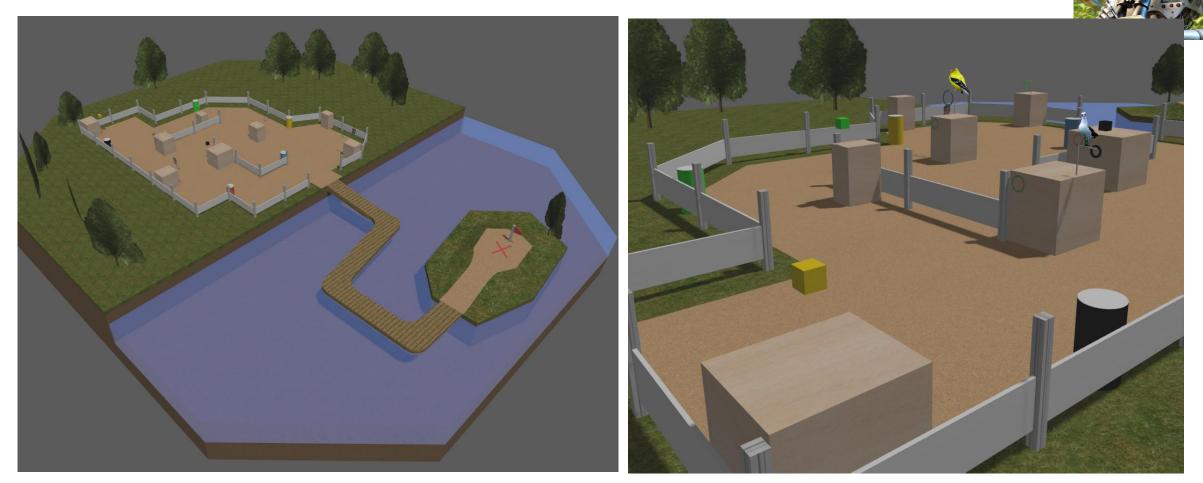

Development of intelligent systems (**RInS**)

