COMPUTER

ARCHITECTURE

3 Basic principles of computing




" N

Basic principles of computing - content

3 Basic principles of computing - content

m von Neumann computer model

von Neumann computer model
Operation von Neumann computer

m Flynn's classification

B [The main memory in von Neumann computer

Memory word (location)

memory address

address space

The content of the memory word

Princeton and Harvard memory architecture
Access to memory

m Amdahl‘s law

m Lanquages, levels and virtual computers

The computer as a series of virtual computers
Transition from the lanquage L2 into the lanquage L1
Hardware and software of the computer

m Case: Execution of the program on the computer

RA -

2

© 2024, Rozman, Skraba, FRI



" N =

Basic principles of computing - content

3 Basic principles of computing - content

m Flynn's classification

m The main memory in von Neumann computer
m Amdahl's law
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[ |

Languages, levels and virtual computers
Case: Execution of the program on the computer

Basic principles of computing — goals :

1 Basic understanding of computer operation
m Von Neumann model and extensions (parallel)

0 Computer system levels (HW <-> SW)
1 Understanding of program execution
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3.1 Von Neumann computer model

m Computers are built on the basis of computing model, known as
,wvon Neumann® model (John von Neumann 1945)

m von Neumann's: First Draft of a Report
0 Computing model, on the EDVAC
1 Computer model, by
0 Computer, John von Neumann
1 Architecture. Moore School of Electrical Engineering

University of Pennsylvania

June 30, 1945

Central Processing Unit

Control Unit

Input Arithmetic/Logic Unit Output
Device Device

Memory Unit
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3.1 Von Neumann computer model

It consists of three basic parts:
1 CPU (Central Processing Unit)
1 Main Memory

0 Input-Output (1/0) system

Central Processing Unit

Control Unit

Qutput

Input Arithmetic/Logic Unit Device

Device

Memory Unit

First Draft of a Report
on the EDVAC
by

John von Neumann

Moore School of Electrical Engineering
University of Pennsylvania

June 30, 1945

It is the machine with a stored program in the main memory.

Instructions in the program specify what the machine will do.

m The program leads the machine operation - program determines

how the machine will work.

m CPU takes instructions from the main memory and execute them

one after the other.
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Operation of Von Neumann computer

Von Neumann computer model

CPU

Control unit

instructions

operands

CPU - Central Processing Unit
ALU - Arithmetic Logic Unit
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Von Neumann computing model

Von Neumann computer model - CPU
m CPU reads instructions from the main memory and executes them.

In today's computers, in addition to the main, there are even more
processors, thus we denote main processor as the Central
Processing Unit. It consists of three parts:

01 Control Unit — fetches the instructions & operands, and activates
operations set by instructions.

0 ALU — performs arithmetic operations (addition, ...)
and logic operations (AND, ...).

0 REGISTERS - a number of connected memory cells which serve to
store values.

m Program Inaccessible registers - necessary for the operation of the CPU.

m Program Accessible registers (architectural registers) for storing operands -
a small and fast memory in the CPU.
RA -3 7 © 2024, Rozman, Skraba, FRI
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Von Neumann computing model

Von Neumann computer model - memory, I/O

m Main Memory is made up of memory words (locations). Each
memory word has its own unique address.

1 It stores instructions and operands.

0 ldentification ,main® again serves to distinguish it from other memory
devices in today's computers (caches, virtual memory).

m /O system serves for the transfer of information to the outside
world or from the outside world. Information from the CPU and
main memory is stored in a format that is not accessible to the
outside world.

0 An integral part of the I/O system are the input-output devices, which
transform the information into another form which is suitable for the
user or represent an auxiliary (secondary) memory.
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Operation of Von Neumann computer

m Its operation is completely controlled by instructions (machine
instructions), that are read by the CPU from the main memory in a
order one after the other.

m Machine instructions are stored in the memory one after the other
by increasing addresses.

m There has to be a deterministic procedure how to start: First
instruction is usually read from certain address in memory, after
the computer is turned on or pressing the RESET button.

[0 The easiest way: the first or last memory location - the lowest or the highest
address in the memory.
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Operation of Von Neumann computer

For each instruction we distinguish two steps

m 1. step: Read instruction from the memory (FETCH)
- instruction fetch cycle

0 The CPU includes the special register - the program counter (PC - Program
counter) that always contains a memory address of the next instruction to be
read and executed.

m 2. Step: Execution of the fetched instruction (EXECUTE)
- Execute cycle
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Operation of Von Neumann computer

m Each instruction contains two types of information:

0 information about the operation to be executed,
0 information on the operands, over which the operation is executed.

m CPU executes the operation, and ensure that the PC includes the
address of the next instruction by increasing the content of the PC
by 1.

m Rule: instructions are stored in memory by increasing addresses
so PC « PC + 1. This rule is the result of an agreement and
specifies the order in which the instructions are usually executed.
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Operation of Von Neumann computer — 2 steps

C RESET )

A 4

Read the instruction

A 4

Execute the instruction
and

PC « PC +1

step 1

step 2

FETCH

EXECUTE

RA-3 12
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Operation of Von Neumann computer — 2 steps

Upon completion of Step 2, the CPU starts again with first step.
These two steps are repeated until the computer runs.

m Exception 1: Jump instructions, which can write in PC other
address thna PC+1.

m EXxception 2: Interrupt or trap

CPU after step 2 does not fetch next instruction by rule, PC < PC
+ 1, but starts another program - Interrupt Service Program (ISP).
Proper return to original program execution is needed.

