column of this matrix is 

the product of i-th component of first vector and the j-th component of second vector. Show 

that in rotation of coordinate system this matrix transforms correctly: C' = TCT
1

, if both 

vectors transform as a' = Ta and b' = Tb. Describe main characteristics of this matrix. 

 

Correct transformation of the matrix means: T(a  b)T
1

 = (Ta)  (Tb). In words: tensor 

product of already transformed vectors is the same as transformed matrix which has first 

calculated from original vectors. 

 

The proof will be a fine exercise of calculation and summing terms over some indices, 

something usual for algebra which deals with vectors and matrices. But before solution of the 

task just look again at characteristic transformation (rotation) matrix: 



















100

0cossin

0sincos





T   

Matrices like this have some additional property useful for proof of different rules connected 

with them. If we take some optional row of matrix T and imagine it as a vector, then the scalar 

product of two different rows is always zero. But the scalar product of the same row with 

itself is 1. The same holds for the columns of the matrix. 

Since any rotation matrix (optional axis and angle) can be obtained as a product of more 

simple matrices for rotation around coordinate axes the rule mentioned above holds for any 

rotation. Thus, we have to prove that if the matrices A and B have such property, the same 

holds for their product C = AB. 

 

In this task we’ll learn to use Einstein convention for summing over repeated indices: if in 

some expression some index repeats twice this means that we must sum over this index and 

we needn’t write the symbol for sum. In this way we simplify notation, e.g.: 

 



3

1k

kjikkjik BABA  
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Expression that we took as an example corresponds to multiplication of matrices A and B – 

this is just element Cij. Now we take matrices A and B which have orthonormal rows and 

columns. We’ll prove the same for their product. We’ll use Einstein convention. Let’s check 

scalar product of i-th and j-th row of C: 

jkikjkikjijiji ABABCCCCCCCCs )()(332211   

))(( mkjmlkil BABAs   

We obtained triple sum (over k, l and m). We may rearrange the order of in an appropriate 

way: 

))(( mklkjmil BBAAs   

Now the main trick: since the summation index k only in second parenthesis we first calculate 

that sum over k. But this is just the scalar product of l-th and m-th row of B, which is zero for 

different l and m, but for l = m it is equal to 1. So in the whole expression for scalar product s 

we keep only the first parenthesis with elements of matrix A, putting l =  m: 

jmim AAs   

But this is just scalar product of i-th and j-th row of A, which is 1 for i = j, and zero otherwise. 

The proof is finished. 

 

The orthonormality of rows and columns of transformation matrix will not be used directly 

here, but nevertheless this property is related with the requirement that the inverse matrix of 

matrix T is just equal to its transposed matrix. 

 

Now turn to the proof that T(a  b)T
1

 = (Ta)  (Tb), if the matrix T has the property of 

orthonormality of rows and columns. We’ll multiply three matrices at the same time: (ABC)ij 

= AikBklClj, which is left for reader to prove. We’ll use also this: (T
1

)ij = (T
T
)ij = Tji.  

Left side: 

[T(a  b)T
1

]ij = Tik(ab)kl(T
1

)lj = TikakblTjl = TikTjlakbl 

Right side: 

[(Ta)  (Tb)]ij = (Ta)i(Tb)j = (Tikak)(Tjlbl) = TikTjlakbl 

Everything matches.  
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 EX. 4.3 

What does the product (a  b)  (c  d) mean? Here a, b, c and d are 3D physical vectors. 

Both tensor products are 3  3 matrices, while the dot denotes usual product of matrices. 

 

Let’s use short denotations: M = a  b, N = c  d, P = M  N. If the vectors in components are 

a = (a1, a2, a3), b = (b1, b2, b3), c = (c1, c2, c3) and d = (d1, d2, d3), the matrix multiplication is: 























































332313

322212

312111

332313

322212

312111

333231

232221

131211

dcdcdc

dcdcdc

dcdcdc

bababa

bababa

bababa

PPP

PPP

PPP

NMP   

Choose as an example one of the elements of matrix P: P11 = a1b1c1d1 + a1b2c2d1 + a1b3c3d1 = 

(b  c)a1d1. We obtain similar thing for any element of P: Pij = MikNkj (Einstein convention for 

index k). Next: 

Pij = aibkckdj = (b  c)aidj. 

We write finally: (a  b)  (c  d) = (b  c)a  d.  

 

 EX. 4.4 

Two normalized states of some spins system with spin ½ are 1> = (a1, b1) and 2> = (a2, 

b2), where the components are in general complex numbers. Express tensor product of both 

vectors in two ways, either as a 2  2 matrix, or as a vector with 4 components. What’s the 

relation between 2D matrix and 4D vector? What’s the magnitude of the vector? 

 

Tensor product as matrix is: 











2121

2121

21
bbab

baaa
   

and as vector: 





















21

21

21

21

21

bb

ab

ba

aa

   

We obtain it by taking rows of the matrix in right sequence and put them into vector. New 

vector is denoted by > and its size is: 
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 





















21

21

21

21

21212121

2

********

bb

ab

ba

aa

bbabbaaa   

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

2

bbabbaaa   

Collect terms in pairs and use normalization of 1> and 2>:  

1
2

1

2

1

2

1

2

2

2

1

2

2

2

1

2

  baba   

Thus, also the new vector is normalized.  

 

 Ex. 4.7 

Write how the operator x  x  z (tensor product of Pauli matrices) acts in all of 8 base 

tensor products sz1  sz2  sz3 of individual spin states (s = ½). What are the eigenvalues and 

corresponding states of the operator? 

 

Let’s write first operations of both matrices on one spin for both states: 

x  

x  

z  

z  

For the tensor product we have: 

 )( zxx   

 )( zxx   

 )( zxx   

 )( zxx   

 )( zxx   



72 
 

 )( zxx   

 )( zxx   

 )( zxx   

None of the base states is also eigenstate since operator x always flips the spin. Eigenstate of 

the operator x is thus symmetrical or antisymmetrical combination of spins »up« and 

»down«: 


















 ))(

2

1
1))(

2

1
x  


















 ))(

2

1
1))(

2

1
x  

Eigenvalues are 1, what we have already found in ex. 3.19. Also for the tensor product of 

Pauli operators the eigenvalues are 1. Let’s write just one of possible states and the 

corresponding equation: 


















 ))(

2

1
))(

2

1
  

  )1()1()1()( zxx   

 

 EX. 4.8 

The state of how many qubits simultaneously can be described with 10
12

 complex amplitudes? 

 

Since the following equation holds for the number of necessary amplitudes for n qubits holds: 

N = 2
n
, we obtain after taking logarithm of it: ln N = n ln 2  n = ln N/ln 2 = ln(10

12
)/ln 2 = 

12  (ln 10/ln 2) = 39,86. This must be always truncated down: the maximum number of 

qubits is 39. 

 

 RAČUNSKI ZGLED 4.9 

State of the system of 4 qubits is described with the vector: 

 0000...11101111 000011101111 aaa  
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which is given by 16 complex amplitudes aijkl. During simultaneous measurement of the first 

two qubits we find states 0> and 1>. Into what does the original state collapse? 

 

Vector after measurement of first two qubits is (we keep only the amplitudes with first indices 

0 and 1): 

)0100010101100111( 0100010101100111  aaaaC  

where additional normalization constant is: 

2

0100

2

0101

2

0110

2

0111/1 aaaaC    

This is because before measurement the function was normalized with respect to all 16 

amplitudes, but now only four remain and the function must be normalized again.  

 

 EX. 4.10 

Operator (matrix) A is hermitian: A
+
 = A. We define a new operator: B = exp(iA), where i is 

imaginary unit. Using Taylor expansion prove that operator B is unitary, i.e.: B
+
B = BB+ = I. 

 

Operator B = exp(iA) can be formally expanded into Taylor series similarly as usual 

exponential function: 

 







0

)i(
!

1

j

jA
j

B  

We find to this operator B
+
. Operation of such conjugation goes term by term, and it is also 

half homogeneous: (A + B)
+
 = *A

+
 + *B

+
, where  and  are scalars, and A and B 

operators. This rule can be slightly generalized with respet to scalar factors: (m
A + n

B)
+
 = 

(*)
m
A

+
 + (*)

n
B

+
, where m and n are optional integer exponents. It holds for the product: 

(AB)
+
 = B

+
A

+
. But if B = A, we needn’t worry about the order of operators, so: (A

2
)
+
 = (A

+
)
2
. 

Using induction reasoning we obtain: (A
j
)
+
 = (A

+
)
j
. But since A is hermitian, we have A

+
 = A. 

Finally: 






 
0

)i(
!

1

j

jA
j

B  

This is the same as: B = exp(iA). We conclude: 

B
+
B = exp(iA) exp(iA) = exp(iA + iA) = exp(0) = I  
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5 DYNAMICS OF QUANTUM PARTICLES 

 

 EX. 5.1 

How does the operator of linear momentum in 1D quantum problem act on wave function  = 

A sin(kx), limited to interval 0  x  a, so that boundary condition (0) = (a) = 0 is fulfilled? 

Normalize wave function. What’s the mean value of linear momentum in this state? How does 

the operator of kinetic energy act in this function? 

 

Condition (0) = 0 is automatically fulfilled for sine function. In order (a) = 0 to hold, we 

must have sin(ka) = 0, that is, ka = n. For the values of n we need only natural (positive 

integer) numbers. Thus:  = A sin(nx/a). Constant A is calculated with normalization of 

wave function: 

a
A

a
Ax

a

xn
Ax

aa
2

1
2

d)(sind 2

0

22

0

2  


  

Operator of momentum acts in this way: 

  )π
2

3
sin(i)cos(i)sin(

d

d
i  kxkAkxkAkxA

x
p 

  

Function  isn’t eigenfunction of this operator. The mean value of linear momentum is zero. 

