COMPUTER ARCHITECTURE

2 The evolution of computing machines

The evolution of computing machines and other devices for computation can be chronologically divided into five major groups:

I. Period of mechanics Babbage: Analytical Machine 	from about 1600 \rightarrow
II. Electro-mechanical computers Zuse Z3, Harvard Mark	from 1939 \rightarrow
III. First electronic computers	1945
IV. Electronic stored program computers EDVAC, the IAS 	1945 →
V. The rapid development of computers	1950 →

I. period of mechanics

first calculators in the 17th century - mechanical, manually operated

Blaise Pascal 1623-1662

Pascal's Calculator (Pascaline, 1652)

• Add

Subtract

Gottfried Leibniz 1646-1716

Leibniz Calculator (1673)

- Add
- Subtract
- Multiply
- Divide.

- Charles Babbage (1792 1871)
 - Differential machine (1823 1833)
 - Analytical Machine (1834 1836)
 - "The first real precursor of today's computers" ([Kodek])
 - It combines two important features:
 - □ Operation run by a program
 - It is designed to solve arbitrary problems
 - Never fully completed.

Differential machine 2 (London Science Museum)

Differential machine 2 close-up picture

The development of computing machines - Period of mechanics

Babbage: Analytical Machine

YT Video: False Dawn: The Babbage Engine

© 2024, Rozman, Škraba, FRI

II. Electro-mechanical computers

- The development of electrical engineering has opened up new possibilities for the realization of computing machines
 - □ The drive the gears, electric motors are used (previously manually driven or by a steam engine)
 - In systems based on punched cards the presence or absence of holes is determined electrically and no longer mechanically
- Herman Hollerith: 1887 for the first time successfully used the device based on punched cards

Hollerith and IBM

 Hollerith has founded in 1896 Tabulating Machine Company. That was later joined with two more in 1924 and renamed to International Business Machines Corporation - IBM

The first logo of IBM company

The logo used since 1972

IBM

Konrad Zuse (1910 - 1996):

□ **Z1** (1938)

Electro-mechanical switch 1939: Relay,

 first working machine of Babbage's kind, although he did not know for Babbage's work - completely mechanical

□ **Z**2

- arithmetical unit built with telephone relays, mechanical memory of the Z1 unfinished
- □ **Z3** (1941)
 - first working program guided electro-mechanical general-purpose computer
 - used binary-based (not decimal-based) arithmetic
 - □ 2600 telephone relays
 - relay memory consisting of 64 22-bit words
 - □ 8-bit instructions stored on a perforated tape

Z3 in the Technical Museum Munich

Computer History - Z3

Z3 in the Technical Museum Munich

Harvard MARK I, II, II, IV

- Harvard MARK I completed in 1943 in the US, the machine equivalent to Babbage's analytical machine
 - Howard Aiken a physicist at Harvard University unlike Zuse, he knew Babbage's work
- Followed by MARK II, III, and IV
- Harvard Mark I and Zuse Z3 are similar machines:
 - □ Z3 binary arithmetics
 - □ Harvard Mark I decimal arithmetics
 - □ In both: storage of instructions on a punched tape

III. First electronic computers

Electrical switch

• 1945-1955: Vacuum tube,

- Relays replaced by electronic Tubes switching time $5 \sim \mu s$
- The first attempt using tubes instead of relays was an analog computer (John Atanasoff, Iowa State University)
- Machines for the decryption of messages developed during World War 2 in Britain
- ENIAC (J. Mauchly and Eckert J., University of Pennsylvania -Moore School of Electrical Engineering)

The development of computing machines - Electronic Computers

ENIAC

- ENIAC (Electronic Numerical integrator and Calculator)
 - □ completed in 1945
 - \Box ~ 500 to 1000 times faster than Mark I
 - □ The physical dimensions of 30m x 3m x 1m
 - □ 18,000 tubes, 150 relays, 140kW
 - □ Programming using switches (> 6000 switches) and connecting cables

IV. Electronic Stored program Computers

- The author of the idea of stored program computer is probably an American mathematician of Hungarian origin - John von Neumann (1903 - 1957)
- the idea von Neumann first published in 1945 in the proposal for a new electronic computer EDVAC (Electronic Discrete Variable Computer) First Draft of a Report

on the EDVAC

by

John von Neumann

Moore School of Electrical Engineering University of Pennsylvania

June 30, 1945

EDSAC, EDVAC, IAS

IAS and John von Neumann (Institute for Advanced Studies)

EDVAC (Electronic Discrete variable Computer)

Completed in 1951 - the basis is the idea of a program stored in the memory

- EDSAC (Electronic Delay Storage Automatic Calculator)
 - Completed in 1949 in Cambridge, England the first operational stored-program computer – just before EDVAC
 - □ Introduction of the rule that is still followed nowadays :

If the instruction doesn't require otherwise (JUMP, GOTO instruction), instructions are read and executed in ascending address order

- IAS (acronym for Institute for Advanced Study)
 - Parallel machine, approx. 10 times faster than ENIAC (EDVAC and EDSAC operated in serial order - a bit-by-bit)
 - □ Random access memory
 - Program Counter register that contains the address of the next instruction

V. The rapid development of computers after 1950

• 1955: Transistors \rightarrow ,

□ 1958: Integrated circuit - chip,

□ 1980: VLSI integrated circuit

- Very <u>Large Scale</u> Integration
- Development was more in a technological than architectural sense
- Since 1955, the tubes began to fade and were replaced by transistors
 that are smaller, faster, more reliable
- Milestones:
 - □ 1971: Appearance of Microprocessors (Intel 4004)
 - □ 1980: Personal computer IBM PC
 - □ 1985: First ARM processor (RISC idea)
 - □ 1999: AMD Athlon, (Opteron 2003)
 - □ 2011: First publication on RISC-V ISA 2011