RA-3 13 © Igor Skraba, FRI
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Instruction execution

C RESET )

A 4

Read the instruction

Jump to PSP
PC <- address of 1. instruction

A 4

Execute the instruction 4
and

PC « PC + 1 or PC «<—new addr.

Interrupt?

PC - the program counter
No ISP - interrupt service program
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Instruction execution

m  Sequential instruction execution is slow and represents a basic
weakness of Von Neumann based computers.

m Extensions of the basic Von Neumann model are contained in the
Flynn‘s classification.
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m von Neumann computer model

B The main memory in von Neumann computer

m Amdahl's law

m Lanquages, levels and virtual computers

m Case: Execution of the program on the computer
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3.2 Flynn's classification

m This classification of computers into four groups suggested
M.J.Flynn in year 1966. The basic criteria in this classification are:

1 The number of instructions that are executed at the same time
(instruction stream)

1 The number of operands that one instruction processes (data stream).

m Acording to these criteria every computer belongs to one of four
classes:

m 1 SISD (Single Instruction Single Data)

1 classic Von Neumann computers without parallelism for instructions
and operands

1 Intel Pentium 4

RA -3 17 © 2024, Rozman, Skraba, FRI



Flynn's classification: SIMD, MISD, MIMD

m 2 SIMD (Single Instruction Multiple Data)

1 The real vector computers (parallel computers, graphics
processors)

1 Instructions SSE (Streaming SIMD Extensions) for x86 architecture
processors

m 3 MISD (Multiple Instruction Single Data)

1 Unusual architecture. More instructions on single operand - can be
used where better robustness to errors is required .

m 4 MIMD (Multiple Instruction Multiple Data) ™

1 Multiprocessor computers (parallel computers)

1 This group could also include multicore superscalar computers
(e.g. Intel Core i7) although they are generally attributed to SISD
group because of limited number of cores.
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Flynn's classification: SIMD, MISD, MIMD

0 In MIMD computers, several instructions are executed
simultaneously, each on its operands.

0 MIMD computer is formed from more common Von Neumann
computers - more CPUs that are interconnected.

1 Multicore computers are commonly attributed to SISD group, although
nowadays multi-core processors could be classified laos in SIMD or
MIMD groups.
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Case: SIMD Unit inside CPU

H Instructions
O Data
B Results

Saurce: ARS Technica

For example, matrix multiplication: (ARM: NEON unit as a SIMD extension):

Figure 4.5. NEON vector-by-scalar multiplication

Figure 4.4. Matrix multiplication showing one column of results
_ o ’ VMUL.F32 g2, g1, d0[0]

all at2 a13 aM b1 b12 b3 bi4| [ all-bit+al2-b2i+atd-b3t+atd-bdt ..
a2l a2 a3 al b21 b2 b23 b4 321-b11+222-b21+223-031+a24-b41 - gt | b4l | b31 | b2 q0
ail 332 a3l a4 ' b31 b32 b33 bM T| a3tebii+a32-b214a33-b31+a34ebd1 .

| ad1 a42 a43 atd| [ 1 b2 43 b4 adl-b11+ad2:b21+a43+b31+a4d-D41

GPU: similar philosophy, is a
broader concept

ad1+b11| ad1=b11| a21-b11 | a11+b11

20 © 2024, Rozman, Skraba, FRI
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Eficient programing - case

m Because knowledge on computer architecture and
operation leads to more efficient programming
(programs).

Case 2: program code optimization regarding the parallel
execution fouble r

us/Iteration | Iterations/sec

3 =@ 1 £ st
_' ' '_h ;mm?f.-r:'-':_ oac
Code below is 4-times faster ! _m256 i c = mm256 mul p_ _1 ? _1 b);

_mm256_store ps(&results[i], i _c);

Reference: ,Pomen poznavanja racunalniSke arhitekture®,
avtor Miha Krajnc.
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MIMD: Multiprocessors and Multicomputers
Examples:

m 4 MIMD (Multiple Instruction multiple Data)

Multiprocessor Multicomputers
(closely connected) (loosely connected)
CPU CPU e CPU CPU CPU e CPU
Cache Cache oo Cache Cache Cache Cache
Intgrconnection Mer;;ory Memory Memory
variables \\ Memory /O System Intc‘a'rconnection )

3"-5"'55 .= best

= ) T i -
e T
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m von Neumann computer model

m Flynn's classification

m Amdahl's law

m Lanquages, levels and virtual computers

m Case: Execution of the program on the computer
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3.3 Main Memory in Von Neumann based computer

m Definition

00 Main memory is a passive device and serves for storage of
instructions and operands.

00 The basic cell in the memory is a memory cell which can store 1 bit of
information (the content of 0 or 1).

s Memory word (memory location)

0 The memory word is defined as the minimum number of bits that have
their own address. Memory word is thus the smallest addressable unit

of memory.
0 The Memory is a one-dimensional sequence of memory words.
0 The Memory word comprises a number of one-bit memory cells.