This can be checked in a few ways. The first way is the simplest: mean value of some 

operator which corresponds to true physical quantity must be real. But if the wave function is 

real we obtain in calculation because of the factor i purely imaginary quantity. So, the mean 

value of momentum for any real function must be automatically zero. The second way is the 

direct calculation: 

  0d)cos()sin(id)sin(
d

d
)sin(i

0

2

0

2   xkxkxkAxkx
x

kxApp

aa



  

Third proof is such, that we use Euler formula to split sine function into two exponential 

parts: sin(kx) = (e
ikx

  e
ikx

)/(2i). Exponential functions are eigenfunctions of the operator of 

momentum with the opposite eigenvalues which then cancel.  

Operator of kinetic energy acts as: 

  )sin(
2

)sin(
d

d

2

22

2

22

kin kxA
m

k
kxA

xm
E 


  

Function  is the eigenfunction of this operator.   
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 EX. 5.2 

The lowest energy of the proton in 1D infinite potential well is 1 MeV. What’s the width of 

the well?

What’s the probability to find at some moment the particle in the middle third of the 

well? 

 

Data: 

E1 = 1 MeV = 1,6  10
13

 J 

m = 1,67  10
27

 kg 

----------------- 

a = ? 

 

The width of the well a is expressed from Eq. (2.12 b):    

1

2

2

22

1
88

1

mE

h
a

ma

h
E   = 1,43  10

14
 m = 14,3 fm 

We use integral to calculate probability: 

 

3/2

3/

3/2

3/

2

3/2

3/

2 d))2cos(1(
2

12
d)(sin

2
d

a

a

a

a

a

a

xkx
a

xkx
a

xP 
 









 )

3

π2
sin()

3

π4
sin(

π2

1

3

1

3/

3/2
))2sin(

2

1
(

1 nn

na

a
kx

k
x

a
P  

We have also used k = n/a. First few values of quantum number n: 

609,0
π2

3

3

1
1  Pn   

196,0
π4

3

3

1
2  Pn   

333,0
3

1
3  Pn  
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402,0
π8

3

3

1
4  Pn   

278,0
π10

3

3

1
5  Pn   

333,0
3

1
6  Pn  

373,0
π14

3

3

1
7  Pn   

299,0
π16

3

3

1
8  Pn   

333,0
3

1
9  Pn  

361,0
π20

3

3

1
10  Pn   

310,0
π24

3

3

1
11  Pn   

333,0
3

1
12  Pn  

 

  



77 
 

 EX. 5.3 

How do we write the linear combination of two wave functions with different quantum 

numbers 1 and 2, for 1D infinite potential well, if the first energy is 3times more probable 

than the second? Take real coefficients. 

 

We write the sum in the form: 

)
π2

sin(
2

)
π

sin(
2

212211 x
aa

cx
aa

ccc  
 

Since the probability for one of the stationary functions is the square of the corresponding 

coefficient, it holds: c1
2
 = 3c2

2
. At the same time the whole function must be normalized: 

122112211   cccc

 

12222112222111111   cccccccc

 

The second and the third term are zero due to orthogonality of the functions. But the functions  

1 and 2 are already normalized. So, the simple equation remains: c1
2
 + c2

2
 =1. Finally, we 

obtain: c1 = 3
1/2

/2, c2 = ½.  

 

 EX. 5.4 

Consider energy levels and their degeneracy in 3D infinite potential well. This is a cube with 

side a and with captured quantum particle with mass m. Generalize 1D case to 3D.  

 

In 3D we have one energy term for each of the three degrees of freedom: 

)(
8

)(
2

2

3

2

2

2

12

2
222

2

nnn
ma

h
kkk

m
E zyx 


 

If quantum numbers n1, n2 and n3 interchange values, also the wave function changes, but the 

energy remains the same. If n1, n2 and n3 are all different, such as 1, 2 and 3, there are 6 

permutations of them; this is also the degeneracy d of the energy level. Table shows some 

lowest stationary states, where energy is normalized to E0 = h
2
/(8ma

2
). 

 

n1 n2 n3 E/E0 d 

1 1 1 3 1 

1 1 2   
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1 2 1 6 3 

2 1 1 

1 2 2  

9 

 

3 2 1 2 

2 2 1 

1 1 3  

11 

 

3 1 3 1 

3 1 1 

2 2 2 12 1 

1 2 3  

 

14 

 

 

6 
1 3 2 

2 1 3 

2 3 1 

3 1 2 

3 2 1 

   

 

 EX. 5.5 

Consider the splitting of energy levels in 2D infinite potential well. This is at first square with 

size a and with captured quantum particle with mass m, but then the square deforms into 

rectangle with edges a and b = a + a. Let it hold a << a.  

 

Energy levels in a square are degenerate except for two equal quantum numbers. Let’s take 

then two different quantum numbers n1 and n2: 

)(
8

2

2

2

12

2

kv nn
ma

h
E   

Replace the square with rectangle: 

)
)/1(

(
8

)
)(

(
8 2

2

22

12

2

2

2

2

2

2

1

2

pr
aa

n
n

ma

h

aa

n

a

n

m

h
E





  

We can use a small part of Taylor series for the second term, (1 + a/a)
2

  1 2a/a, thus: 

))/21((
8

),(
2

2

2

12

2

21pr aann
ma

h
nnE   

Change quantum numbers: 

))/21((
8

),(
2

1

2

22

2

12pr aann
ma

h
nnE   

and calculate the absolute value of energy difference: 
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a

a
nn

ma

h
nnEnnEE



2

8
),(),(

2

1

2

22

2

21pr12pr  

The relative energy difference with respect to the energy of original square is of interest: 

a

a

nn

nn

E

E 







 2
2

1

2

2

2

1

2

2

kv

 

To every energy level of original square there corresponds a pair of nearby levels for 

rectangle if n1  n2. Treat very different cases, first n1 = 1, n2 = 2: 

a

a

E

E 


 2

5

3

kv

 

Next, the numbers differ by 1 again, but they are both much larger than 1. We can then use a 

new approximation: 

a

a

na

a

n

n

a

a

nn

nn

E

E 













 212

2

22

)1(

)1(

1

2

1

1

2

1

2

1

2

1

2

1

kv

 

And, lastly, let one quantum number be much larger than the other: 

a

a

E

E 


 2

kv

  

This is the largest possible energy splitting of pairs of states in rectangle.  

 

 EX. 5.6 

We observe oscillations of atoms in all possible directions and this is a 3D problem. The 

elastic energy is generalized: V = (k1x
2
 + k2y

2
 + k3z

2
)/2. We’ll also use the corresponding 

angular frequency  = 2, characteristic for spring pendulum with constant k and with 

weight of mass m: 1 = (k1/m)
1/2

, 2 = (k2/m)
1/2

, 3 = (k3/m)
1/2

.  Energy of quantum stationary 

state is: 









 )

2

1
()

2

1
()

2

1
( 332211,, 321

nnnE nnn   

 

There are 3 quantum numbers due to 3D problem: n1, n2, n3. 

We consider only symmetric case:  

)
2

3
( 321,, 321

 nnnE nnn 
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Treat the degeneracy of energy levels.  

 

This is shown in the table. 

 

Table 1: Quantum states and energy levels for symmetrical 3D harmonic oscillator; energies  

are given in units E0 = (h/2) = h. 

 

n1 n2 n3 E/E0 d 

0 0 0 3/2 1 

1 0 0  

5/2 

 

3 0 1 0 

0 0 1 

1 1 0  

 

7/2 

 

 

6 

1 0 1 

0 1 1 

2 0 0 

0 2 0 

0 0 2 

1 1 1  

 

 

 

9/2 

 

 

 

 

10 

2 1 0 

2 0 1 

1 2 0 

1 0 2 

0 1 2 

0 2 1 

3 0 0 

0 3 0 

0 0 3 

                               … 



 
 EX. 5.7 

Finite potential step (jump) is shown in Fig. R19. It holds: V(x) = 0 for x < 0 and V(x) = V0 for 

x > 0. Treat the coefficient of reflectivity R in transition of the wave from left to right subject 

to the condition E  V0.    
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Fig. R19: Potential and full energy for potential step in the case E > V0. Units in graph are 

without physical dimension, so that V0 = 1. 

 

The reflectivity coefficient is: 

2

1

1 )(
kk

kk
R






 

Here we have two wave vectors: k = [2mE/(h/2)
2
]

1/2
 on the left and k1 = [2m(E  

V0)/(h/2)
2
]

1/2
 on the right side.  

Write the condition, so that R = 25 %.  

 

From equation for R it follows k = 3k1  k
2
 = 9k1

2
, or: 

02

0

2 8

9)(2
9

2
VE

VEmmE






 

 

Fig. R20 shows dependence of coefficients R and T = 1 – R on the ratio E/V0. 
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Fig. R20: Graphs R(E/V0) and T(E/V0) for finite potential step. In classical mechanics we 

would have instead of smooth curves just jump at E = V0: 0  1 for T and 1  0 for R. But 

we see that this difference is not so significant since T approaches the value 1 quickly, and 

also R the value 0, when E > V0. 

