
RAB – Računalniška arhitektura 1

Fakulteta za računalništvo in informatiko

Binary Unsigned Signed

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

C

Subtraction sets C flag

opposite of carry (ARM

specialty)!

- if (carry = 0) then C=1

- if (carry = 1) then C=0

111111 −−−−−− = nnnnnn SBASBAV

overflow

Carry

Unsigned and signed integer numbers

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 2

Fakulteta za računalništvo in informatiko

Binary Unsigned Signed

1000 8 -8

1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 15 -1

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

C

Unsigned and signed integer numbers

V

111111 −−−−−− = nnnnnn SBASBAV

Overflow

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 3

Fakulteta za računalništvo in informatiko

Signed/unsigned extension to 32 bits

ldrb

ldrh

• when reading 8 and 16–bit operands from memory – they need to be

extended by sign or zeros to full length (registers are 32bit long). Only

load and store instructions are accessing operands in memory.

• unsigned operands from memory are extended with zeros:

xxxxxxxx000000000000000000000000 xxxxxxxx

xxxxxxxxyyyyyyyy0000000000000000 xxxxxxxx
yyyyyyyy

ldrsb

ldrsh

• signed operands from memory are extended with sign bit:

0xxxxxxx000000000000000000000000 0xxxxxxx

xxxxxxxx0yyyyyyy0000000000000000 xxxxxxxx
0yyyyyyy

1xxxxxxx111111111111111111111111 1xxxxxxx

xxxxxxxx1yyyyyyy1111111111111111 xxxxxxxx
1yyyyyyy

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 4

Fakulteta za računalništvo in informatiko

Flags

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

Flags (can) be changed according to results of ALU operations:

N = 0: bit 31 of the result is 0, N=1: bit 31 of the result is 1 (Negative)

Z = 1: result is equal to 0, Z=0: result is not equal to 0 (Zero)

C: +: C = 1: result has carry, C = 0: result doesn‘t have carry (Carry)

-: C = 0: result has carry, C = 1: result doesn‘t have carry (Carry)

V = 1: result has overflow, V = 0: result doesn‘t have overflow(oVerflow)

If we want that ALU instruction changes flags,

we have to add „s“ to coresponding instruction !!!:

movs r1, #3 @ r1 3

adds r2, r7, #0x20 @ r2 r7 + 32

subs r4, r5,#1 @ r4 r5 - 1

• flags are 4 bits in „status register“ CPSR , having values of :

• 1 – flag is SET.

• 0 – flag is NOT SET (unset).

Subtraction sets C flag

opposite of carry (ARM

specifity)!

- if (carry = 0) then C=1

- if (carry = 1) then C=0

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 5

Fakulteta za računalništvo in informatiko

Comparisons

Compare instructions always change the state of flags (ALU group of

instructions):

cmp (Compare): sets flags according to result of Rn - Op2

cmp R1, #10 @ R1-10

cmn (Compare negated): sets flags according to result of Rn + Op2

cmn R1, #10 @ R1+10

Instructions only influence the state of flags, registers are not

changed. Because their only intention is to change the state of flags, we

don‘t have to add letter s to their names.

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 6

Fakulteta za računalništvo in informatiko

Comparisons of unsigned numbers

Example: Compare two unsigned numbers:

- focus on the state of flags C and Z

mov r1,#11

cmp r1,#10 @ C=1, Z=0

mov r1,#10

cmp r1,#10 @ C=1, Z=1

mov r1,#9

cmp r1,#10 @ C=0, Z=0

Summary:

r1 > 10 C=1 in Z=0 Higher

r1 >= 10 C=1 Higher or Same

r1 = 10 Z=1 Equal

r1 < 10 C=0 Lower

r1 <= 10 C=0 ali Z=1 Lower or Same

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 7

Fakulteta za računalništvo in informatiko

Comparisons of signed numbers

Comparison uses subtraction/addition to compare numbers; the opeation is

the same for unsigned and signed numbers. But to properly compare

values of signed numbers, we have to watch another set of flags!

- focus on the state of flags V, Z and N

Example:

mov r1,#0

cmp r1,#-1 @ C=0, Z=0, V=0, N=0

Flags don‘t corespond to relation > for unsigned numbers (C=1 in Z=0)!

Condition for > for signed numbers is different from condition > for

unsigned numbers. Correct signed number condition for > is N = V .

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 8

Fakulteta za računalništvo in informatiko

Conditions

Oznaka

pogoja

Pomen Stanje zastavic, ob

katerem se ukaz izvede

EQ Equal / equals zero Z set

NE Not equal Z clear

CS Carry set C set

CC Carry clear C clear

MI Minus / negative N set

PL Plus / positive or zero N clear

VS Overflow V set

VC No overflow V clear

HS Unsigned higher or same C set

LO Unsigned lower C clear

HI Unsigned higher C set and Z clear

LS Unsigned lower or same C clear or Z set

GE Signed greater than or equal N equals V

LT Signed less than N is not equal to V

GT Signed greater than Z clear and N equals V

LE Signed less than or equal Z set or N is not equal to V

Name Condition State of flags

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 9

Fakulteta za računalništvo in informatiko

Branch instructions

Sbranch is a of „GOTO label“ instruction – usually target line is

denoted by label. In this case, address of the instruction with label

is moved to PC.

b (Branch)
loop: …

sub r1, r1, #1

b loop @ GOTO loop

This is „eternal“ loop. r1 will be continually decremented, after value of 0,

its value will change to 0xffffffff.