Prefixes for units of measurement

Abbrevi ation	Name	Value	Exponent (scientific notation)
р	pico	0,000 000 000 001	10 ⁻¹²
n	nano	0,000 000 001	10 ⁻⁹
μ	micro	0,000 001	10 ⁻⁶
m	milli	0,001	10 ⁻³
К	kilo	1 000	10 ³
М	mega	1 000 000	10 ⁶
G	giga	1 000 000 000	10 ⁹
Т	tera	1 000 000 000 000	10 ¹²

Flectrical switch

■ 1939: Relay,

1945-1955: Vacuum tube,

Electro-mechanical switch

- 1955: Transistors \rightarrow ,
 - 1958: Integrated circuit chip,
 - □ 1980: VLSI integrated circuit
 - Very Large Scale Integration

switching time

Introduction

Realization of switches as the basic building block - summary

© 2024, Rozman, Škraba, FRI

Stacked nanosheet FE1

Introduction

Transistors as a part of the integrated circuit VLSI

V. The rapid development of computers after 1950 Milestones:

- I. 1971: Appearance of microprocessors (Intel 4004)
- II. 1981: Personal computer IBM PC
- III. 1985: First ARM processor
- IV. 1999: AMD Athlon (Opteron 2003)
- IV. 2011: First publication on RISC-V ISA

Milestone I: Microprocessors' appearance in 1971

First microprocessor on one chip - Intel 4004 (1971)

- □ 2.250 transistors on board 3,2 x 4,2 mm
- □ feature size 10 μ m = 10x10⁻⁶ m = 0,00001 m,
 - Human hair diameter approx. 100 µm)
- □ **16** pins
- \square Instruction execution in 10,8 µs (= 0,0000108 s) or 21,6 µs
- □ Power 1,0 W
- □ Price (projected in current time) \$26

Milestone II: Personal Computer IBM PC / XT Year 1983 The Intel CPU 8088, clock frequency of 4.77 MHz

- x68 architecture (1st generation)
- □ Memory: from 128 KB to 640 KB
- □ One or two floppy disk units 5.25 "
- $\hfill\square$ Hard disk with a capacity of 10 MB

© 2024, Rozman, Škraba, FRI

Milestone III : First ARM processor 1985

- □ 25000 transistors
- □ Electrical consumption 1W
- □ Implementation of the RISC idea

-			0	1.2		0.1	100	E	
v	-	•	PC	ip ou	JC .	Cok	or	Fast	
avale		0 mb	12.0	2.1	0000	00-4	Del		
r15 (p	: (00	0000	0034	(US	SR)	nzcv	ifs.	s r0:780000	000
Hz: 3	8.6								
phi1	phi	2 al	e abe	dbe	abs	tir	fi	rq.	
1	0	1	1	1	0	1	1		
reset	sec	n m0	m1	bw	IW	opi	mr	eqtran	
0	0	1	1	1	1	1	0	0	
r15	(pc)	r14	(lir	ik) i	:13		r12		
0000	0034	ffff	ffff	1	EEEE	ffff	fff	fffff	
r11		r10		2	-9		r 8		
ffff:	Efff	fffi	ffff	1	EEEE	ffff	fff	fffff	
r7		r6		2	c5		r4		
ffff	Efff	fffi	ffff	5 1	EEEE	ffff	fff	EEEEE	
z3		r2		-	-1		rO		
00001	00c4	0000	0026	5 0	0000	000f	780	00000	
r14 :	SVC	r13	svc						
00001	0028	ffff	ffff						
r14_:	irq	r13	irq				r10	fiq	
ffff	ffff	ffff	ffff				fff	fffff	
r14_:	fiq	r13_	fiq	-	12	fiq	r11	fiq	
****		6664	6664			6666	666	*****	

ownloads complete, version 019 <u>Visual6502.org</u> RNI geometry provided under EULA with <u>ARM Ltd.</u>, UK Noc

ke this? Consider a donation

Steve Furber principal designer of the <u>BBC Micro</u> and the <u>ARM 32-</u> <u>bit RISC microprocessor.^[15]</u>

Online simulation:

http://visual6502.org/sim/varm/armgl.html

Athlon Classic

Milestone IV : First AMD procesor Athlon

- □ 22 milijon transistors
- □ Becomes serious competitor to Intel x86

FSB speeds

Technology node

Instruction set

Architecture and classification

x86

200 MT/s to 266 MT/s

0.25 µm to 0.18 µm

Milestone V : First publication RISC-V ISA (2011)

Trully opened idea, realization (BSD)

RISC-V is an open standard Instruction Set Architecture (ISA) enabling a new era of processor innovation through open collaboration

RISC-V enables the community to share technical investment, contribute to the strategic future, create more rapidly, enjoy unprecedented design freedom, and substantially reduce the cost of innovation

The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA

Andrew Waterman Yunsup Lee David A. Patterson Krste Asanovic

https://riscv.org/about/history/

Electrical Engineering and Computer Sciences University of California at Berkeley

Technical Report No. UCB/EECS-2011-62 http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html

May 13, 2011

Zuse 23 first digital computer in Ljubljana in 1962/1963

Prvi računalniki v Sloveniji, 4. del – elektronski računalnik Zuse Z-23

Z naslova <<u>https://www.racunalniski-muzej.si/prvi-racunalniki-v-sloveniji-4-del-elektronski-racunalnik-zuse-z-23/</u>>

IBM computer 1130 - the first digital computer at the University of Ljubljana in 1971