 
 

 EX. 5.8 

In quantum mechanics we often deal with problems where we compare the wave function of 

some particle in classically allowed (E > V) and prohibited (E < V) area. In the case of 

constant potential V(x) in one dimension the wave functions are combinations of imaginary (E 

> V) and real exponential functions (E < V). Instead of this, we can take the linear 

combination of sine and cosine functions or hyperbolic functions. We can avoid unnecessary 

repeating of calculations with the appropriate substitution of functions and parameters when 

the particle comes from classically allowed to prohibited area. So, sometimes the direct 

relation sin z  sinh z and cos z  cosh z is useful, where z is complec number. Generalize 

the Euler formula exp(ix) = cos x + i sin x to complex numbers to express sin(iz) and cos(iz) 

with hyperbolic functions. 

 

We first express Euler formula for two equally large arguments with opposite signs, x: 

exp(ix) = cos x + i sin x, exp(ix) = cos x  i sin x. Once, we sum both equations, and next we 

subtract them, so that we obtain: 
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)(
2

1
cos ii xx eex   

)(
i2

1
sin ii xx eex   

Then we substitute x  iz: 

zeeeez zzzz cosh)(
2

1
)(

2

1
)icos( )i(i)i(i  

 

zzeeeez zzzz sinhisinh
i

1
)(

i2

1
)(

i2

1
)isin( )i(i)i(i  

  

  

 

 EX. 5.9 

Derive general equation for the probability that the free quantum particle with energy E in the 

wave form the left »goes through« rectangular potential barrier with height V > 0 and width a 

for both cases: V < E (Fig. R22) and V > E (Fig. R21). 

 

The detailed investigation of the first case is sufficient. Schroedinger equation for the 

stationary state with energy E and constant potential V < E is: 


2

1

2

''''
2

kEV
m




 

with the wave vector 

)(
2

21 VE
m

k 


 

We have already used this vector in Ex. 5.7. The general solution of the above ordinary linear 

differential equation of second order is simple:  = A exp(ikx) + B exp(ikx). We could have 

used sine and cosine functions instead of imaginary exponential functions. However, 

exponential functions are more appropriate in this case since we observe travelling waves. 

The same holds in both areas with zero potential. Let’s write the whole wave function for the 

three areas in Fig. R21: 

1. 1 = A exp(ikx) + B exp(ikx), to the left (x < 0), k = [2mE/(h/2)
2
]
1/2

; 

2. 2 = C exp(ik1x) + D exp(ik1x), area of barrier (0 < x < a), k1 = [2m(E  V)/(h/2)
2
]

1/2
; 

3. 3 = E exp(ikx) + F exp(ikx), to the right (x > a), the same k as for 1. 
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In all the three functions the first term means the wave which moves to the right while the 

second terms corresponds to the wave moving to the left. In general, all 6 coefficients are 

complex. But we can immediately simplify the first and third wave function. Here, we needn’t 

normalize the wave function, but we need only the ratios of the coefficients. So we may put A 

= 1. Next, since the wave comes from the left, the third function cannot contain the wave 

moving to the left, so F = 0. We are mainly interested in the coefficient E, which will be used 

to calculate the transmission coefficient. 

 

We must thus find 4 unknowns: B, C, D and E. We need 4 equations; we obtain them with 4 

»boundary conditions«: the wave function as well as its first derivative with respect to x must 

be continuous at x = 0 and x = a. We obtain: 

1(0) = 2(0)  1 + B = C + D 

1'(0) = 2'(0)  (ik) + B(ik) = C(ik1) + D(ik1) 

2(a) = 3(a)  C exp(ik1a) + D exp(ik1a) = E exp(ika) 

2'(a) = 3'(a)  C(ik1) exp(ik1a) + D(ik1) exp(ik1a) = E(ik) exp(ika) 

This is the system of 4 linear equations for 4 unknowns; the system is inhomogeneous 

(nonzero right side) and uniquely solvable (determinant of the matrix is different from zero). 

We solve it easily, but with a lot of writing. Just write the final expression for T: 
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In the case V > E0 the wave vector k1 becomes imaginary and can be written as k1 = i1, and 

the corresponding equations change: 

1)(sinh)//)(4/1(

1
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According to Ex. 5.8 we have substituted sin(ix)  sinh x.  

 

 EX. 5.10 

What’s the probability that the quantum particle in travelling wave from the left tunnels 

through the rectangular potential barrier if its potential is twice as large as kinetic energy of 

the particle: V0 = 2E? The barrier width is a (Fig. R21).  

 

We use the equations from previous example in the case E < V0. 

 

Fig. R21: Potential barrier and energy of particle incoming from left, E = (1/2)V0. Units are 

set so that je V0 = 1. 

 

We insert in equation for T expressions for both wave vectors: 

1)(sinh)
2

(

1

1

22

1

2

1

2






a
k

k
T





 

1)(sinh
)(2

1

1

2

0

2

0 




a
EVE

V
T



 

In the case V0 = 2E the coefficient still depends on the width a: 

1)/2(sinh2

1

1)(sinh2

1
2

1

2






amEa

T

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We used V0 – E = 2E – E = E; so k and 1 are equal. In the case of very small width a we have 

T  1. Look at the opposite limit, large a. We make simplification sinh x = (e
x
 + e

x
)/2  e

x
/2, 

and we also neglect 1 in the denominator. Thus: 

)
22

exp(2


amE
T


     

For some feeling, let’s find a to obtain T = 1 % if we have electron with mass m = 9,1  10
31

 

kg and kinetic energy E = 1 eV, so that V0 = 2 eV: 

mE

T
a

22

)/2ln(



 = 0,52 nm  

Let’s mention one more limiting case: E  V0. Then the parameter 1 is small and we 

substitute sinh(1a)  1a: 

1)2/(

1
)(

20



ka

VET    

 

 EX. 5.11 

What’s the probability that the quantum particle in the wave from left goes through the barrier 

if the potential is half the kinetic energy: V0 = E/2 (Fig. R22)? 

 

Fig. R22: Potential barrier end particle energy, E = 2V0. Units in figure are set so that V0 = 1. 
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We use equations for E > V0. For V0 = E/2 we have k/k1 = 2
1/2

, so: 

18/)/(sin

1

18/)(sin

1
2

1

2






amEak

T  

It still depends on relation between E and a. In classical picture the transmission coefficient 

would be always 1, if the particle’s energy exceeds potential barrier, but not so in quantum 

mechanics. But something else is also unusual: if we have definite barrier (fixed values of V0 

and a) and we gradually vary energy E > V0, it happens that for some exact values of energy 

sine function in denominator is zero and so transmission coefficient is 1. 

Let’s draw graph T(E/V0) for E  0, both for E < V0 and  E > V0 (Figs. R23 in  R24). We vary 

energy E, but we choose such barrier that the following relation holds between V0 and a: 

2

π2π2
)0(

0

110 


 a
h

mV
aEa   

So sin(10a) = 1 and sinh(10a)  2,30. 

 

Fig. R23: Graph T(E/V0) for rectangular barrier corresponding to Figs. R21 and R22. 

Function for E > V0 isn’t strictly monotonically increasing, but has slight oscillations for high 

energies (which are quite little pronounced, see next figure). First maximum (T = 1 exactly) 

for our parameters is at E = 5V0. 
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Fig. R24: As previous figure, but from some energy on, so that oscillations are more 

pronounced  

 

 EX. 5.12 

What’s the probability that the quantum particle in wave from left goes through the barrier in 

the shape of negative parabolic potential V(x) = kx
2
/2 (Fig. R25)? Equation for the 

probability T for any energy E (positive or negative) of the particle is: 

)π2exp(1

1


T  

k

mE



   

Calculate T for three different values of dimensionless energy:  = 0, 1/(2), then find 

asymptotic behavior for   . Draw graph T(). 
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Fig. R25: Parabolic potential barrier and particle’s energy; particle approaches from the left.  

 

In the case  = 0 we have T = 0,5. Function T() is increasing: for positive energies it holds T 

> 0,5, for negative energies T < 0,5. For  = 1/(2) we have T  0,731, for  = 1/(2) we 

have T  0,269. When   +, the exponential term in denominator is much smaller than 1, 

so approximately T  1  exp(2). But when    we have T  exp(2). Graph is 

shown in Fig. R26. If the origin is moved to the point (0, ½), we get odd function hyperbolic 

tangens since: 

)πtanh(
2

1

2

1
T  

 

Fig. R26: Graph T() for parabolic barrier   
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6 QUANTUM UNCERTAINTY 

 

 EX. 6.1 

We measure the coordinate x of the electron to 10 nm exactly. What’s in principle the best 

exactness of the simultaneous measurement of its velocity component vx? We measure the 

coordinate x of the runner on 100 m to 1 mm exactly (some definite point of its body). What’s 

in principle the best exactness of the simultaneous measurement of its velocity component vx 

if his mass is 80 kg? 

 

We use equation: 

xm

h

xm
vvmxpx xxx




π422



 

We calculate for electron with mass 9,1  10
31

 kg vx = 5,8  10
3
 m/s. This seems a lot, but it’s 

still much less than the light speed. We calculate for the 100 m runner: 6,6  10
34

 m/s!  

 

 EX. 6.2 

The energy of the hydrogen atom in basic state can be estimated in the following way. The 

energy is the sum of kinetic and electrostatic parts: E = mv
2
/2 – e0

2
/(40r), with m = 9,11  

10
31

 kg (for more exact calculation we should use the reduced mass instead of the electron 

mass, but it’s almost the same), e0 = 1,60  10
19

 As, 0 = 8,85  10
12

 As/(Vm), r is some 

effective distance between electron and nucleus, and v the speed of circulating electron in the 

Bohr planet interpretation. According to Heisenberg principle, we estimate the relation 

between radius r and speed v so: v  h/(4  mr), where h = 6,63  10
34

 Js is Planck constant. 