0 The length of the memory word: the number of one-bit memory cells
that make up the memory word. Nowadays, the most common word

length is 1 byte (= 8 bits).
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The main memory of the von Neumann computer

Memory address, address space

m Memory Address

O Itis a unique label for each memory word

[0 Each memory word has its own unique memory address.
O

O

Address memory word is unchangeable.

The number of bits that comprise the address, are denoted as
Address Length.

0 Title length of the address in bits determines an Address Space.

m Address Space (also a memory space)
[0 _itis the set of all addresses
0 And also determines the maximum memory size.
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The main memory of the von Neumann computer

Memory words

m The content of the memory words can change. In an 8-bit
memory word can be stored for 28 = 256 different content.

m [he Address of memory word is unchangeable.

m The number of memory words in the main memory is not
necessarily equal to the size of the address space.

m Parts of the address space may be empty (all addresses are not
used) = main memory is usually smaller than the maximum size.
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The main memory of the Von Neumann computer

Memory structure sketch

Memory Address

16-bit memory address

0000 0000 0000 0000
0000 0000 0000 0001
0000 0000 0000 0010

0000 0000 0000 0011
0000 0000 0000 0100

0000 0000 0000 0101

Decimal

Memory words

8 bits

A\ 4

b7 b6 b5 b4 b3 b2 b1 b0

MSB

LSB

8-bit memory word

RA -
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16 bit address space sketch

Memory Address

Binary (16-bit address) Hex Decimal memory words
0000 0000 0000 0000 0000 0
0000 0000 0000 0001 0001 1
0000 0000 0000 0010 0002 2 1%
0000 0000 0000 0011 0003 3 ’g
0000 0000 0000 0100 0004 4 -
0000 0000 0000 0101 0005 5 %
..................... . HE_
..................... 2
................. SC;I
1111 1111 1111 1011 FFFB 65531 J
1111 1111 1111 1100  FFFC 5532 X
1111 1111 1111 1101 FFFD 65533 ©
1111 1111 1111 1110 FFFE 65534
1111 1111 1111 1111 FFFF 65535 i
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The prefixes kilo, mega, giga et al. are only in memory size

related to powers of 2!

1K (kilo) = 210 = 1024 (1 KB = 1024 B)
1M (mega) = 220 = 1,048,576 (1 MB = 1048576 B)
1G (giga) = 230 = 1073741824 (1 GB = 1024 * 1024 * 1024 = 1073741 824 B)

1 The reason is technological: eg. 10-bit memory address allows 2'°= 1024 different
addresses and not 1000 !

0 Proposal of IEC 1998: KiB = 2'°B, MiB = 22°B GiB =230 B

Other areas (frequency, transfer capacity ...)

1k (kilo) = 103 = 1000 (1 km = 1000 m)
1M (mega) = 106 = 1 000 000 (100 Mb / s = 100 000 000 b/ S)
1G (giga) = 10° = 1,000,000,000 (1 GHz = 1000000000 Hz)

RA -

29 © 2024, Rozman, Skraba, FRI



An example of the memory on the processor ARM AT91SAM9260 (32-bit memory address)

32-bit address - 8 hex characters

0x00000000

OxOFFFFFFF
0x10000000

Ox8FFFFFFF
0x90000000 —

OXEFFFFFFF —»
0xF0000000

OxXFFFFFFFF

Offline address
space

(Trap Abort)

268435455

r 256MB\

268435456

2415919103

2415919104

4026531839
4026531840

4294967295

> 2048MB

> 1536MB

J

} 256MB]

Address space:
232 = 4G titles

RA-3

30

© 2024, Rozman, Skraba, FRI



Picture of the internal memory (the first 256 MB) of AT91SAM9260

0x00000000

0x00100000

0x00108000

0x00200000

0x00201000

0x00300000

0x00301000

0x00500000

0x00504000 —

OxOFFFFFFF __,

internal memory

Reserved 992KB

Reserved 1020KB

Reserved 2044KB

Reserved 250,98MB
= 257008KB

1048576

1081344

2097152

2101248

3145728

3149824

5242880

5259264

\

} 32kB
} 4kB
} 4kB

} 16KB

Memory word
Is 1B (Byte)

