
Vaje SPO, Vaje SPO, ©© JM JM

System softwareSystem software

Simulation, emulation,Simulation, emulation,
and virtual machinesand virtual machines

Vaje SPO, Vaje SPO, ©© JM JM

Basic notionsBasic notions

● Simulator
● imitation of a computer system

based on a model for the system
– model represents key characteristics (functions, behaviour,

state) of the system
● focus on internal state as represented by the model

– can run much slower than the real system
– „good“ simulation may also be considered as emulation

● used for analysis and study
● examples

– Flight simulator, physics engines, weather simulation

Vaje SPO, Vaje SPO, ©© JM JM

Basic notionsBasic notions

● Emulator
● software for one computer system (host)

that mimicks another computer system (guest)
● focus on observable behaviour of guest

– internal state of the guest may not be accurately
emulated

● used as a substitute
– can replace the original system

● examples
– emulators of ZX Spectrum, Commodore 64, …
– DOSBox, Bochs, terminal emulators, …

Vaje SPO, Vaje SPO, ©© JM JM

Basic notionsBasic notions

● Virtualization
● mechanism that creates something virtually

– mostly refers to computer systems
● maps virtual system to some real system

– interfaces and resources of virtual device are mapped to
interfaces and resources of real device (which imitates the
virtual one)

– may not use emulation
● e.g. some virtual instructions may be directly executed by the host

processor, virtual system may see real I/O devices

● examples
– VMWare, VirtualBox, Virtual PC

Vaje SPO, Vaje SPO, ©© JM JM

VirtualizationVirtualization

● Process virtual machines
● support for individual process
● runtime system: virtualization software

– uses host OS and hardware
– emulates processor
– portability of applications

● examples
– execution of intermediate code of programming languages
– e.g. JVM, CLI, Parrot, Neko, Lua, Python

hardware

virtualization
SW

OS

application

Vaje SPO, Vaje SPO, ©© JM JM

VirtualizationVirtualization

● System virtual machines
● emulates whole computer system

– processor, memory, devices etc.
● hypervisor: virtualization software

– virtual machine monitor
– executes directly on hardware

● replication of resources

hardware

virtualization SW

application

OS

hardware

virtualization SW

application

OS

application

OS

Vaje SPO, Vaje SPO, ©© JM JM

VirtualizationVirtualization

● System virtual machines
● hosted virtual machine
● examples

– Vware Player, VirtualBox, …

hardware

virtualization
SW

OS

application

OS

application

OS

Vaje SPO, Vaje SPO, ©© JM JM

EmulationEmulation

● Emulator of computer system
● memory

– e.g. array of bytes
● registers
● processor

– emulation of all or selected set of instructions
● devices

– stream (character) devices
– memory-mapped devices

Vaje SPO, Vaje SPO, ©© JM JM

EmulationEmulation

Guest (slov. gost)
Source ISA

SIC/XE

Host (slov. gostitelj)
Target ISA

Java, x86

● interpretation
● …
● binary translation

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

● Similar as in a processor
● fetch instruction from the PC address
● decode instruction
● fetch operands
● decode operands
● exectue instruction

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

while (!halt) {
opcode = fetch();

switch (opcode) {
case Opcode.LDA:

regA = fetch() << 8 | fetch();
break;

case Opcode.STA:
...;
break;

case Opcode.ADD:
...;
break;

...
}

}

● Decode-and-dispatch loop

One
big

switch

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

● Indirect threaded interpretation

We need
labels and

gotos

A table mapping
opcodes to routines.

Routines are represented
with labels

(symbolic addresses).

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

● Predecoding
● instructions are decoded before execution
● important data (operands) are stored in easily

accessible data structure (array of records)
– TPC … target PC (table index)
– SPC … source PC

● manipulated separetly,
it may be possible to
calculate SPC from TPC

LDA:
// execute the instruction
regA = code[TPC].operand;
// decode and jump to the next instruction
TPC++;
SPC += 3;
opcode = code[TPC].opcode;
routine = dispatch[opcode];
goto routine;

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

● Direct threaded interpretation
● predecoding where we also pre-calulate addresses

of routines

LDA:
// execute the instruction
regA = code[TPC].operand;
// decode and jump to the next instruction
TPC++;
SPC += 3;
routine = code[TPC].routine;
goto routine;

Vaje SPO, Vaje SPO, ©© JM JM

InterpretationInterpretation

● What about CISC ISA?
● much more complicated decoding than RISC

general
decoding

dispatch

instructions
of type 1

instructions
of type n

instructions
of type 2 . . .