This relation is obtained so that we rewrite inequality x  px  h/(4) as equation and 

substitute x  r, px  mv. Calculate energy with its minimization over radius r, and also 

estimate r and v. 

 

Energy expressed with independent variable r is: 

r

e

mr

h
E

0

2

0

22

2

π4π32 



  

We minimize it: 
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We obtain rough estimations: r  0,2 nm, E  54 eV.    

 

 EX. 6.3 

What’s the product of the standard deviations of coordinate and linear momentum of the 

particle in 1D infinite potential well in basic state? Compare the exact result with the smallest 

possible product according to Heisenberg equation. 

 

We already know the mean values of coordinate and momentum due to symmetry: <x> = a/2 

(we take the interval 0  x  a), <p> = 0. So we must still calculate the corresponding mean 

values of the squares of both quantities. First <x
2
>:  

 
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0

22
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222 )d
π
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2

d  

We use the equation sin
2
(kx) = (1 – cos(2kx))/2, and then the per partes method twice. We get: 

)
π2

1

3

1
(

2

22  ax  

But the mean value of the square of momentum follows directly from the relation between the 

momentum and kinetic energy since  is eigenfunction of the operator of kinetic energy: 

2
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2

π
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mmEmEp


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4

1
)

π2

1

3

1
(δ  aaxxx  0,18 a 

a
pppp

π
δ 222 

  

The corresponding product is:  

2
57,0π18,0δδ


  px  

This product is thus larger as the Heisenberg limit, as it should be.  
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 EX. 6.4 

Use the relation for the minimum product of the uncertainty for coordinate and momentum 

component to obtain similar relation for energy and time. Take kinetic energy of free particle: 

E = p
2
/(2m); use also x = vt.  

 

Deviation of energy from deviation of momentum is estimated in the same way as 

differential: E = (dE/dp)p = (p/m)p = vp. To express the deviation of x we take only the 

deviation for time, but not so for velocity: x = vt  t = x/v. The product is then: 

2
)/()(δδ


 xpvxpvtE   

This derivation was not physically exact, but the final result is nevertheless correct. But the 

physical meaning of the last equation is quite different from the corresponding equation for 

coordinate and momentum. While the uncertainty of coordinate and momentum is connected 

with measurement of both quantities at the same time, we can in principle measure and 

compare the energy of the system at two different moments.  

 

 EX. 6.5 

Relations for the uncertainty of the components of orbital (and also spin) angular momentum 

are different from ones for coordinates and components of linear momentum. This is because 

we calculate orbital angular momentum as a vector product of radius vector and linear 

momentum. While the uncertainty principle doesn’t prohibit exact simultaneous measurement 

of all three components of linear momentum, this in principle cannot be done in the case of 

angular momentum. Let’s consider the characteristic example, where quantum numbers l and 

m are given, and with them also: 

 )1(llΓ  

 mΓ z  

Here, we must have l  m  l. In this case the other two components of angular momentum 

are continuously distributed according to simple geometrical construction (at least, until they 

are measured). We imagine that the vector  = (x, y, z) rotates over the cone so that its 

magnitude and z–component (in the direction of the symmetry axis of the cone) are constant. 

Evaluate the uncertainty of both components of angular momentum for optional values of l 

and m and show some examples. When is the uncertainty of both components the 

smallest/largest? 
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Take any possible values of l and m. Then the component x has extremal values when y = 0: 

 222 )1( mllΓΓΓ zx    

The same is true for y, thus we can take estimation: 

 2)1( mllΓΓ yx   

For given value of l this uncertainty is the smallest for m = l: 

 lΓΓ yx minmin   

and the largest for m = 0, i.e., when the vector of angular momentum rotates in the plane (x, 

y): 

ΓllΓΓ yx  )1(maxmax   

Some examples: 

 20,1 yx ΓΓml   

 yx ΓΓml 1,1  

 60,2 yx ΓΓml   

 51,2 yx ΓΓml   

 22,2 yx ΓΓml   

The only exception in regard to uncertainty of the components of angular momentum is the 

case l = m = 0, where all three components are exactly zero. 

 

 EX. 6.6 

This example is connected to the previous, but now we are interested in spin angular 

momentum. Some elementary particle has spin s = ½, which means that it can have in some 

chosen direction (usually denoted as axis z) the eigenvalue z = (1/2)(h/(2)). Let the 

electron be in the eigenstate with z = +(1/2)(h/(2)). What’s the mean value of the 

component of the spin angular momentum in the direction of axis z' which makes an angle  < 

90 with the axis z? 
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As in the previous case with orbital angular momentum we may think that the vector  = (x, 

y, z) rotates over the cone. Now we write:  

sΓ z   

zΓssΓ  )1(  

So the z axis and the vector of angular momentum make all the time the same angle: 

)1(
arccosarccos




ss

s

Γ

Γ z  

But the vector also depends on the angle : 

)cos,sinsin,cos(sin ΓΓ 


 

In order to make calculation simpler we choose the unit direction vector of the new axis z' in 

the plane (x, z), but the final result does not depend on this choice: 

)cos,0,(sin' ze


 

The component of angular momentum in the direction of the new axis is calculated with the 

following scalar product: 

)coscossincos(sin''   ΓeΓΓ zz


 

Its average value is obtained with integration over azimuthal angle: 

  

π2

0

π2

0

'' )coscossincos(sin
π2π2

1
 d

Γ
deΓΓ zz


 

Integral of the first term is zero and the result is simple: 

 cos
2

coscoscos' 


zz ΓΓΓ  

In the limiting case   /2 this gives zero since the z' axis becomes x axis and the negative 

values of x are equally probable as positive ones. We stress that the old axis z has no 

preference in comparison with z'. Therefore, the eigenvalues of the component of angular 

momentum with respect to z' are of course equal as for z. If we have the eigenstate with the 

component z = +(1/2)(h/(2)), it can still be thought as a linear combination of the states, 

where for the new axis z' = (1/2)(h/(2)). 
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In regard to Stern-Gerlach experiment we can ask the following question. Say, we have 

measured the component in the direction of chosen  z axis and we found the value z = 

+(1/2)(h/(2)). Now, we repeat the measurement according to the new axis z'. Again, we 

expect on of the two possibilities z' = (1/2)(h/(2)) and we are interested in the probability 

for both of them. For acute angle between the axes these probabilities are different. Denote 

them by P+ (for positive value) and P; it is sensible to expect P < P+. They are calculated 

from: 

  PPΓ z )
2

(
2

cos
2

'


         

1  PP  

We obtain: 

2
cos 2 P  

2
sin 2 P  

As expected, only for  = /2 are they the same: P+ = P = ½.   
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7 ELECTRON MICROSCOPY 

 

 EX. 7.1 

Although the resolution of the electron microscope nowadays is more limited with the size of 

the spot of the electron beam on the sample surface, the Broglie wavelength of the electron is 

still a crucial factor. If we estimate the threshold of resolution as d  /2, what should be the 

acceleration voltage of electrons in order to achieve the resolution d = 1 nm? 

 

It holds: 

k2222 mE

h

p

h
d 


 

Here m is the electron mass, while kinetic energy is equal to electric work: Ek = eU. So we 

have:    

2

0

2

0
822 dme

h
U

Ume

h
d   = 0,37 V 

In fact, the typical voltages for scanning electron microscope are of the order of 10 kV. We 

find that the true limitation to the resolution is due to the size of the spot of electron beam as 

mentioned above.  

 

 

 EX. 7.3 

SEM of polished surface of polycrystalline matter, such as engineering ceramics, where the 

boundaries between crystal grains are clearly visible (Fig. R28), is an appropriate tool for 

measurement and calculation of the size distribution of crystal grains and correspondingly 

their mean size. 2D image can be statistically treated, either manually (what is time 

demanding) or with the use of some program package. Since the grains have irregular shapes 

(we see them on SEM image as objects with several sides), we must choose the appropriate 

criterion for their size. Thus, the grain size is usually defined as the diameter of the circle with 

the same area as the area of the object on image. However, the simple reasoning tells us that 

this size estimation (for real 3D grains from their 2D projections) gives systematically too low 

values of grain sizes. This is because by polishing we cut the grains at different locations and 

not with the largest 2D cross-section, since there is no space ordering of the positions of 

crystal grains. Statistical calculation with grains of non-real ideal spherical shape shows that 

in this way we measure by factor 4/  1,27 too small value of mean size of grains. So, we 
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often take this factor as a correction to the calculation of the size of 3D grains. Derive this 

factor if you take that all grains have the shape of sphere with the same radius R, but in 2D 

image we cut such spheres at different heights with equal probability. 

 

 

Fig. R28: SEM image of polished surface of Al2O3. Dark holes are pores. 

 

We consider a sphere with radius R and with the center at the origin of coordinate system, so 

that the following equation holds: x
2
 + y

2
 + z

2
 = R

2
. The sphere can be intersected with the 

horizontal plane parallel to (x, y) plane at different coordinates z. Because of symmetry it 

suffices to consider only positive z: 0  z  R. We suppose the uniform distribution of z on 

this interval: p(z) = 1/R. For given z the projection of sphere on the plane is a circle with 

smaller radius r = (R
2
  z

2
)
1/2

. Average radius is then: 

 

RR

zzR
R

zr
R

r
0

22

0

d
1

d
1

 

We next introduce the new integration variable : z = R sin , dz = R cos   d, use relation 

cos
2 = (1 + cos(2))/2, finish integration in we indeed obtain the result (/4)R.  