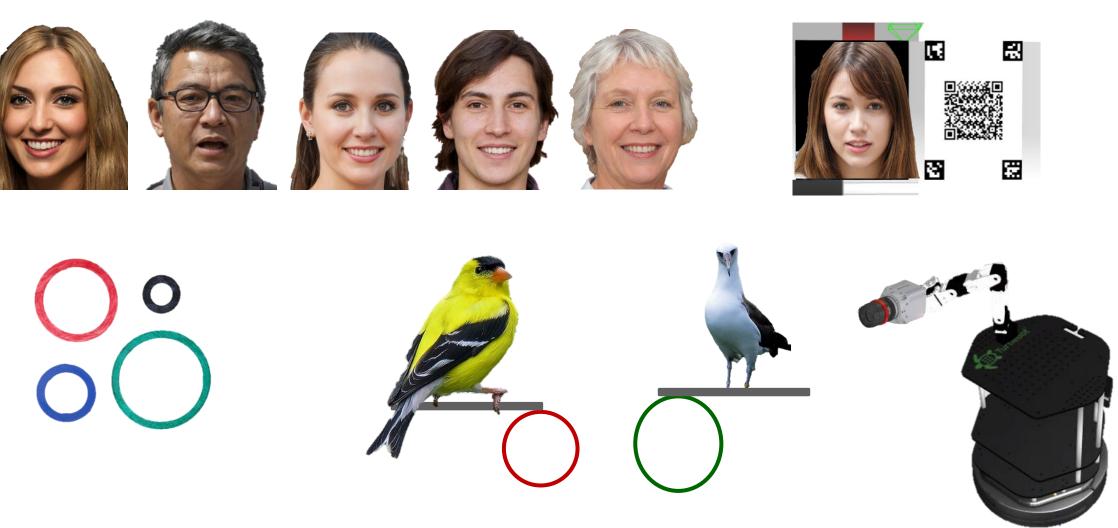
Task 2: RoboBirder

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

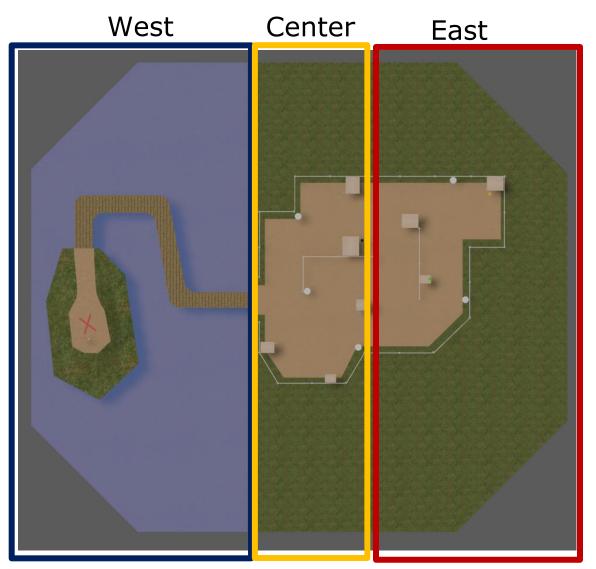
Academic year: 2024/25


2025 Final task - RoboBirder

- Setup:
 - "A park" scene (fenced area).
 - Pathways, bridges, grass area, river.
 - Several persons (faces) in the scene.
 - Several birds in the scene standing on the rings of different colours.
- Goal:
 - Find and recognise all the birds.
- Task:
 - Navigate safely around the park and look around.
 - Find all birds in the park.
 - Approach every bird and take a photo with hi-res camera.
 - Recognise the bird and say its name.
 - Find all persons in the park.
 - Talk to persons to find out which are their preferred birds.
 - Tell the persons where their preferred bird is and what is the colour of the ring it is standing on.
 - Create a catalogue of the detected birds.
 - Pay attention to stay on a pathway and not to drive in the grass or water, and deliver the catalogue to the end point.



Simulated scene


- There will be faces, birds, and other objects on the walls, including printed circles
- There might be different objects in the scene at the same height as 3D rings

Navigation

- Explore the park
 - By using a predetermined path or
 - Preferably implement the autonomous exploration of space
- Avoid traveling on the water and on the grass
 - Use the second camera pointed downwards to see what is in front of the robot
 - Do not enter green and blue regions
 - Or add the prohibited regions in the map
 - Image-based navigation only at the end of the task
 - Finish at the end point
 - Divide the park in three regions:
 - East, Center, West

Perception

- Ground segmentation for image based navigation
 - At the end of the task
- Find all birds
 - All the birds will be sitting close to the rings
 - A flat bird cut out from an image with a bird
 - Detect the birds directly or
 - Detect the rings and look for birds above them
 - Detect the rings and recognise the colours of the rings
 - Recognise the bird species
 - Approach the bird and say its species name
 - Point the camera toward the bird, take the photo of the bird and store it, along its species name
- Find all persons
 - The number of persons present is not known in advance
 - Recognise the gender of the person
 - Approach the person and engage in a dialogue with him or her

Perception and dialogue

- Engage in a dialogue with people to determine which birds do they like most.
 - Approach a person
 - Recognise the person's gender
 - Ask the person about the favourite bird
 - Women always tell their favourite bird directly
 - Men might reconsider their choice
 - The robot has to ask them twice or more
 - When the same bird is named twice, the bird is considered to be the favourite one
 - The person can also confirm the favourite bird with "yes."

