1. Evaluate the length of the curve K given by

$$
\mathbf{p}(t)=\left[t^{2} \cos t, t^{2} \sin t\right]^{\top}, t \in[0,2 \pi] .
$$

2. Evaluate the length of one of the arcs of the cycloid given by

$$
\mathbf{q}(t)=[t-\sin t, 1-\cos t]^{\top}, t \in[0,2 \pi] .
$$

What is the area between the x-axis and one arc of the cycloid? (A cycloid is a curve traced by a point on the rim of a wheel rolling along the x-axis. The parametrisation given above is for a circle with radius $r=1$.)
3. The lemniscate is a curve given in polar coordinates by

$$
r(\phi)=a \sqrt{\cos 2 \phi}
$$

Find a parametrisation of the lemniscate and evaluate the area of one of the regions enclosed by a loop.
4. A surface in \mathbb{R}^{3} is given by the implicit equation

$$
\left(R-\sqrt{x^{2}+y^{2}}\right)^{2}+z^{2}=r^{2}
$$

where $R>r$ are two positive numbers.
(a) Verify that

$$
\begin{aligned}
& x(\phi, \theta)=(R+r \cos \theta) \cos \phi \\
& y(\phi, \theta)=(R+r \cos \theta) \sin \phi \\
& z(\phi, \theta)=r \sin \theta
\end{aligned}
$$

is a parametrisation of this surface.
(b) For $R=2$ in $r=1$ find the equation of the tangent plane at the point $T(1, \sqrt{3}, 1)$ using two different approaches: Using the implicit equation and using the parametrisation.