 

 EX. 7.4 
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In the tunneling electron microscope the distance between the tip and the surface of the 

sample is so small that the electrons tunnel through the classically forbidden area (vacuum 

between the tip and sample surface) with measurable probability: 














 d

Vm
T



e2
2exp  

Here, me is the electron mass, V potential energy of prohibited area, kinetic energy may be 

neglected, d is the distance between microscope tip and sample surface. Potential energy V is 

estimated as the knock-out work for electrons and we take the value V = 1 eV, next, the 

characteristic distance is d = 1 nm, while the depth resolution is d = 0,01 nm. Calculate the 

transmission coefficient T for d = 1 nm and its relative change for d = 0,01 nm. 

 

For d = 1 nm we get T = 3,6  10
5

. Relative change is:    

d
Vm

T

d

d

T

T

T









e22

d

d
 = 10,2 %  

  

 Ex. 7.5 

We use for scanning tunneling electron microscope very high vacuum where we can achieve 

very low value of pressure, around 10
8

 Pa (ultra high vacuum) and even significantly lower 

values. Estimate the mean free path <l> of residual gas molecules at this pressure if you take 

the fact that a single molecule occupies effective volume (before collision with another 

molecule) V1 = d
2
<l>, where d  0,1 nm is the effective diameter of the molecule (the size of 

the molecule has no direct classical meaning, but its value is given by interaction with other 

molecules). We take in this estimation for effective volume diameter instead of radius because 

the centers of both molecules which move along two nearby parallel trajectories at least one 

diameter apart. Use the gas equation p = nkT, where p is pressure, n number of molecules per 

unit volume, k Boltzmann constant, and T pa absolute temperature. Take T = 4 K, which is 

typical for systems cooled with liquid helium. 

 

If we take in definition n = N/V only one molecule, N = 1, to which the volume V1 belongs, 

we derive the following equation: 

pd

kT

nd
l

ldV
n

222

1 ππ

1

π

11



  = 1,8  10

5
 m 

In physical sense this means that the mean free path of the molecules is entirely determined 

with the size of vacuum system, i.e., the frequency of collisions between the molecules is 
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negligible in comparison with the collisions from the walls of vacuum chamber. We mention 

that in more exact calculation we should also add the correction factor 2
1/2

 in the denominator 

in the expression for <l> which takes into account the relative movement of the colliding 

molecules. But this factor is not significant for the estimation of the order of magnitude of 

<l>.  

Source: https://cas.web.cern.ch/cas/Spain-2006/PDFs/Dylla-4.pdf 

 

 

 

 

  

https://cas.web.cern.ch/cas/Spain-2006/PDFs/Dylla-4.pdf
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8 ELECTRONS IN MATTER 

 

 EX. 8.1 

The difference between the neighboring energy levels in hydrogen atom is 0,306 eV. Which 

quantum states (n and n + 1) does this difference correspond to? 

 

Energy difference between the two levels is: 

)
)1(

11
(

2201


 
nn

EEEE nn  

Here E0 = 13,6 eV. Since we obtain after rearrangement the equation of the fourth level for n 

(which otherwise has analytical solution), its direct solving is too long. Thus we prefer to try 

with small values of n from 1 on. The right value is n = 4. 

 

 EX. 8.2 

Electron in hydrogen atom goes from quantum state n = 4 to lower state so that it emits 

photon with wavelength 485,3 nm. Which is this lower state? 

 

Instead of using direct relation between the wavelength and both quantum numbers, we will 

use energy equation for exercise. The photon energy is: 




hc
hE f  = 2,55 eV 

The energy difference between the levels with quantum numbers n and m < n is: 

0f

2

220f //1/1)
11

( EEnm
nm

EEE   = 2  

 

 EX. 8.3 

The wave function for the electron in hydrogen atom is composed of radial and angular 

factors. Radial part tells how the function varies with distance r form the nucleus, and it 

depends on quantum numbers n (principal quantum number) and l (connected with orbital 

angular momentum of electron). We give the radial function for three states with the lowest 

quantum numbers (the first index means n, the second l): 
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)exp(2)(10 xxR   

)2/1()2/exp(
2

1
)(20 xxxR   

xxxR  )2/exp(
62

1
)(21  

Here x = r/r0, and r0 Bohr radius. All radial functions are normalized: 

1d
0

22




xxRnl   

Additional factor x
2
 in the integral is present because the volume element after integration 

over angles (this element corresponds to the thin spherical shell with radius r and thickness 

dr) os dV = 4r
2
dr. But additional factor 4 is already included in correct normalization of the 

angular part of the wave function. Calculate the most probable radius r for each of the given 

functions; this corresponds to x, where the function x
2
Rnl

2
 has maximum. 

 

Let’s present calculation only for R10: 

)2exp(4 22

10

2 xxRxy   

  0)2exp(8
d

d 2  xxx
x

y
 

The solution x = 0 corresponds to minimum; this is logical: the probability density (with 

respect to r) to find the electron in the nucleus is zero. We are interested in maximum here: x 

= 1 or r = r0. Similarly we find that to function R20 there corresponds the most probable radius 

r = 2r0. To function R21 there corresponds r = 4r0. The increase of the most probable radius in 

comparison with the function R20 is related to the positive orbital angular momentum for l = 1. 

 

 

 EX. 8.4 

The angular part of the wave function for electron in hydrogen atom (and also more generally 

for centrally symmetrical potential) consists for definite quantum numbers l and m from two 

factors: Ylm(, ) = C exp(im) flm(). C is the normalization constant. We are interested here 

only in the function of the angle  according to chosen axis in space. We consider just the 

case with m = 0; in this case fl0() = Pl(cos ), and Pl(x) is the Legendre polynomial of degree 

l. Let’s write some of them: 



102 
 

1)(0 xP  

xxP )(1  

)13(
2

1
)( 2

2  xxP  

Treat zeros of the corresponding functions Yl0(, ). 

 

The factor, which is a function of , has no zeros. Therefore, the zeros of Yl0 are determined 

by zeros of Legendre polynomials. Function Y00 has no zeros. Function Y10 is due to 

polynomial P1(x) equal to zero for x = 0, i.e.,  = /2. Function Y20 is zero for x
2
 = 1/3, 

resulting in angles 54,74 and 125,26. The entire wave function for hydrogen atom,  

including radial part, is thus equal tom zero for some definite values of radius r and polar 

angle ; the higher the quantum numbers, more zeros exist.  

 

 EX. 8.5 

Potential for weak chemical bonds in the simple Lennard-Jones model is described by the  

function: 









 612 )()()(

r

a

r

a
rV   

Here  is the characteristic energy, and a characteristic distance. Find minimum of the 

potential. Where is the potential equal to zero? Write asymptotic behavior of potential for r  

0 and r  . 

 

Minimum is calculated with condition dV/dr = 0. The corresponding distance is 

 6
0 2 ar  

and potential 

4
0


V  

Potential is zero at r = a. For small r we may neglect the second term in expression for V(r), 

but for large r we may neglect the first term. Asymptotic behavior of V(r) is then: 

12)()(0
r

a
rVr    
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6)()(
r

a
rVr     

 

 EX. 8.6 

Carbon (as diamond) and two key semiconductor elements, silicon and germanium, have 

diamond crystal structure. Relative positions of the nearest atoms (take C) are presented with 

tetrahedron, so that four C atoms are in the corners and one is in the mass center (T), this is on 

the quarter of the body height (as seen from base surface towards the top point V). Calculate 

the angle between neighboring CC covalent bonds. Use the three vectors to define 

tetrahedron (Fig. R29). 

 

Fig. R29: Tetrahedron with CC bonds; red curved double arrow denotes the angle we seek. 

 

All three vectors in figure, a1, a2 in a3, have the length a, and the angle between any two of 

them is 60. We will also use vectors v1 in v2: the former goes along the height of the triangle 

– base face and it is equal to v1 = (a1 + a2)/2. Vector v2 goes along the body height of 

tetrahedron. Since the body height goes up from mass-center T1 of bottom triangle, and this 

point is in turn on the 2/3 of area height of bottom triangle (starting from point O towards 

opposite line of triangle), we calculate vector v2 so: v2 = a3 – (2/3)v1 = a3 (a1 + a2)/3. The 

angle between the CC bonds is calculated as an angle between vectors x = TV = 3v2/4 and y 

= TO = (2v1/3 + v2/4); in order not to make the figure too full, we have not signed vectors x 

and y separately, but the red lines correspond to them. Let’s express x and y with vectors a1, 

a2 and a3: x = (3a3 – (a1 + a2))/4, y = ( a1 + a2 + a3)/4. Next, we calculate their size, so that 

we take a1  a1 = a
2
 in a1  a2 = a

2
 cos 60 = a

2
/2, etc., and we obtain: 

4

6
 axxx


 

4

6
 ayyy


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Of course, sizes of both vectors must be equal since this means the distance between the 

nearest C atoms. This was a test that the central atom in fact lies on the quarter of body height. 