If we want only finite number of loop repetitions (until r1 is non-zero), we

need instruction of type „IF cond THEN GOTO label“. We need

conditional branch instruction.

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 10

Fakulteta za računalništvo in informatiko

Conditional branch instructions

In ARM assembler condition is always determined with the state of

flags (remember previous table with all possible conditions).

Before using conditional branch instruction, we need to set the state of

flags. This is commonly done with cmp instruction, or quite often also

with ALU instructions.

Loop, that ends when r1 reaches value of 0 could be implemented in

following way:

b (Branch)
loop: …

sub r1, r1, #1

cmp r1, #0

bne loop @ IF Z=0 THEN GOTO loop

Instruction b is combined with the proper condition name that

determines, if the branch will take place. If condition is not met, branch

will not be executed – next instruction that follows will be next.

Therefore Bxx instruction is denoted as Conditional branch.

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 11

Fakulteta za računalništvo in informatiko

Conditional branch instructions

Instruction cmp in previous example has set the Z flag for conditional

branch instruction. We can set same flag already earlier – when

decrementing value of r1. We just need to add letter s to subtraction

instruction (subs):

b (Branch)
mov r1, #10

loop: …

subs r1, r1, #1 @ sets flags accroding to r1!

bne loop @ IF Z=0 THEN GOTO loop

mov r2, #10

Loop will repeat 10 times. When r1 reaches 0, subs will set flag Z to 1

and conditional branch will not take place anymore.

Next instruction mov r2, #10 will be executed. Pseudo code for

conditional branch is:

IF condition THEN PC label

ELSE PC PC+4

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 12

Fakulteta za računalništvo in informatiko

Conditional branch instructions

Branch Interpretation Normal uses

B Unconditional Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC

BLO

Carry clear

Lower

Arithmetic operation did not give carry-out

Unsigned comparison gave lower

BCS

BHS

Carry set

Higher or same

Arithmetic operation gave carry-out

Unsigned comparison gave higher or same

BVC Overflow clear Signed integer operation; no overflow occurred

BVS Overflow set Signed integer operation; overflow occurred

BGT Greater than Signed integer comparison gave greater than

BGE Greater or equal Signed integer comparison gave greater or equal

BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than or equal

BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or same

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 13

Fakulteta za računalništvo in informatiko

Conditional statements and instructions

cmp r1, 10

blo LOWER

add r4,r1,#8

b CONT

LOWER add r4,r1,#5

CONT ...

if (r1<10)

then

r4=r1+5

else

r4=r1+8

cmp r1,#10

addlo r4,r1,#5

addhs r4,r1,#8

cmp r0, #5

beq CONT

add r1,r1,r0

sub r1,r1,r2

CONT ..

cmp r0, #5

addne r1,r1,r0

subne r1,r1,r2

Conditional branch instructions are just specific case of common

feature of conditional execution that can be applied to all ARM

assembler instructions. If condition is appended to the

instruction, it will only be executed, if condition is true.

http://www.fri.uni-lj.si/si

RAB – Računalniška arhitektura 14

Fakulteta za računalništvo in informatiko

Conditional execution of instructions - case

if ((r0==r1) AND (r2==r3)) then r4=r4+1

cmp r0,r1 ; set Z, if r0=r1

cmpeq r2,r3 ; compare only if Z=1 and

; set Z again, if r2=r3

addeq r4,r4,#1 ; add only if Z=1 (r0=r1 and r2=r3)

• majority of if-then-else clauses can be implemented by conditional execution!
• if-then-else clauses with complex conditions (composed with AND or OR) can be

implemented more efficiently by conditional execution.
• use of conditional execution is usually more efficient for shorter sequences of

instructions than using separate branches!
• Conditional execution takes at least 1 clock cycle regardless of condition being true or
false!

http://www.fri.uni-lj.si/si

	Diapozitiv 1
	Diapozitiv 2
	Diapozitiv 3: Signed/unsigned extension to 32 bits
	Diapozitiv 4: Flags
	Diapozitiv 5: Comparisons
	Diapozitiv 6: Comparisons of unsigned numbers
	Diapozitiv 7: Comparisons of signed numbers
	Diapozitiv 8: Conditions
	Diapozitiv 9: Branch instructions
	Diapozitiv 10: Conditional branch instructions
	Diapozitiv 11: Conditional branch instructions
	Diapozitiv 12: Conditional branch instructions
	Diapozitiv 13: Conditional statements and instructions
	Diapozitiv 14: Conditional execution of instructions - case

