1. The curve K is parametrized by $\mathbf{r}(t)=[x(t), y(t)]^{\top}=\left[t^{3}-4 t, t^{2}-4\right]^{\top}$.
(a) Find the intersections of the curve with the coordinate axes x and y.
(b) Write down the equation of the tangent to K at $t=1$.
(c) Find the points where the tangents are parallel to the coordinate axes.
(d) Is there a point of self-intersection on K ?
(e) Sketch the curve K.
2. Evaluate the length of the curve K given by

$$
\mathbf{p}(t)=\left[t^{2} \cos t, t^{2} \sin t\right]^{\top}, t \in[0,2 \pi] .
$$

3. Evaluate the length of one of the arcs of the cycloid given by

$$
\mathbf{q}(t)=[t-\sin t, 1-\cos t]^{\top}, t \in[0,2 \pi] .
$$

What is the area between the x-axis and one arc of the cycloid? (A cycloid is a curve traced by a point on the rim of a wheel rolling along the x-axis. The parametrisation given above is for a circle with radius $r=1$.)
4. The lemniscate is a curve given in polar coordinates by

$$
r(\phi)=a \sqrt{\cos 2 \phi} .
$$

Find a parametrisation of the lemniscate and evaluate the area of one of the regions enclosed by a loop.
5. The circumference and the area of a planar polygon. A polygon P in \mathbb{R}^{2} is determined by a sequence of points $A_{1}, A_{2}, \ldots, A_{k}$. Write Octave functions $1=$ circumference (A) and $\mathrm{pl}=\operatorname{area}(\mathrm{A})$ that return the circumference and the area of the polygon P. The polygon is given by a matrix

$$
A=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{k} \\
y_{1} & y_{2} & \cdots & y_{k}
\end{array}\right] .
$$

Additional task: Both functions should verify that the points $A_{1}, A_{2}, \ldots, A_{k}$ do indeed represent a polygon.

