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Main computer vision tasks

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation



Development of intelligent systems, Object detection with Convolutional Neural Networks 5

Machine learning in computer vision

▪ Conventional approach

feature 
extraction

features classification class

modellearning

PCA, LDA, CCA, 
HOG, SIFT,  

SURF, ORB, … kNN, SVM, ANN, 
AdaBoost, …



Development of intelligent systems, Object detection with Convolutional Neural Networks 6

Deep learning in computer vision

▪ Conventional machine learning approach in computer vision

▪ Deep learing approach

feature 
extraction

features classification class

modellearning

classification class

Deep 
model

deep 
learning
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Deep learning – the main concept
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Sigmoid neurons

▪ Real inputs and outputs from interval [0,1]

▪ Activation function: sigmoid function

▪ output =
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Sigmoid neurons

▪ Small changes in weights and biases causes small change in output

▪ Enables learning!
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Feedfoward neural networks

▪ Network architecture:
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Inference and training

:
Loss
function

Training!
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Example code: Feedforward

▪ Code from http://neuralnetworksanddeeplearning.com/

or https://github.com/mnielsen/neural-networks-and-deep-learning

▪ or https://github.com/MichalDanielDobrzanski/DeepLearningPython35 (for Python 3)

Nielsen, 2015

http://neuralnetworksanddeeplearning.com/
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/MichalDanielDobrzanski/DeepLearningPython35
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/


Development of intelligent systems, Object detection with Convolutional Neural Networks 13

Loss function

▪ Given:

for all training images

▪ Loss function:

▪ (mean sqare error – quadratic loss function)

▪ Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C
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Gradient descend

▪ Find minimum of

▪ Change of C:

▪ Gradient of C:

▪ Change v in the opposite

direction of the gradient: 

▪ Algorithm:

▪ Initialize v

▪ Until stopping criterium riched

▪ Apply udate rule

Learning rate
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Gradient descend in neural networks

▪ Loss function

▪ Update rules:

▪ Consider all training samples

▪ Very many parameters
=> computationaly very expensive

▪ Use Stochastic gradient descend instead



Development of intelligent systems, Object detection with Convolutional Neural Networks 16

Example code: SGD
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Backpropagation

▪ All we need is gradient of loss function

▪ Rate of change of C wrt. to change in any weigt

▪ Rate of change of C wrt. to change in any bias

▪ How to compute gradient?

▪ Numericaly

▪ Simple, approximate, extremely slow 

▪ Analyticaly for entire C

▪ Fast, exact, nontractable 

▪ Chain individual parts of network

▪ Fast, exact, doable ☺

Backpropagation!
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Main principle

▪ We need the gradient of the Loss function

▪ Two phases:

▪ Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

▪ Backward pass; weight update: the error is backpropagated to the individual levels, 
the contribution of the individual neuron to the error is calculated and the weights are 
updated accordingly
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Learning strategy

▪ To obtain the gradient of the Loss function :

▪ For every neuron in the network calculate the error of this neuron

▪ This error propagates through the network causing the final error

▪ Backpropagate the final error to get all

▪ Obtain all and from
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Equations of backpropagation

▪ BP1: Error in the output layer:

▪ BP2: Error in terms of the error in the next layer:

▪ BP3: Rate of change of the cost wrt. to any bias:

▪ BP4: Rate of change of the cost wrt. to any weight:

Nielsen, 2015

http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
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Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update: 
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Example code: Backpropagation



Development of intelligent systems, Object detection with Convolutional Neural Networks 23

Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Cross-entropy

Softmax Categorical Cross-entropy

Other Custom
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Activation functions

[https://paperswithcode.com]

https://paperswithcode.com/
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Classification with Feedforward neural networks
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Convolutional neural networks

▪ From feedforward fully-connected neural networks …

▪ … to convolutional neural networks
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Convolutional neural networks

▪ Data in vectors, matrices, tensors

▪ Neigbourhood, spatial arrangement

▪ 2D: Images,time-fequency representations

▪ 1D: sequential signals, text, audio, speech, time series,…

▪ 3D: volumetric images, video, 3D grids
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Convolution layer

*
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Convolution layer

4 ×
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8 ×
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Sparse connectivity

▪ Local connectivity – neurons are only 
locally connected (receptive field)

▪ Reduces memory requirements

▪ Improves statistical efficiency

▪ Requires fewer operations

from below from above

The receptive field of the 
units in the deeper layers 
is large
=> Indirect connections!
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Parameter sharing

▪ Neurons share weights!

▪ Tied weights

▪ Every element of the kernel is used 
at every position of the input

▪ All the neurons at the same level detect
the same feature (everywhere in the input)

▪ Greatly reduces the number of parameters!