At last we find the angle: 

)
3

1
arccos(arccos 




xy

yx


  = 109,5  

 

 EX. 8.7 

Body centered cubic crystal structure (bcc) for many elementary metals (e.g., barium, 

chromium, sodium, tungsten and iron) is represented by unit cell – cube which has atoms in 

its corners, and one additional atom in the center of cube. The cube has 8 atoms in corners, 

but at the same time each atom in the corner is shared by 8 sticking cubes, which gives 

effectively 1 corner atom per cell. The central atom is added to this, so that each unit cell 

contains 2 equal atoms. We speak about unit crystal cell with the base since it has more than 

one atom. So, effective volume a
3
/2 belongs to one atom. Instead of this, we can find 3 such 

lattice vectors a1, a2 and a3 (which are not orthogonal), that the unit cell (spanned on these 

vectors) contains just one atom. At the same time, if we move along the crystal lattice 

spanned on these three vectors, we much reach every atom in the crystal. The choice of 

appropriate vectors is not unique. It turns out that the suitable choice is: a1 = (a/2)( 1, 1, 1), 

a2 = (a/2)(1, 1, 1), a3 = (a/2)(1, 1, 1). In this way we can come from a chosen corner atom, 

to which we assign coordinates (0, 0, 0) directly to the center atoms in the three neighboring 

cubes. Prove that such choice of lattice vectors really gives primitive cell, i.e., the cell to 

which only one atom belongs.   

 

The proof is to show that the volume of parallelepipede, spanned on these three vectors, is 

indeed equal to the value a
3
/3. The volume is calculated by mixed (pseudoscalar) product: 

zyx

zyx

zyx

aaa

aaa

aaa

aaaaaaV

333

222

111

321321 )(),,( 


 

So, we use the determinant of the 3  3 matrix, but we take absolute value of it if it is 

negative. Proceed: 

2
111

111

111

8

33 aa
V 







   

 

 EX. 8.8 
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Face centered cubic crystal structure (fcc) for many elementary metals (e.g., aluminum, 

copper, calcium, silver and gold) is represented by unit cell – cube which has atoms in its 

corners, and 6 additional atoms in the centers of the faces of cube. As for bcc structure there is 

1 corner atom per cell. We add to this 6 atoms on faces, but each such atom is shared by two 

cubes, so only 3 face atoms come effectively per cube. Thus one cell contains 4 atoms and 

there belongs the effective volume a
3
/4 to one atom. Instead of this, we can find 3 such lattice 

vectors a1, a2 and a3, that the unit cell (spanned on these vectors) contains just one atom. One 

suitable choice is: a1 = (a/2)(0, 1, 1), a2 = (a/2)(1, 0, 1), a3 = (a/2)(1, 1, 0). Prove that with 

such a choice we get a primitive cell.   

 

4
011

101

110

8

33 aa
V    

 

 EX. 8.9 

Prove that the reciprocal lattice of reciprocal lattice is again direct (original) Bravais lattice. 

We first construct from lattice vectors ai, i = 1 – 3, the vectors of reciprocal lattice, bi = 2 aj 

 ak/(a1, a2, a3), where the triple of indices is ijk = 123 or both cyclic permutations of this. We 

use (a1, a2, a3) to denote shortly the mixed product a1  (a2  a3). If we now use vectors bi to 

construct new reciprocal vectors ci, it turns out that ci = ai. This is to be proved. 

 

Let’s write the definition of vectors bi:  

),,(
2

321

32

1
aaa

aa
b 

 
   

),,(
2

321

13

2
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aa
b 

 
   

),,(
2

321

21
3

aaa

aa
b 

 
   

We prepare the relation to be used later: 

13212113 ),,()()( aaaaaaaa


        (*) 

This can be shown directly by components. But the fact that the vector on the right side of 

equation is indeed in the direction of a1, is evident by geometrical inspection, because we seek 
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for vector product (middle ) of two vectors which are perpendicular to a1 (because of vector 

products with a1 in both parentheses).  

Next step: 

 )()()(
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2
),,( 211332
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Last factor, (a2  a3)  a1 is again (a1, a2, a3), thus we obtain: 
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3
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It suffices to calculate c1: 
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Use (*) and (**), and we really find c1 = a1. Similarly c2 = a2 and c3 = a3.  

 

 EX. 8.10 

In aluminum one of the distances between nearest lattice plane is d = 0,405 nm. We illuminate 

aluminum crystal with X-rays of wavelength 0,3 nm. What must be the angle of the incident 

beam with respect to lattice plane in order to obtain the enforcement of the first (second, third 

…) order? 

 

Bragg equation 2d sin  =  gives:  = arcsin(/(2d)) = 21,74. In the case of second order (N 

= 2): 2d sin  = 2  = arcsin(/d) = 47,79. There are no higher orders.  
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9 METALS, SEMICONDUCTORS AND INSULATORS 

 

 EX. 9.1 

Copper has the Fermi energy 7,00 eV. Calculate the number of conducting electrons per unit 

volume. Check the result in a different way, with the following data: valence is 1, density is 

8,96 kg/dm
3
, atomic mass number is A = 63,55. 

 

We first calculate the Fermi wave vector: 



 Fe

F

e

2

F

2

F

2

2

Em
k

m

k
E   = 1,36  10

10
/m 

Here me is the electron mass. The density of conducting electrons is: 

2

3

F

π3

k
n   = 8,5  10

28
/m

3
 

Check: 

M

ZN
n

A  = 8,5  10
28

/m
3
 

Here NA is Avogadro number, kilomole mass M is in number equal to atomic mass number A, 

just the unit is kg/kmol.  

 

 EX. 9.2 

What’s the mean kinetic energy of conducting electrons in the metal in comparison with the 

Fermi energy according to the Sommerfeld model? On the basis of this write more exact 

measure for the effective (average) speed of electrons instead of the Fermi speed. What error 

would me make if instead of this speed according to quantum mechanical laws we used the 

thermal speed from classical thermodynamics? 

 

First we remember how we have calculated the number of conducting electrons in the metal 

by taking all quantum states up to Fermi wave vector: 

2

3

F

0

2
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4
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We calculate the total kinetic energy of all conducting electrons similarly, so that we add as a 

factor kinetic energy in the previous integral: 

e
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Kinetic energy calculated per electron is: 

e
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Compare it with the Fermi energy 

e
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F
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
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We find: 

Fkin
5

3
EE   

Since the kinetic energy is proportional with the square of velocity we can define the mean 

speed of conducting electrons in the following way: 

FFRMS 77,0
5

3
vvv   

The denotation RMS means »root mean square«. The mean speed in the usual sense means 

something else, but it is no so different and we needn’t consider such details here. Similarly, 

we can define classical thermal speed vT, but this depends on temperature. Using equipartition 

theorem we have: 

e

T

2

Te

3

2

3

2

1

m

kT
vkTvm   

Let’s take copper again, for which we have already calculated Fermi velocity. Compare both 

velocities at the temperature 300 K: vRMS = 1,22  10
6
 m/s, vT = 1,17  10

5
 m/s; the error is one 

order of magnitude.    

 

 EX. 9.3 

The density of levels, i.e., the number of conducting electrons in the metal per unit energy, is 

given by function: 
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E
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g 
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e

2
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π2 
 

How many conducting electrons are there in 1 cm
3
 of aluminum at the Fermi energy 11,7 eV 

in the energy interval 0,025 eV, which corresponds to thermal energy at room temperature? 

 

The number of conducting electrons in the given interval is: 

EE
mV

EgN 
3

2/3

e

2

)2(

π2 
 = 5,9  10

20
  

 

 EX. 9.4 

Fermi distribution function which holds for protons, electrons, neutrons and other fermions, is 

written as f(x) = 1/(e
x
 +1), where we usually take as dimensionless variable x = (E  )/(kT). 

Here E is energy,  chemical potential, k Boltzmann constant and T absolute temperature. 

Function f(x) is decreasing monotonically. First develop f(x) into Taylor series around x = 0, 

then to the third order x
3
 exactly calculate f in four cases: E =   kT, E =   2kT. 

 

Take first f(0) = 1/2. Next we prepare a few derivatives of the function. Instead of bothering 

with higher derivatives directly we write the function in a different way: 
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We multiply the numerator and denominator of the second term with the factor exp(x/2), and 

we obtain hyperbolic tangens:  
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We write next: tanh(x) = sinh(x)/cosh(x). We have: (d/dx)(sinh(x)) = cosh(x), (d/dx)(cosh(x)) = 

sinh(x). We also note that tanh is an odd function, thus only odd powers of x are present in 

Taylor expansion. Use also cosh
2 

x – sinh
2 
x = 1, cosh 0 = 1, sinh 0 = 0, and we get finally:  
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Then we can write down the expansion: f(x) = (1/2)[1 – (x/2) + (x/2)
3
/3 + … ]. If we move the 

origin of coordinate system by y = 1/2 up, we find f(x) to be odd function with respect to the 

point (0, 1/2). We obtain: f(1) = [1 –  

(11/24)]/2 = 0,27 in 0,73; f(2) = [1 –  (2/3)]/2 = 1/6 in 5/6. For x = 1 the approximate 

value agrees well with the exact value, but for x = 2 more terms would be useful. The graph 

is shown in Fig. R30. 

 

 

Fig. R30: Graph of Fermi function  
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 EX. 9.5 

The density of conducting electrons in copper is n = 8,5  10
28

/m
3
, specific resistivity is 1,56 

  cm. What’s relaxation time? What’s the mean free path of the electron between two 

sequential collisions with the ions in the crystal lattice if we take Fermi speed for moving 

electrons? 

 

Relaxation time  is: 

2

0R ne

m


   

Specific resistivity is denoted by R, to distinguish it from the density ; m is the electron 

mass, e0 fundamental charge. We obtain  = 2,7  10
14

 s. To calculate the Fermi speed we use 

the Fermi wave vector from previous example. We write the momentum in two ways: 

m

k
vmvkp F

FFF


   = 1,57  10

6
 m/s 

The characteristic free path of the electron is then <l> = vF = 42 nm, and it is two orders of 

magnitude larger than the distance between the nearest atoms in the lattice. This piece of data 

tells that electrons don’t move as classical particles from atom to atom; in this case the mean 

free path would be of the order of inter-atomic distance.      