SRAM - Random Access
UHP  memory

ROM - Read Only
Memory

256M Addresses =
262144K

SRAM - static RAM
UHP - USB Host Port

RA-3
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An example of the memory on the microcontroller STM32H750XB

Figure 8. Processor memory map

Vendor-specific
memory

511MB

Private peripheral

bus 1.0MB|

External device  1.0GB

External RAM  1.0GB

Peripheral 0.5GH
SRAM 0.5GB
Code 0.5GH

OXFFFFFFFF

0xE0100000
OxEDOFFFFF

0XEDD00000
OXxDFFFFFFF

0xA0000000
0xOFFFFFFF

0x60000000
Ox5FFFFFFF

0%40000000
0x3FFFFFFF

0x20000000
0x1FFFFFFF

0x00000000

MESv38B42v1

Address space:

232

= 4G addresses

MEMORY

i

FLASH (rx) :ORIGIN = 0208000000, LENGTH = 128K
DTCMRAM (xrw) : ORIGIN = 0x20000000, LENGTH = 128K
RAM_D1 (xrw) :ORIGIN = 0x24000000, LENGTH = 312K
RAM_D2Z (xrw) :ORIGIN = 0x30000000, LENGTH = 288K
RAM_D3 (xrw) : ORIGIN = 0x38000000, LENGTH = 64K
ITCMRAM (xrw) : ORIGIN = 0x00000000, LENGTH = 64K

RA-3
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fat

For example, the image of memory (memory map) the processor 68HC11 - the processor has a 16-bit
memory address

The 16-bit memory address

0000 0000 0000 0000 = $0000
0000 0000 1111 1111 = $00FF

0010 0000 0000 0000 = $2000

0011 1111 1111 1111 = $3FFF

1011 0110 0000 0000 = $B600
1011 0111 1111 1111 = $B7FF

1110 0000 0000 0000 = $E000

1111 1111 1111 1111 = $FFFF

0
255

}2568\

8192
8KB
16383

57344

8KB
65535 j

RAM - Random
Access
memory

EPROM - read-only
memory

Address space:

216 = 64K addresses
The white parts of
the address area

are not used.

RA-3
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Von Neumann bottleneck

m Transfers CPU <> Main Memory — produce a lot of traffic

m Von Neumann's bottleneck — is the connection between the CPU
and the main memory. All instructions are transferred from the
main memory to the CPU, and all operands are transferred in both
directions - from memory or in the memory.

m One way to extend this bottleneck, is the split of the main memory
into two parts.
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Extension of the Von Neumann bottleneck

A

von Neumann instructions — instructions operands
o p solution
bottleneck an

operands

\ 4
Princeton memory Harvard memory architecture
architecture
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Princeton and Harvard architecture

Harvard architecture

m Memory in the Harvard architecture is divided into two separate
memories.

m |n one only operands are stored — ,operand memory*“, second only
includes instructions — ,instruction memory*.

m |nstruction and operand memories can operate simultaneously.
Thus we can achieve double speed.

m Harvard architecture is used nowadays in cache memories at the
lowest level (separate operand and instruction L1 caches), but the
main memory of most computers is usually uniform (Princeton
architecture).
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Access to memory

m CPU accesses to memory word by first sending its address to the
memory and the signal that determines the direction of transfer.

m The direction of transfer - type of access

1 CPU « main memory - reading (read access)

1 CPU — main memory - write (write access)
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IIinterconnection CPU <-> main memory?

Bus = group of lines
(Address, Data, Control

buses) Line = physical connection
Signal = content transferred over the line (1bit)

Main memory

TR

AN AN AN e L\ o -!3 Id:
Address _DGTO anTr‘OI /] : ol l'l“i‘ ‘|‘|
signals signals signals =l
2 2
Program Instruction/da Control unit
counter/add ta register onfrofunt
__ressreg. |

CPU

peavy
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The connection between the CPU and main memory
- read access

Control unit

Address Data
signals signals

Control signal -
- read

Main memory
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The connection between the CPU and main memory
- write access

Control unit

Data
signals

Address

: Control signal -
signals

- write

Main memory
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Summary of the memory properties in Von Neumann

computer

m Memory is one-dimensional and organized as a sequence of

words. Each word has its own, unique address.

m There is no difference between instructions and operands in
memory. example

program

m Type or description is not included in operands.

