
Development of intelligent systems (RInS)

Task 1: Autonomous navigation and human search

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2024/25

Evaluation setup

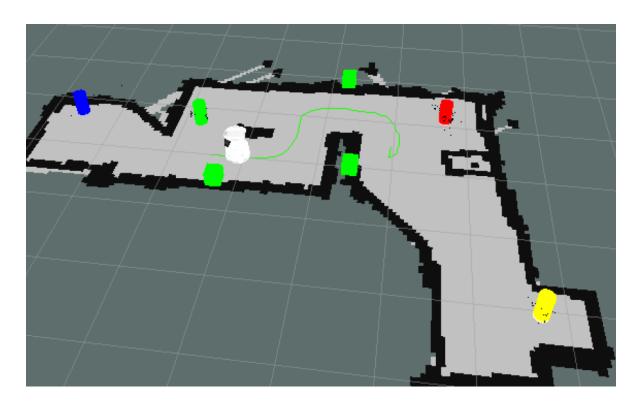
Taks T1r

- Setup:
 - fenced area
 - three printed faces at random places
 - starting position
- Task:
 - build the map of the competition area
 - search the space and look for faces
 - when a face is detected pass by or approach (and greet) the face
 - when all three faces are detected, stop
 - do not redetect the same face
 - do not have false detections
- Goals:
 - the robot should detect as many faces as possible
 - the robot should not detect something else as a face
 - perform the task as fast as possible
- Implemented on a real robot

Task T1s

- Tasks from Task T1r+
 - detect 3D rings
 - recognise the colours of the rings
 - approach and say the ring colour
- Additional goal:
 - the robot should detect as many rings as possible
 - the robot should not detect something else as a ring
 - the robot should recognize colours
 - perform the task as fast as possible
- In Gazebo only

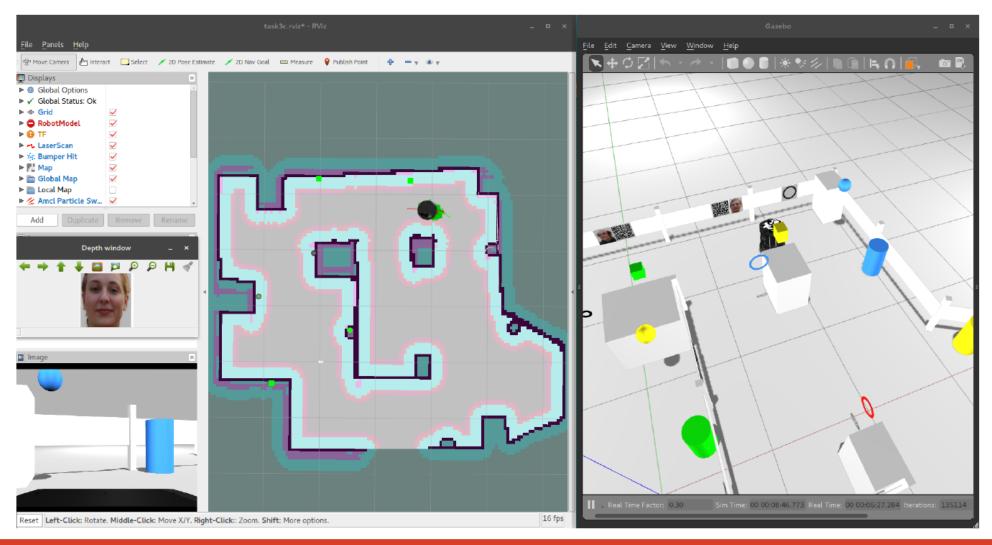
Evaluation protocol


- The evaluation course will be set up in advance
- The teams will be allowed to build the map in advance
- The faces (and rings) will be positioned on the day of the evaluation
- The positions of the faces (and rings) should not be hand coded
- The robot search goal positions can be hand coded
- The robot has to operate completely autonomously
- The teams will be allowed to tune the parameters
- The teams should be ready before the start of evaluation
- Every team will be able to run their robot twice
- T1s: The evaluation in similation will be held on 4. 4.
- T1r: The performance of a real robot shuld be presented until 30. 5.

Evaluation criteria

- Measuring:
 - number of faces correctly detected
 - number of faces correctly passed by or approached (and greeted)
 - number of redetected faces
 - number of false detections
 - the time until the robot stops
 - (number of correctly detected and approached rings and recognised colours)
- But also:
 - Robustness of the performance
 - Repeatability
 - Innovation
 - Clarity of demonstration
 - Elegance of solution
- Scoring:
 - T1s (in simulation): 15 points max
 - T1r (on real robot): 15 points max

Demonstration


- Demonstrate what is going on in the robot
 - visualisation of detected locations
 - mark locations in Rviz (also goals, detected colour, etc.)
 - verbalisation of detections
 - simple speech synthesis (greeting, colours)

Presentation

• (Gazebo), RVIZ, camera view as well as images of detected faces should be shown

Tasks

 System setup 	
 Running ROS 	Task 1r
 Tele-operating TurtleBot 	Task 1s
 Autonomous navigation 	Task 2
 Autonomous control of the mobile platform 	
 Acquiring images and 3D information 	
 Simultaneous mapping and localization (SLAM) 	
 Path planning, obstacle avoidance 	
 Advanced fine manoeuvring 	
 Basic mobile manipulation 	
 Intelligent navigation and exploration of space 	
 Advanced perception and cognitive capabilities 	
 Detection of faces, 3D rings, birds 	
 Recognition of birds and ring colours 	
 Segmentation of the ground 	
 Speech synthesis, speech recognition, dialogue proce 	essing (reading QR codes)

Belief maintenance, reasoning, planning

Task 1 goals

- The main goals of the first task are:
 - to learn how to use ROS
 - to get familiar with the hardware
 - to set up the mobile platform (software and hardware)
 - to learn how to build and use a map
 - to learn how to set a goal and to instruct the robot to go to the goal position
 - to learn how to relate points in different coordinate frames
 - to use LIDAR
 - to use RGBD camera
 - to learn how to process imagess
 - to learn to work with 3D data
 - to robustly detect faces
 - to robustly detect rings
 - to search the space
 - to learn to work in Gazebo
 - to learn to work with a real mobile robot