 

 EX. 9.6 

Copper wire with cross-section 2 mm
2
 and length 4 m is connected to voltage 60 V. What 

directed velocity opposite to electric current direction do conducting electrons travel along the 

wire with? Specific resistivity of copper is 17,5 n m, the number of conducting electrons per 

unit volume is 8,5  10
28

/m
3
. How long does it take for electron to arrive from one end of wire 

to the opposite end? But how long does it take for the control bulb to light after the switch is 

closed? 

 

Podatki: 

L = 4 m 

S = 2 mm
2
 

U = 60 V 

 = 17,5 n m 
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n = 8,5  10
28

/m
3
 

----------------- 

v = ? 

 

Combine equations, j = I/S = ne0v, I = U/R in R = L/S, and calculate velocity in one step: 

00000 Lne

U

LSne

SU

RSne

U

Sne

I

ne

j
v


  = 63 mm/s 

The corresponding time is: t = L/v = 63,5 s. But the time for the bulb to light on isn’t related 

to the speed of electrons, but rather to the setup of electric field along the wire. Since the 

electromagnetic disturbance spreads at most with the light speed in vacuum, we estimate the 

corresponding time as: t = L/c = 13,3 ns (nanoseconds!).  

 

 EX. 9.7 

Measurement of cyclotrone frequency in magnetic field shows that the effective mass of 

electron in sodium is: m* = 1,2 me. What’s the cyclotrone frequency in magnetic field 1 T? 

What’s the orbiting time of electrons? What’s the radius if we take the Fermi speed? Fermi 

wave vector for sodium is 9,2 10
9
 m

1
. 

 

Frequency is usually denoted by symbol , but also with f. 

*π2

0

m

Be
f   = 23,3 MHz 

Orbiting time is t0 = 1/f = 43 ns. Given Fermi wave vector was calculated from the density of 

conducting electrons, so it’s independent of effective electron mass. We identify centripetal 

and magnetic force for orbiting electron: m*v
2
/r = e0Bv  m*v = e0Br. So we have: 

Be

k
rBrevmkp

0

F
0FFF *


   = 38 m  
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 EX. 9.10 

According to Drude model of electrical conductivity of metals the probability to find 

randomly chosen electron from random moment (which is denoted by initial time t = 0) on 

scatters from ion in a very short period dt, equal to dP = dt/, where  is relaxation time. This 

probability is independent of the history, i.e., what happened to this electron before. First we 

ask for probability that from some moment on (t = 0) electron is first scattered from an ion 

just between the moments t and t + dt. Also the time interval (0, t), within which the electron 

does not suffer collision yet, is conveniently divided into short time intervals dt. Their number 

should be natural: N = t/dt, what can be achieved with appropriate choice of dt. From the 

aspect of events and probability theory the event of suffering collision just within (t, t + dt) 

may be thought as a composed from N + 1 sequential independent events: that the electron 

doesn’t collide in any of the N intervals dt, and that it collides in the last, (N+1)-th interval. 

Maybe first a question: why can we claim that these N + 1 events are really independent of 

each other? This is not just evident, quite opposite: we are used to the fact that some event 

depends on previous events. So, the claim about independent events is predominantly a 

mathematical model, which should be confirmed by experiment (or more sophisticated 

microscopic theories). Since the probability for the negation of the event is 1 – dP = 1 – dt/, 

we finally have: 



dtdt
dtttP N  )1(),(  





 dt

N

t
dtttP

t

tN 









/

/)1(),(  

The expression in square parenthesis in the limit N   is 1/e. Thus: 



 dt
edtttP t   /),(         (*1) 

We introduce the probability density function for the time of next collision: 




/

)(
te

t


          (*2) 

Expressions (*1) and (*2) are important for the following derivations. 

 

Let’s calculate first the mean time for collision from chosen moment on: 

  


0

)( dtttt         (*3) 

This time is just the relaxation time. 
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We can do similar for the past: the mean time (taken positive) from some randomly chosen 

event to the last collision before this moment is just. 

 

Next we take again some random moment t = 0, look into future for the first collision (t1) and 

into past for last collision (t2), sum the times and average it: 





2)(

0 0

21//

2121
21   

 

 dtdt
eetttt

tt
     (*4) 

This result was somehow expected. But it would be wrong to conclude that this means the 

mean time <t> between two successive collisions! We will show that this is again  and not 

2! Why does (*4) not give correct value for <t>? Because it doesn’t take into account the 

correctly movable bottom integration limit for t1: if time t2 (taken positive) assigns past, the 

time t1 should start from negative values, otherwise we lose some part of time between two 

collisions.   

 

Do now the correct derivation of <t>, but for the sake of clarity let’s put both collisions to 

future. Times of the first and second collision are t1 and t2. So, t1  t2, thus the bottom 

integration limit for t2 is equal to time t1 instead of 0. Next, we seek for the probability for the 

second collision in the manner of relative time, so we must insert in the second exponent t2 – 

t1 and not t2: 





  

 



0

/)(/

12212

1

121)(
1

t

ttt
eettdtdtt     (*5) 

Lastly, we resolve »the secret«, why in the presence of electric field the mean directed 

velocity of electrons (in opposite direction to E) is: <vE> = a and not a/2, where a is 

acceleration and the initial directed velocity is zero.  

 

We must not seek for the statistical mean velocity in the sense: 

  adteatdtttvv t

pE
2

1
/)

2

1
()()(

0

/

0

 






      

Instead, we must take the basic definition <v> = s/t and average over several collisions of the 

same electron (take N colliions): 
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















 s

tN

sN

t

s

t

s
v

N

i

i

N

i

i

E

1

1     (*6)  

2

0

/2 /)
2

1
(  adteats t  




      

Put this into (*6) and we really obtain <vE> = a. 

 

 EX. 9.11 

The relation between electric current and voltage in a very small electronic element is 

described by Landauer equation: I = (2e0
2
T/h)U, where the transmission coefficient is T = 80 

%. What’s the current through the element at 1 V? For comparison calculate the current for 

copper, where you take as a characteristic size a = 0,1 nm comparable with the size of atoms. 

The resistor is then in the shape of cube with side a. Specific resistivity of copper is  = 1,56 

 cm. 

 

Electric current is 6,2  10
5

 A. Classical calculation gives: I = U/R = U/(a/a
2
) = Ua/ = 6,4  

10
3

 A, much too much.  

 

 EX. 9.12 

Germanium has energy gap Eg = 0,67 eV. What’s the density of conduction electrons in it at 

300 K? What’s the increase of the electron density for temperature increase of 1 K? 

 

For 300 K: 











Tk

ETkm
n

B

g2/3

2

Be

2
exp)

π
(

2

1


 = 6,04  10

19
/m

3
 

This is much less than for metals where n is of the order 10
28

/m
3
. For small temperature 

increase we use differential: n/n  (dn/dT)  T/n. We then have: 

T

T

Tk

E

n

n 



)

22

3
(

B

g
 

As expected, the first term in parenthesis is smaller than the second, but we take both: 
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T

T

Tk

E
nn


 )

22

3
(

B

g
 = 2,9  10

18
/m

3
 

This is slightly less than 5 %; such large increasing of n with temperature is mostly due to 

exponential factor.  

 

 EX. 9.13 

Some semiconductor has at 300 K the electron density 10
10

/m
3
. What’s the energy gap? 

 

From 











Tk

ETkm
n

B

g2/3

2

Be

2
exp)

π
(

2

1


 

we obtain: 









 )2/()

π
(ln2 2/3

2

Be

Bg n
Tkm

TkE


 = 1,83 eV  

 

 EX. 9.14 

At room temperature the density of charge carriers (for each: electrons and holes) in pure 

silicon is 1,1  10
10

/cm
3
, the movability of electrons is 1400 cm

2
/(V s) and the movability of 

holes is 450 cm
2
/(V s). What’s the electric conductivity? What electric field yields the current 

density 1 mA/cm
2
? 

 

Conductivity:  = e0(e + v)n = 3,26  10
4

 
1

m
1

. From j = E we have E = j/ = 3,07  10
4
 

V/m.  

 

 EX. 9.15 

Silicon is doped with arsenic atoms, so that the concentration (number of added atoms per 

unit volume) of impurities is 10
15

/cm
3
. What’s the conductivity of such semiconductor of type 

n? What about if we dope silicon with boron instead? 
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The conductivity of silicon of type n, when the contribution of holes can be neglected, is  = 

e0en = 22,4 
1

m
1

. We take for n just the concentration of arsenic atoms. For semiconductor 

doped with boron (type p) we have:  = e0vn = 7,2 
1

m
1

.  
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10 PROPERTIES AND USE OF SEMICONDUCTORS 

 

 Ex. 10.1 

Silicon is doped with arsenic atoms. If we don’t know the concentration of dopant, we can use 

Hall effect to measure the volume density of majority charge carriers. A narrow stripe of 

doped silicon with thickness t = 0,1 mm is in the perpendicular magnetic field with magnitude 

1 T. If the electric current 0,1 mA flows through the stripe, the Hall voltage 3,125 mV appears 

in transverse direction (across the stripe width). What’s the concentration of dopant and how 

many silicon atoms come on average per one arsenic atom? 

 

Equation for Hall voltage is: 

nte

IB
U

0

H   

so that 

tUe

IB
n

H0

 = 2  10
15

/cm
3
 

This is also the volume density of As atoms in silicon. But the density of Si atoms is: 

Si

SiASi

Si
M

N

V

N
n


 = 5  10

22
/cm

3
 

The corresponding ratio is nSi/n = 2,5  10
7
, thus to every 2,5  10

7
 silicon atoms there comes 

one arsenic atom.       