1R

m More read than write accesses, 2R
Ratio: approximately 80% are read (R), R

20% are write accesses (W) 2R

1R

RA -3 41 1R1W

adr rO,STEV1
ldr r1,[rO]
adr r0,STEV2
ldr r2,[rO]
add r3,r1,r2
adr rO,REZ
str r3,[r0]
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The combination of 8 bits in the memory,
eg. 1000 1011, can represent:

m Unsigned: 139 (decimal)

or

m number with sign: - 11 (decimal)

or

m Extended ASCII character : <

or

m Hardware instruction: ADDA (op.code of the machine instruction
for processor 68HC11)

or

m memory address 139 (decimal)

or

m combination of bits

or

m point in image (pixel), audio sample, ...
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Naslovi besede
0 — /1624512110
. 1
The main memory of the Von Neumann computer 2 W
Fomnmninidhe cslive (bitl)

Memory
Demonstration — Logisim EVO

------------------------ Primer delovanja-pomnilnikaRAM. - - - .. .. ... ...
. Branje : - nastavi.naslov .(Adress Bus) . . . . Pisanje : - nastavi naslov.(Adress Bus) . L
R —.O.ui_Er.la.blé=.1 oo " - Write_Data = podatek zavpis =~~~
\Wrie Read<o | CUU . OulEnable=0 R R
ke e CWrteRead=1
------ s e o CLK ekl (dvarklika)y e

B L Y = L R
— — RAM 64Kx 8 . - . . . . . . . B

... ... Address Bus . . . 0000|00 1122 33 44 55 61

0.0.0.0.0.0.0.08
00000111 -

000ajaa bb cc dd ee ff 0000 00 00
- 0014/00 00 00 00 00 00 00 00 00 00
- 001e(00 0000 00 00 00 0000 00 00

Control Bus. - " 0028(00 00 00 00 00 00 00 00 00 00
© 0032/00 00 00 00 00 00 00 00 00 00!

I_I .....
Data Bus A=
Lo S | _I D
i DD .....
..... B
..... —
o7 S

https://qithub.com/LAPSyLAB/RALab-

Wt Rean B ~ STM32H7/tree/main/LogisimEVO_vezja
........ PlSanJe‘I

RAM_pomnilnik_demo_EVO.circ
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3.4 Amdahl‘s law (1967)

m  G.M. Amdahl was one of the architects of the famous family of
computers IBM 370

m |f the computer speeds up all operations by a factor N (N-times),
except the relative f-part of all operations, then increase in the
speed of entire computer S(N) is

1 N
f 1oF 1 (N-1)xf

N \

f - the portion of operations that are not accelerated !

S(N) =

S (N) = Increase in the speed of the entire system

N = a scaling factor of the speed of (1 - f) portion of operations
f = portion of operations, which are not accelerated

1 - f = fraction of operations that are N times accelerated
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Amdahl‘s law — case 1

Case 1:

m |Implementation of programs on a computer would like to be
accelerated so that the single-core processor is replaced with eight-
core CPU (8 CPUs operating in parallel).

m How much faster will software run, if only 60% of the programs can
be performed in parallel?

RA -3 46 © 2024, Rozman, Skraba, FRI
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Amdahl’s law — case 1

before | f=04 | 1-f=0.6

after | f=04 | | acceleration by 8x (0.6/8=0.075)
m N =8 (part of the programs can be performed eight times faster)
m 1-f=0.6, the proportion of the programs that have 8-fold speed up;

m = 0.4, the proportion of the programs which are not sped up (40% of the programs
can not be executed in parrallel)

m S (N) speed up the whole SW (all programs)

8 8

SN - = =
(V) 1+(8-1)+0.4 1+2.8

2.1

m The speed of all programs will be increased by a factor of 2.1
(2.1 times).

m If the programs were executed before the replacement 100 seconds, will
be then executed in 47.6 seconds (100 /2.1 = 47.6) on 8-core CPU.



Amdahl‘s law — case 2

before | f=0.1| 1-£=0.9

Case 2: then | f= O.1| acceleration by 2x (half-time) |

m Execution of the program on a computer would like to accelerated so
that the 90% of all instructions will be executed two times faster.

m How many times faster will run the program on this computer?

S(N)=?
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Amdahl‘s law — case 2

before | f=0.1| 1-f=0.9

Case 2: then |f= O.1| acceleration by 2x (half-time) |

m Execution of the program on a computer would like to accelerated so
that the 90% of all instructions will be executed two times faster.

m How many times faster will run the program on this computer?

1 1

= ——=1.8181381

0.1+¥ 0.1+045 0.55

S(N) =

m Speed of the program execution is increased by a factor of 1.82.
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Amdahlov zakon

Amdabhl’s law — importance and consequences
Amdabhl's law:

m Parallelism is not ideal
m Importance of relative share of operations that can speed up

m Greater the share, less speed up is needed for a similar overall effect

Parallelism:

m  Only viable possibility cause by specifities of elektronic technology evolution
m  Not simple from speed up and programming viewpoints

m Has a potential of greater efficiency from energy consumption viewpoint
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Basic principles of computing - content

3 Basic principles of computing - content

m von Neumann computer model

m Flynn‘s classification

m The main memory in von Neumann computer
m Amdahl's law

m Case: Execution of the program on the computer
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3.5 Languages, Levels and Virtual computers

m For the vast majority of users, the details of the structure and
operation of computers are insignificant.