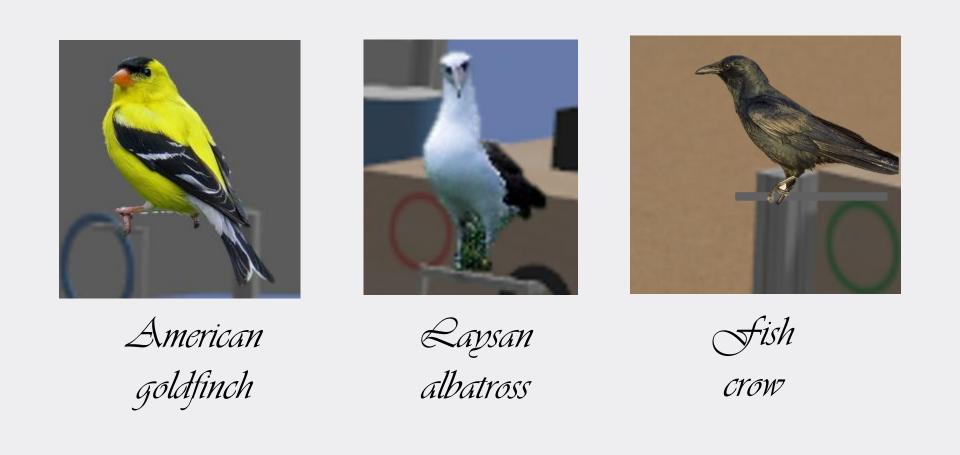
Sample dialogue

- R: "Hi woman, which is your favourite bird?"
- W1: "The robin."
- R: "Well there is one robin in the center of the park sitting o a green ring."
- R: "Hi woman, which is your favourite bird?"
- W2: "The hawk."
- R: "There is one hawk in the central part of the park sitting on a yellow ring."
- R: "Hi man, which is your favourite bird?"
- M1: "My favorite bird is the swallow."
- R: "Are you sure?"
- M1: "Well, maybe I like eagles more?"
- R: "OK, the eagle then. Are you sure?"
- M1: "Ah, not really. The swallow is still the best".
- R: "OK. The swallow then. There is one in the west part of the park sitting on a red ring."

- R: "Hi man, which is your favourite bird?"
- M2: "The robin."
- R: "Are you sure?"
- M2: "Yes, I'm sure."
- R: "There is one robin in the center of the park sitting on a green ring."
- R: "Hi man, which is your favourite bird?"
- M2: "My favorite bird is the sparrow."
- R: "Are you sure?"
- M2: "Well, maybe I like storks more."
- R: "OK, the stork then. Are you sure?"
- M2: "Ah, not really. I prefer cuckoos more.".
- R: "Are you sure now?"
- M2: "Yes."
- R: "OK. The cuckoo then. There is one in the east part of the park sitting on a blue ring."

Bird classification

<u>The Caltech-UCSD Birds-200-2011 Dataset</u>



Bird classification

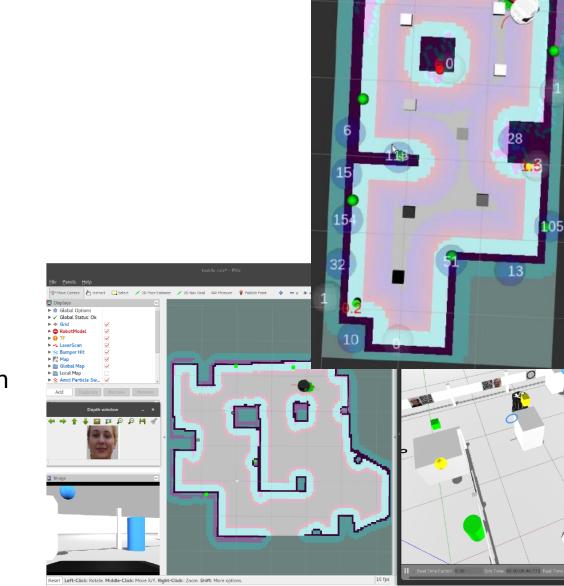
Bird catalogue

• A PDF file with all detected birds

Shortcuts

- You may not implement all the functionalities (for a lower grade)
- You may not implement the autonomous exploration of space
 - and can use fixed goals instead
 - the first and the exit point in the park can always be handcoded
- The robot can skip the dialogue with a person
 - and read the favourite bird in the QR code next to the person
- The robot does not need to classify the faces according to gender
 - you assume that all the persons answer the right answer right away
- The robot does not need to point at the bird with the camera
 - it takes a photo of a bird from the distance
- The robot does not need to create a bird catalogue
 - it recognizes the birds, but it does not create a pdf file
- The robot could not avoid walking on the water and grass
 - i.e., it can finish prematurely

Demonstration


- Demonstrate what is going on in the robot
- Visualize in RViz:
 - Locations of detected faces, rings, birds
 - Recognised colours, birds
 - Navigation goals, path plans
 - Current sensor readings (images, Lidar)
 - Show live strem from both cameras
- Show the dialogue in a separate window
- Show the reasoning process
- Show also the current environment in Gazebo
- Information in the console does not suffice!
- Use also sound to demonstrate what is going on
- R: "Hi man, which is your favourite bird?"