 

 EX. 10.2 

Energy gap in pure semiconductor PbS is 2,4 eV and corresponds to green light. We use 

monochromatic light source with the same energy of photons and with intensity j = 1 

mW/cm
2
 to illuminate the plate from this material with area 0,5 cm

2
. What’s the electric 

current through this photovoltaic device if the »efficiency« is  = 1 %, i.e., every hundredth 

photon shifts one electron from the valence to conducting band? 

 

Electric current is: 
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tE

Ee

t

eN

t

eN

t

e
I

g

00f0e 
  

The symbols mean: Ne is the number of passing electrons, Nf the number of incoming 

photons; E is the total energy of photons, Eg is energy gap and the energy of one photon. 

Since the light intensity is defined as j = E/(St), we have E = jSt and we finally calculate the 

electric current: 

g

0

E

jSe
I


  = 2,08 A.  

 

 EX. 10.3 

Electric current through semiconductor diode is given by exponential function of voltage: 









 1)exp(

B

0

0
Tk

Ue
II  

Write the approximation for current in three limiting cases: 1) for negative voltage with very 

large absolute value, 2) for voltage with very small absolute value (both positive or negative 

voltage) and 3) for very high positive voltage. Write also the quantitative criterion when we 

can take these approximations. 

 

For “very high negative” voltage we may neglect exponential term and obtain: I  I0. On the 

contrary, for “very high positive” voltage we keep only exponential term: I  I0  

exp(e0U/(kBT)). For small absolute value of voltage we expand exponential function into 

Taylor series till linear term: exp x  1  1 + x  1 = x, where x = e0U/(kBT). So we obtain: I  

I0e0U/(kBT). Criterion is the magnitude of dimensionless parameter x:  

1) x << 1  I  I0,  

2) x << 1  I  I0e0U/(kBT),  

3) x >> 1  I  I0  exp(e0U/(kBT)).  

 

 EX. 10.4 

Reverse current of diode is I0 = 100 nA, and the temperature is 300 K. At what voltage is the 

current equal to 500 nA?   
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







 1)exp(

B

0

0
Tk

Ue
II  

1/)exp( 0

B

0  II
Tk

Ue
 

)1/ln( 0

0

B  II
e

Tk
U  = 46,4 mV  

 

 EX. 10.5 

LED diode has large light efficiency, even 300 lm/W. What part of electric work is 

transformed into energy of visible light? Physical meaning of the unit lumen is: lm = cd  sr; 

cd = candela = (1/638) W/sr at light frequency 540 THz, sr = steradian (3D space angle that is 

4-times smaller than full angle).  

 

Both lumen and candela are physiological units related to light sensitivity of human eye, thus 

the corresponding physical power depends also on wavelength. But we won’t make any 

differences here: we have from above definition lm = (1/638) W. Therefore:   

W

638/W300

el

sv 


P

P
 = 47 %  

As an interesting fact we mention that in order to achieve appropriate functioning of LED to 

imitate white light it was necessary to find suitable semiconductor with satisfactory energy 

gap (galium nitride, GaN), which gives the blue light component. The problem was difficult 

enough to require thirty years of research, so that the Nobel prize for this achievement was 

awarded in 2014 by Isamu Akasaki, Hiroshi Amano and Shuji Nakamura.  

 

 EX. 10.6 

Diode is successively with Ohm resistor to the source of constant voltage U. What electric 

current flows through the circuit? Treat in particular the limiting cases where the equations 

are simplified. How are these conditions related to the parameters for diode and resistor? 

Finally consider the source with sinusoidal voltage.   

 

The voltage on diode is denoted by Ud, on resistor by Uu (we take both as positive quantities). 

So it holds: U = Ud + Uu. Since the same current flows through resistor and diode, we can 

write the following transcendental equation for Ud: 
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










1)exp(

B

d0

0

d

Tk

Ue
I

R

UU
 

In order to solve it numerically it is sensible to introduce the following dimensionless 

variables/parameters: x = e0Ud/(kT), a = U/(RI0), b = kT/(e0RI0). In our problem a and b are 

known parameters. We thus have instead of the above equation: a – bx = e
x
 – 1.     

 

We first solve the equation approximately for small absolute value of the unknown x, but we 

must then check for various values of parameters a and b, if the value of x is indeed small. We 

expand exponential function, e
x
  1 + x, and the solution becomes: 

1


b

a
x  

Take first positive U and thus positive parameter a. When is then x << 1? We have two 

possibilities in regard to how large is the parameter b in comparison with 1. In the case b >> 1 

(in practice this means that the resistance R is small) we must have a << b or U << kT/e0. This 

requirement is equivalent to the requirement for the area of linear dependence I(U) for diode 

alone. For typical reverse current of diode 100 nA and temperature 300 K the condition b >> 

1 means R << kT/(e0I0) = 2,6  10
5
 , what holds practically always in microelectronics. So 

we won’t consider the other possibility, b << 1. The above simple solution can be further 

simplified if 1 is neglected in denominator: x  a/b. The current through circuit for x << 1 is I 

 I0x = I0a/b = I0e0U/(kT). The same approximation for small negative voltage holds, just the 

direction of current is reversed. 

 

Also for larger and very large absolute values of negative voltage where a << 1 is the 

solution simple. In equation e
x
  1 + x we just neglect very small exponential term and find: 

b

a

b

a
x 




1
 

So, we can expand the simplified solution x  a/b to the entire interval  < U < 0,1 kT/e0. 

This equation means in accordance with definitions for x, a in b that Ud  U, that is, in the 

entire mentioned interval the effective resistance of the diode is so much larger that the Ohm 

resistance of resistor that practically all the voltage is on diode, and the electric current 

through the circuit is at most of the order of reverse current. 

Also for large positive voltage the behavior of this circuit is simple. In this case the effective 

resistance of diode is negligible in comparison with the resistor. So the current through the 

circuit is approximately U/R, as if there were no diode. 
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If now we take sinusoidal voltage, U = U0 sin(t), the influence of the diode is the following. 

For intervals of negative voltage the current through the resistor is practically equal to 

negative reverse current of diode, which is very small value; for positive voltage the situation 

is as if there was no diode. For a little more exact calculation we must solve the above 

equation only in the relatively small interval of voltage kT/e0 < U < kT/e0. Even more 

exactly: for kT/e0 < U < 0,1kT/e0 we just take equation for the current through the diode, 

without resistor, but for 0,1kT/e0 < U < kT/e0 the equation must be solved numerically.  
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11 HETEROSTRUCTURES, OPTICAL ELEMENTS AND 

NANODEVICES 

 

 EX. 11.1 

In 2D quantum well the characteristic thickness of the layer is d = 10 nm, and the areal 

density of electrons is nS = 10
11

/cm
2
. What’s the effective volume density of electrons? 

What’s the characteristic distance between the nearest electrons? Estimate the uncertainty of 

the component of their velocity in direction perpendicular to the plane of layer. 

 

The volume electron density is: 

d

n

Sd

N

V

N
n S  = 10

17
/cm

3
 

For comparison: the density of charge carriers, both electrons and holes, in pure silicon is 

about 10
10

/cm
3
, but in doped silicon 10

15
/cm

3
, still much less than in 2D quantum well. 

If we imagine a little square with size l per electron, we calculate the distances between 

nearest neighbors as: 

S

S
n

l
lS

N
n

11
2

  = 32 nm 

This is three times as much as the layer thickness, so the estimation of the distance with 2D 

geometry is valid. The uncertainty of the velocity component is estimated with Heisenberg 

relation: 

eee md

h

mz

h

m

p
v z

z









  = 7,3  10

5
 m/s  

 

 EX. 11.2 

Imagine that using the very thin layer of copper, d = 1 nm, we would force the effective 2D 

directional distribution of wave vectors of conducting electrons. How can we estimate the 

Fermi wave vector if we take as a piece of data the known real volume density of conducting 

electrons n for usual 3D geometry, while the component kz of the wave vector is estimated 

with the uncertainty principle? Compare this value of Fermi wave vector with that for 3D 

system. 
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As in previous case we relate area and volume densities of conducting electrons: nS = dn. The 

magnitude of the Fermi wave vector in the (x, y) plane for thin layer is: 

dnnk Sxy π2π2F   

The third component is approximately kFz = p/(h/2)  2/d. The whole wave vector is: 

)/1π(2 22

F

2

FF ddnkkk zxy   

With data for copper, n = 8,5  10
28

/m
3
 we compare both terms in parenthesis: dn = 8,5  

10
19

/m
2
, 1/d

2
 = 10

18
/m

2
. The second term can be neglected, so: kF  kFxy = 2,3  10

10
/m, what is 

more than in example 9.1 for copper in 3D (1,4   10
10

/m).    

 

 EX. 11.3 

How many carbon atoms does nanotube of diameter 1 nm and million times larger length 

contain? Carbon atoms are arranged in regular hexagons of size a = 0,14 nm. 

 

The regular hexagon is composed of six equal regular, thus its area is: 

2

33

4

3
6

22

6

aa
S   

We must consider that the hexagon has 6 atoms, but at the same time one atom is shared by 

three neighboring hexagons, so effectively there are only 2 atoms per hexagon. The area of 

cylinder of diameter d and height h is (without two basic circles) Sv = dh, so the numer of 

carbon atoms in nanotube is: 

26

2
6

v )(10
33

π4

3)2/3(

π22

a

d

a

dh

S

S
N   = 1,23 10

8
  

 