m Computer and its features are seen mostly through the features of
the programming language that you use.

m A programming language can be realized in a wide variety of
computers, this means that different computers for a user who uses
the same programming language look more or less the same.
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The computer as a series of virtual computers

m The vast majority of today's computers have 6 levels.

m At each level we see a computer through a different computer
programming language.

m This programming language can be represented as the ,machine
language of a certain virtual machine”.

m At the lowest level (level 0) Electronics (logic gates and flip-flops)
directly executes the simplest (machine) instructions.
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A computer with six levels

level 5

level 4

level 3

level 2

level 1

level 0

General definition

Higher programming language

14

Assembly language
(assembler)

Operating system

Usual Machine lang. (ISA)

Machine instr. Eecution

(Micro-program-SW, Hardwired-HW)

Digital electronics

The usual boundaries between
the physical and software part
of the computer
(between hardware and software)

ISA = Instruction Set Architecture
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Language levels and virtual computers

Level 1
m Level 1 can be seen in many of today's computers. RISC

computers don‘t have first level.

1 Each instruction of ,usual“ machine language is executed as a
sequence of micro instructions - computer, which operate in this
manner (with level 1) are denoted as micro-programmed.

1 For these computers, micro-program language is actually the real
machine language.

1 Since at the beginning of the computers, this level was invisible to the
user, the term ,machine language® is usually used for the level 2.

1 Micro-program on level 1 is written by the manufacturer of the CPU and
actually defines the usual machine language. Usually, it can not be
changed by the user.
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Language levels and virtual computers

Level 2
m The user sees the computer on the level 2 through the use of

conventional machine instructions, which form the conventional
machine language.

1 Computer architecture is determined by the structure and properties of
the computer, as seen by the programmer at this level.

1 Therefore, the name of the ISA - Instruction Set Architecture.

1 With the conventional machine language programmer has full control
over all parts of the computer.

1 At early stages of evolution, the computers didn‘t have higher levels,
and programming took place only in the normal machine language.
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Language levels and virtual computers

Level 3
m Level 3 is the level of the operating system.

1 Language at this level contains all the instructions of Level 2, with the
addition of new instructions to better control the computer (eg.
operations with I/O devices, parallel execution of programs, diagnostic
instructions).

1 The operating system is a program that facilitates computer work and
serves as an interface between the user and the computer hardware.

1 With operating system we want to achieve:

m easier work

m better utilization of hardware capabilities of the computer (do more work in
given time).
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Language levels and virtual computers
Level 3

1 The functions of the operating system could be implemented in the
hardware Level 2, but is currently more economical to do it in
software (multiple operating systems, upgrade...).

1 At this level, we usually divide users with different rights to use the
instructions.

1 Some instructions in Level 2 are in level 3 inaccessible (available only
to system programmers) to normal users .

1 For most of today's programmers is level 3 the lowest level at which
they can work.
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Language levels and virtual computers

Levels 4, 5

m Atlevel 4 user can see the computer through the assembly
language.

1 Assembly language is only symbolic form, closer to humans, of
language on Level 3 (and thus the Level 2).

1 Programs in assembly language must be translated before the

execution to the language on Level 3 (or 2).

m Level 5is formed of higher programming languages, which are
designed to majority of computer programmers.

1 This are, for example, C, C#, C++, Java, Python, BASIC, FORTRAN,
COBOL, and many others.

1 Programs written in these languages must be translated to the
language on Level 4 or Level 3.
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Language levels and virtual computers

Levels

Regarding computers, we can establish also higher levels, e.g.
programs for Al, databases, ...

Each level can be thought of as a virtual computer that has own
,machine language” as the language of this level. Therefore, a
typical user at higher levels doesn‘t need to know the details
about actual ,machine level".

However, it is mandatory that programs written in any higher level
language (for coresponding virtual machine) are converted into a
sequence of machine language instructions.

Users don‘t need to be fully aware of this translation, providers of
HW and SW products must ensure the tools for translation from
one language to another.
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Language levels and virtual computers

Transitions between levels

m The mechanism of transition from one language to another can be
realized in two ways:

1 Translation (or compilation)

1 Interpretation.

m After 1990, an intermediate solution emerged:

1 partial translation (compilation).

m The main difference between translation (compilation) and

interpretation is that in interpretation, the translated (compiled)
program does not exist.
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Language levels and virtual computers

Transition from the language L2 into the language L1

Translation (compilation)

Source program Translated program

Execution

Interpretation

Source program

Each instruction of the language L2 is
simultaneously translated into the
instructions in language L1

and executed

(No translated program!)
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Language levels and virtual computers

Transition from the language L2 into the language L1

1 Compiled programs work only on the computer with machine language
in which they were translated.

1 Before transferring to another computer (using a different machine
language L1a) we should recompile the source code of a program.

m By integrating a large number of different computers on the
network, the portability of programs enabled by interpretation, has
become very important.