▪ Equivariance to translation

▪ Shift, convolution = convolution, shift

▪ Object moves => representation moves
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Convolutional neural network

▪ Hierarchical representation

▪ Increasingly larger effective receptive field

Qin et al., 2018

Hubel & Wiesel, 1961

http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf
https://arxiv.org/pdf/1804.11191
http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359523/
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Stride

▪ Step for convolution filter

Convolution with stride>1 
is equivalent to 
convolution + downsampling

▪ Output size:
𝑁−𝐹

𝑆
+ 1

▪ Example:

Stride=1
Stride=2
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▪ Downsampling – reduces the volume size (width and height)

▪ Process each activation map independently – keeps the volume depth unchanged

Pooling layer

4 

4 

1 0 3 6

5 6 7 8

9 8 7 6

4 3 2 5

6 8

9 7

• Example with
• F=2 
• S=2

3 6

2 5

Max 
pooling

Avg 
pooling
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CNN layers

▪ Layers used to build ConvNets:

▪ INPUT: 
raw pixel values

▪ CONV: 
convolutional layer

▪ (BN: batch normalisation)

▪ (ReLU:)
introducing nonlinearity 

▪ POOL: 
downsampling

▪ FC: 
for computing class scores

▪ SoftMax
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Typical solution
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Network architecture

▪ Training the model

▪ Inference
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Example implementation in TensorFlow

Segmentation network

Classification network
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Backbone architectures
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AlexNet

▪ ReLU, data augmentation, Dropout, Momentum, L2 regularisation

Image credit: http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

Krizhevsky, 2012

CONV1 
F=11
S=4

POOL 
F=3
S=2

CONV2 
F=5
S=1
P=2

POOL 
F=3
S=2

CONV3 
F=3
S=1
P=1

CONV4 
F=3
S=1
P=1

CONV5 
F=3
S=1
P=1

FC6 
4096

FC7 
4096

FC8 
1000

POOL 
F=3
S=2

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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VGG

▪ Classical CNN backbone shape

▪ VGG16, VGG19

CONV: F=3, S=1, P=1

POOL: F=2, S=2

Simonyan & Zisserman, 2014

https://arxiv.org/abs/1409.1556
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GoogLeNet / Inception
S
te

m
n
e
tw

o
rk Inception module Auxiliary output

C
la

s
if
fi
e
r

o
u
tp

u
t

Szegedy et al., 2014

https://arxiv.org/abs/1409.4842
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ResNet

▪ Going deeper!

▪ Plain deep networks do not work

▪ Shortcut connections!

▪ Figth vanishing gradient problem

▪ Learn residual functions

▪ Bottleneck building blocks

▪ Very deep networks:

▪ 152, 101, 50, 34, 18

He et al., 2015

https://arxiv.org/abs/1512.03385
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ConvNext

▪ A ConvNet for the 2020s

▪ Transformer-inspired modifications of ResNet

Liu et al. 2022

https://arxiv.org/abs/2201.03545v2
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Architectures overview

▪ paperswithcode.com

▪ Top 20 methods in Convolutional Neural Networks

[paperswithcode.com, 2021][paperswithcode.com, 2022]
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Pretrained models
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Transfer learning

▪ Train on a large related dataset

▪ Fine-tune on the target dataset

▪ Heavily used

Ribani & Marengoni 2019

https://www.researchgate.net/publication/337794654_A_Survey_of_Transfer_Learning_for_Convolutional_Neural_Networks
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Regularisation

▪ How to avoid overfitting:

▪ Increase the number of training images 

▪ Decrease the number of parameters 

▪ Regularization ☺

▪ Data Augmentation

▪ L1 regularisation

▪ L2 regularisation

▪ Dropout

▪ Batch Normalization

▪ DropConnect

▪ Fractional Max Pooling

▪ Stochastic Depth

▪ Cutout / Random Crop

▪ Mixup

[Wan et al. 2013]

[Huang et al. 2016]

[Graham, 2014]
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Data augmentation

Alomar et al., 2023

https://www.mdpi.com/2313-433X/9/2/46
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Main computer vision tasks

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation
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Classification

▪ What is depicted in the image?

Categorisation

Recognition/identification of instances

Localisation
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Detection

▪ Where in the image?

Detection Instance segmentation
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Segmentation

▪ What does every pixel represent?

Semantic segmentation Panoptic segmentation
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Classification

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation
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Classification

▪ Image classification: What is in the image?

▪ Typically Cross entropy loss is used

▪ Any CNN backbone architecture can be used

T. Pogačar

W. van Aert

P. Roglič

L. Dončić

J. Oblak

E. Klinec
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Localisation

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation
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Localisation

▪ Object localisation – Where (besides what) in the image (is the only object)?

▪ Regress the bounding box

T. Pogačar

W. van Aert

P. Roglič

L. Dončić

J. Oblak

E. Klinec

X

Y

W

H

Classification loss
(Cross entropy)

Regression loss
(L2)

+        =
Multitask

loss
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Detection

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation
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Detection

▪ Object detection – detect (localise and categorise) all the objects in the image

▪ Unknown (arbitrary) number of objects

▪ Naive approach: Sliding window + classification

▪ Too many locations, scales, aspect ratios!