Vaje SPO, Vaje SPO, ©© JM JM

System softwareSystem software

SIC/XE emulationSIC/XE emulation

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE instruction formatsSIC/XE instruction formats

opcode

offsetopcode n i x b p e

addressopcode n i x b p e

opcode r1 r2

8

8

addressopcode 0 0 x

4 4

6 +2

6

6

15

12

20

1 1 1 1 1 1

1 1 1 1 1 1

F1

F2

SIC

F3

F4

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE instruction formatsSIC/XE instruction formats

opcode

offsetopcode n i x b p e

addressopcode n i x b p e

opcode r1 r2

8

8

addressopcode 0 0 x

4 4

6+2

6

6

15

12

20

1 1 1 1 1 1

1 1 1 1 1 1

F1

F2

SIC

F3

F4

fetch()

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE instruction formatsSIC/XE instruction formats

opcode

offsetopcode n i x b p e

addressopcode n i x b p e

opcode r1 r2

8

8

addressopcode 0 0 x

4 4

6+2

6

6

15

12

20

1 1 1 1 1 1

1 1 1 1 1 1

F1

F2

SIC

F3

F4

fetch() fetch()

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE instruction formatsSIC/XE instruction formats

opcode

offsetopcode n i x b p e

addressopcode n i x b p e

opcode r1 r2

8

8

addressopcode 0 0 x

4 4

6+2

6

6

15

12

20

1 1 1 1 1 1

1 1 1 1 1 1

F1

F2

SIC

F3

F4

fetch() fetch() fetch()

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE instruction formatsSIC/XE instruction formats

opcode

offsetopcode n i x b p e

addressopcode n i x b p e

opcode r1 r2

8

8

addressopcode 0 0 x

4 4

6+2

6

6

15

12

20

1 1 1 1 1 1

1 1 1 1 1 1

F1

F2

SIC

F3

F4

fetch() fetch() fetch() fetch()

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Decode & fetch sequence
● Fetch opcode (one byte)
● Is it F1?

– if yes then execute it
● Otherwise it is F2, SIC, F3 or F4

– fetch another byte
● Is it F2?

– if yes then decode the two registers and execute
● Otherwise it is SIC, F3 or F4
● ...

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● F3 and F4 instructions are the same
● only the operands are of different sizes

● SIC is as strict subset of F3/F4
● the book standard

● Suggestion
● first, decode operand depending on fomat
● then, treat the execution of SIC, F3 and F4 together

– SIC is extended to F3/F4

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Executor for particular formats
● boolean execF1(int opcode)

● boolean execF2(int opcode, int operand)

● boolean execSICF3F4(int opcode, int ni, int operand)

● Checks the opcode, and if it is of the right format it is executed and
returns true.

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● General executor:
● void execute()

public void execute() {

int opcode = fetch();

if (execF1(opcode)) return;

int op = fetch();

if (execF2(opcode, op)) return;

. . .
}

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Decoding of SIC, F3, F4 operand
● Check if the bits n=0 and i=0?

– Thus, we have SIC operand.

● Is the bit e set?
– Thus, we have extended format – F4.

● Otherwise it is F3 operand.
– Način izračuna operanda je podan v bitih bp:

● direktno, bazno relativno, PC-relativno ali napačno naslavljanje.

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Indexed addressing
● specified in the bit x
● possible only with simple adressing

if (Opcode.isIndexed(op))
if (Opcode.isSimple(ni)) operand += regX;
else invalidAddressing();

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Execution
● Bits ni specify a use of TA

● Call execSICF3F4(opcode, ni, operand)

– remember to reset bits ni in the opcode field

– if it returns false then invalid opcode

Vaje SPO, Vaje SPO, ©© JM JM

SIC/XE executorSIC/XE executor

● Load & store confusion
● store instructions implicitly contain one level of

indirection
● STA 42 → m[42] = regA

instruction description operand

LDA #42 A ← 42 42

LDA 42 A ← m[42] m[42]

LDA @42 A ← m[m[42]] m[m[42]]

STA #42 42 ← A -

STA 42 m[42] ← A 42

STA @42 m[m[42]] ← A m[42]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