M: "The robin."

R: "Are you sure?"

M: "Yes, I`m sure."

R: "There is one robin in the center of the park sitting on a green ring."

Tasks

 System setup 	
 Running ROS 	Task 1r
 Tele-operating TurtleBot 	Task 1s
 Autonomous navigation 	Task 2
 Autonomous control of the mobile platform 	
 Acquiring images and 3D information 	
 Simultaneous mapping and localization (SLAM) 	
 Path planning, obstacle avoidance 	
 Advanced fine manoeuvring 	
 Basic mobile manipulation 	
 Intelligent navigation and exploration of space 	
 Advanced perception and cognitive capabilities 	
 Detection of faces, 3D rings, birds 	
 Recognition of birds, ring colours, and gender 	
 Segmentation of the ground 	
 Speech synthesis, speech recognition, dialogue processi 	ng (reading QR codes)

Belief maintenance, reasoning, planning

Evaluation protocol

- The evaluation course will be set up in advance
 - The main setup will not change
- The teams will be allowed to build the map in advance
- The faces, rings, and birds will be positioned on the day of the evaluation
 - The size and colours of the rings are known in advance
- The robot has to operate completely autonomously
 - only the initial positioning is allowed
 - (and the optional answering by typing the text)
- The robot starts at the starting position
- Every team will have allocated 15-20 minutes to show the performance of the robot
- The evaluation will take place in the last week of the semester

Requirements

- System setup
 - Running ROS
 - Tele-operating TurtleBot
- Autonomous navigation
 - Autonomous control of the mobile platform
 - Acquiring images and 3D information
 - Simultaneous mapping and localization (SLAM)
 - Path planning, obstacle avoidance
 - Advanced fine manoeuvring
 - Basic mobile manipulation
 - Intelligent navigation and exploration of space
- Advanced perception and cognitive capabilities
 - Detection of faces, 3D rings, birds
 - Recognition of birds, ring colours, and gender
 - Segmentation of the ground
 - Speech synthesis, speech recognition, dialogue processing (reading QR codes)
 - Belief maintenance, reasoning, planning

For 6 For + max. 2 For + max. 2

Grading

- Must do:
 - Face detection (2 pts)
 - Ring detection (2 pts)
 - Colour recognition (1 pt)
 - Approaching faces (1 pt)
 - Speech synthesis (1 pt)
 - Bird detection (2 pts)
 - Bird recognition (3 pts)
 - Approaching birds (1 pt)
- Should do:
 - Avoiding grass and water (4 pts)
 - Gender recognition (2 pts)
 - Auton. space exploration (2 pts)
 - Dialogue with ASR (2 pts)
 - Pointing the camera (1pt)
 - Creating a bird catalogue (1pt)

- Performance evaluation
 - Navigation (1 pt)
 - Reasoning (1 pt)
 - Visualisation (1 pt)
 - Robustness (2 pts)
 - Relative speed (2 pts)
 - Overall impression (3 pts)

- Points:
 - Must do: 13
 - Should do: 12
 - Performance: 10
 - Total: 35

Task 2 goals

- The main goals of the third task and evaluation are:
 - to navigate the robot around
 - to detect faces in 2D
 - to detect objects (rings) in 3D
 - to learn and recognize colours
 - to detect and recognise birds
 - to classify faces according to gender
 - to do simple reasoning
 - to do simple dialogue processing
 - to plan adequate actions
 - to fine manoeuvre the robot
 - to do simple mobile manipulation
 - to integrate all functionalities into a coherent system