▪ Very expensive!
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YOLOv3

▪ You Only Look Once

▪ Prediction of bounding boxes on 3 scales

▪ 3 anchors as prior box shapes

▪ Prediction of objectness score for each BB

▪ Multilabel classification of each box

▪ Non-maxima suppression

▪ Real-time performance
Redmond et al., 2016

Redmond et al., 2017

Redmond et al., 2018

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/abs/1804.02767
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YOLOv3

Images from https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

Redmond et al., 2018

https://arxiv.org/abs/1804.02767
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YOLOv3 results
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YOLO versions

▪ YOLOv1 (2016): Introduced the concept of predicting bounding boxes and class 
probabilities directly from full images in one evaluation.

▪ YOLOv2 (YOLO9000) (2017): Improved speed and accuracy, introduced anchor boxes 
to predict more precise bounding boxes.

▪ YOLOv3 (2018): Featured detection at three different scales and a better backbone for 
feature extraction, increasing accuracy especially for small objects.

▪ YOLOv4 (2020): Enhanced speed and accuracy with new features like Weighted-
Residual-Connections, Cross-Stage-Partial connections, Mosaic data augmentation.

▪ YOLOv5 (2020): Focus on simplicity and speed, with PyTorch implementation and 
scalable to various devices.

▪ YOLOv6 (2021): Aims to balance the trade-off between accuracy, speed, and model 
size, enhancing cross-platform flexibility.

▪ YOLOv7 (2022): Improved upon predecessors with better architecture and training 
strategies, achieving SOTA performance, additional tasks, such as pose estimation.

▪ YOLOv8 (2023): Focuses on optimizing model efficiency and deployment, introducing 
new techniques for faster inference and better accuracy, full range of vision AI tasks, 
including detection, segmentation, pose estimation, tracking, and classification.

▪ YOLOv9 (2024): Latest iteration aiming at maximizing real-time performance while 
maintaining high accuracy, leveraging the latest advancements in deep learning.
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YOLOv9

▪ Programmable
Gradient 
Information (PGI)

▪ Generalized Efficient 
Layer Aggregation 
Network (GELAN)

Wang et al., 2024

https://arxiv.org/abs/1708.02002
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YOLOv11

[https://github.com/ultralytics/ultralytics]

Khanam et al., 2024

https://arxiv.org/abs/2410.17725v1
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YOLOv12

▪ YOLOv12: Attention-Centric Real-Time Object Detectors

▪ Area Attention

▪ Residual Efficient Layer Aggregation Networks

Tian et al., 2025

https://arxiv.org/pdf/2502.12524v1
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Detection of traffic signs

▪ DFG dataset

▪ 200 categories

▪ 6.957 images

▪ 13.239 signs

Tabernik & Skočaj, 2020

https://prints.vicos.si/publications/369/deep-learning-for-large-scale-traffic-sign-detection-and-recognition
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Detection of traffic signs

▪ Data augmentation

▪ Mask R-CNN + 

▪ Online hard-example mining

▪ Distribution of selected training samples

▪ Sample weighting

▪ Adjusting region pass-through during detection
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Faster R-CNN

▪ Region Proposal Network

▪ Included in the method

▪ Anchor boxes

▪ Sliding window on feature map

▪ Two stage method (four losses)

▪ Detect region proposals

▪ Objectness score - RP cls loss (is object?)

▪ Object bounds - RP BB loss (bb corrections)

▪ Classify individual proposals

▪ Cls loss (what it is?)

▪ BB loss (refine RP BB)

▪ Alternating / end-to-end learning

▪ Significantly faster than Fast R-CNN

▪ SOTA in 2015

Ren et al., 2015

https://arxiv.org/abs/1506.01497
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▪ Add segmentation head

▪ Additional segmentation loss

▪ Produces segmentation mask 
for every RoI

▪ RoI align

▪ Other extensions possible

Mask R-CNN

BBclass mask

He et al., 2017

https://arxiv.org/abs/1703.06870
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Detection of region proposals

▪ Top proposals are very good
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Experimental results

▪ Swedish traffic sign dataset DFG traffic sign dataset
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Experimental results
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Experimental results
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Experimental results
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Traffic sign detection
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CeDirNet for object counting and localisation

▪ Dense Center-Direction Regression for Object Counting and Localization with 
Point Supervision Tabernik et. al, 2024

https://prints.vicos.si/publications/424/dense-center-direction-regression-for-object-counting-and-localization-with-point-supervision
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CeDirNet
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Ship detection
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Face detection
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Mask-wearing detection
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Grasping Point Localization on Cloths

▪

Tabernik et. al, 2024

https://prints.vicos.si/publications/424/dense-center-direction-regression-for-object-counting-and-localization-with-point-supervision
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3DOF object localisation

▪ Detection of grasping points

Tabernik et. al, 2024 Tabernik et. al, 2023

https://prints.vicos.si/publications/424/dense-center-direction-regression-for-object-counting-and-localization-with-point-supervision
https://prints.vicos.si/publications/424/dense-center-direction-regression-for-object-counting-and-localization-with-point-supervision
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Object detection overview

[Zou et al, “Object Detection in 20 Years: A Survey”,  2019]

Zou et. al 2019

https://arxiv.org/abs/1905.05055