m Partial translation is an intermediate solution between the
interpretation and translation, which enables faster interpretation
on target machine.
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Language levels and virtual computers

Transition from the language L2 into the language L1

m Partial translation: Source language program in L2 is translated
into an intermediate language program in L1, and then L1 program
IS interpreted on a target machine.

m Partial translation in the intermediate language L1 allows faster
interpretation, but is still typically 10 times slower than full
implementation of the program translation (compilation).

m Despite this, it still allows portability of programs at a significantly
lower loss of speed than if we used the interpretation only.
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Language levels and virtual computers

Practical case of virtual machine:
m JVM (Java Virtual Machine)

1 Virtual Machine - VM (Virtual Machine) is a software implementation of
the machine (computer), operating (running programs) like a real
machine (computer).

1 Java programs are executed so, that they are first translated (partial
translation) in an intermediate language (Java byte code), which is
interpreted by the program JVM on a target machine.
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Computer with six levels (Micro-programmed)

Older generation of computers

Level 5 Higher programming lang.

Translation (compiler)

w4 [ Mo ngeaoe
Translation (Assembler)

Level 3 Operating system

Partial interpretation (operating system)
Level 2 Usual machine language (ISAI)

Interpretation (Micro-program)

Level 1 Micro-program language

Interpretation
Level O Digital electronics
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Computer with five levels

Newer generation of computers

Level 5 Higher programming lang.

Translation (compiler)

o4 | Pl nguase
Translation (Assembler)
Level 3 Operating system
Partial interpretation (operating system)
Level 2 Usual machine language (ISAI)
M Instructions execution in HW
Interpretation
Level O Digital electronics
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Hardware and software on computer

m The boundary between hardware and software of the computer is
not solid - it can be moved.

m Each of the levels can be realized in both hardware and software
way.

m Level 2 for example: It can be realized with a program running on
another computer.

Hardware and software are logically equivalent.
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Hardware and software on computer

m Each operation carried out by the software can be realized as
hardware directly.

m Also, each machine instruction, executed by hardware, can also be
simulated with the program.

m Evolution of multi-level computing machines

1 Invention of Micro-programming (1951)

1 Invention of Operating system (OS) (around 1960)

1 Moving functionality in Micro-programs (around 1970)
1 Abandonment of Micro-programming (after 1984)

1 Today usually the combination of:

m the complex instructions at normal machine level are realized in
micro-program (software), simpler instructions are realized in
hardware.
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Basic principles of computing - content

3 Basic principles of computing - content

von Neumann computer model

Flynn‘s classification

The main memory in von Neumann computer
Amdahl’s law

Languages, levels and virtual computers
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3.6 Example of program execution on the computer

adr 10, stevl RO € Addr. of stevl 0xE24F0014

An example of adding two numbers: ldr el 0] RI € MIR0] 0xES901000
adr r0, stev2 RO € Addr. of stev2 0xE24F0018

rez: = stev1 + stev2 22, (10 R € MR0] 5002000

add 13,12, rl R3 € Rl +R2 0xXE0823001

adr 10, rez RO € Addr. of rez 0xE24F0020

str 13, [10] M[RO] € R3 0XE5803000

Cvv ADDR-

e
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Mlkro MiMo CPU model

Mlkro MIMO Slmple CPU Model VO EVO

Reset Sysclk

0
Pt o 3

exten

An example of adding two numbers: fat
rez: = stev1 + stev2

CPU Info

PC- - Address 3 Data - Instructlon

O S N . o @ : - o ‘|o,;¢oae‘||nuse:|nme:| ell Trmval]
: : 0020 0020 00000000 : 00000000
Address BUS ; ; : R R;“ Rm "“";“‘-"

— _| : : Fetch Execu:te Re:_—.' J Write

- RAM 64K x 32 -
0000|00000000 00000000
0002(00000000 00000000
‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ 0004(00000000 00000000 | =
: : : : - 0006/00000000 00000000 ot
- - - - 9 0008|00000000 00000000
: Data IBUS : : CLK} 000a|0D0O000D 00000000
““““““““““““ oooooooal - S I_II_II_II_II_II_I
reset : | [ !
% R0 ‘ 00000000
ey 00000000 :
CLK Ri1 = - -
R2 00000000 - -
Rdsel -
— 'R3( 00000000 ‘|rd Ao C : t : IU t “““ l “““““““““
. ontro m si nas
— Reg|sters 00000000 : g
. . . addrsel i RegSrc aJuop
M : 00000000 |Rm : : : :
B ControlBUS = RO ™
Address ReadWrite 'RegWrite RegSrc alutﬂ) ADR - irload
— 1 1 OPC q\write 1WriteRd 0DBus 0AD 1 Write
. . 1Rn . - 1ALU - 2SUB ;
- Read Write : : : . h 1 ADR instr.
. - P 2 IMM . .
“““““““““““““““““““““ L
-Fetch (PC+4): - * Address=0, ReadWrite=0, - - RegSrc=0; irload=1
Pseudo instr. ADR. RD Address -> SUB RO, PC, #imm Exec ADR: . RegWrite=1, RegSrc=1, aluop= 2ADR 1
.. Exec LDR: : Address=1, . - RegWrite=1, RegSrc=0 .
Exec ADD: : RegWrite=1, RegSrc—1 aluop=0 .
Exec STR Address=1, Readerte 1o : skraba, FRI



