VGA controller- VSYNC

Rok Češnovar, Patricio Bulić

VSYNC

- The VSYNC signal defines if the current in the vertical deflection coils is increased or decreased
 - Higher current -> the ray is deflected further down
- The impact of the HSYNC signal
 - VSYNC = 1 -> linear increase of the current
 - VSYNC = 0 -> decrease of the current

VSYNC signal

- VSYNC depends on the HSYNC module
 - Uses the ROWCLK, generated by HSYNC
- Count ROWCLK cycles
 - -1 cyclye = 1 row

VSYNC signal

- display time
 - The beam is moving to down and is inside the display limits
- sync pulse
 - The beam is returning to the top position
- back porch
 - The beam is moving down and is on top of the display area
- front porch
 - The beam is moving down and is below the display area

VSYNC

 For the resultion 640x480 and a frequency of 25MHz these are the durations for each signal part

Frame part	Part duration[num. of cycl.]
Sync pulse (SP)	2
Front porch (FP)	10
Back porch (BP)	29
Display time (DT)	480

- Scan time (ST) = SP + BP + FP + DT
 - 521 cycles in our case
- Create a counter that counts from 0 to (ST -1)
 - The enable signal for the counter is the rowclk signal from HSYNC
- Based on the counter set
 - VSYNC
 - 0, when in SP, 1, otherwies
 - VVIDON
 - 1, when in the display area, 0, otherwise
 - ROW
 - The row number (0 to 479)

Exercise

- Create a VSYNC module
 - inputs
 - CLK, RESET, ROWCLK
 - outputs
 - VSYNC, ROW, VVIDON

VGA controller

- top module
 - Connect the HSYNC and VSYNC modules
 - Implement the RED, GREEN, BLUE signals
- In the display area set the RED, GREEN in BLUE signals to a constant value
 - Set it to 0 (black) outside the display area