" NN An example of adding two numbers: (6}

Mikro MiMo CPU model rez: = stev1 + stev2

Mikro MiMo model CPE - krmilni signali vO

PROGRAM Address ReadWrite dwrite RegSrc aluop ADR Irload
Zhirnik Virnaslova  Vpis/branje  Vpis reg. Rd Vhodvreg. ALU Operac. Sub Vpis v uk.
RAM pomn. Rx,PC. #odm reg. IR
Opis 0..PC, D..branje, 0..ne, 0..Databus, 0..ADD, 0..ne, 0..ne, Naslov
1..Rn 1..pisanje 1..da 1.ALU, 2..5UB 1..da 1..da ukaza
2..Immediate
adr r0,STEV1 (PC+4) Fetch 1 Ox2C
(sub r0,pc, #0x0c) Execute 1 1 2 1
Idr r1,[r0] (PC+4) Fetch 1 Dx30
{sub r0,pc,#0x10) Execute 1 1 0
adr r0,STEV2 (PC+4) Fetch 1 0x34
Execute 1 1 2 1
Idr r2,[r0] (PC+4) Fetch 1 0x38
Execute 1 1 0
add r3,r1,r2 (PC+4) Fetch 1 0x3C
Execute 1 1 0
adr rO,REZ (PC+4) Fetch 1 0x40
{sub r0,pc,#0x18) Execute 1 1 2 1
str r3,[r0] (PC+4) Fetch 1 0x44
Execute 1 1
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=

Mini MiMo
— HW
Simple
CPU
Model CA
(O.
chapter)

Mo - Hardwired Simple CPU Modelosevo

Address Data

Instruction: < ms

ucounter g icycles

a0oa ooag

i
000a

Address BUS

18 B

Rd Rs immed

address| opcede mfegslsregfw ed|

E

reset [ozeakycles
P> ExagFmis

e

0006

VA RAM 16K x 16

0000 001 e440e8204a00

-
1 g U004[EE31 410 56005700
— ¢ nanaf40o o flTg0a

St 000¢1000 000000000000

m

0010000 D00DO000DO0D B
Control BUS 00140000 000000000000
- - 1
RO 0001 = datawrite 1 6 vﬁ i TTY
R (D08h = Read Writ PORSTOVIYZ[V]A_
Rz #000 |rrv5er} - “abodefghi 1k lune
4 pratwRyzl |}
R3 4007 :FB;ED -
_ a _lclearser
+ {7
ja Data BUS Frame Buffer LED 16x16
] :.
st =2
I ¢ oooo ~ —
400 *
aluout
Flags
1 ~p-{Phase] 0 ~g-{dataurite c._El
@z
Fetch Execute  Read Write
n@—{n|
Control signals
- AND Rd, Rd,Rs
elregrs PC ORR Rd, Rd, Rs
1o i ADD Rd, Rd, Rs
L
ered SUB Rd, Rd, Rs
CLK LDRH Rd, [Rs] are
-gs -sregs
ManualControIl@-I_I STRH Rd, [Rs] " g
| continue MOV Rd, Rs
b br_cycle NOP
L br_inatr _ - BEQ Rd, immed
r_addr_on BNE Rd, immed
bi_actar T‘ﬁ | l H [-@ 85T Re. immed
ucaunter i BLT Rd, immed 0006
i de regsrc  aluop datrite irﬂ addrsel pcd pl Pe g LDRH Rd’ [#immed]
o TRCRI O, Q4R T twic DPCiwre D prech A vov e s
-+ o , #Kimme
stop[Tr{agen] Ader[T00eH{pa] L0 2408 i O B immed

Breakpoint
Quick tips:
Use ctrl+t to manually toggle global clock signal
Use Simulate-»Ticks Enabled for automatic clock signal

Based on: https:#iminnie.tuhs.orgiCompArchiTutesiweek03.html

v06: More V.N. model like design (CPU,Mem,10,.)

v05: Migration to EVO, Debug,

ounters, InmReg Units

Cmds ' 306 Cyeles ' B11

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo HW CPE Model

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO vezja/Prispevki
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Case execution of program

Instruction

STEP

Comment

Initial state

Address Bus

Control
unit

ALU unit

REGISTER VALUE

RO

R2

R3

R15=PC 0x2C

Data Bus

R1 Control Bus

RA -0

CONTENT

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

0x2A

0x2B

0x2C

ADR R0,STEV1

0x2D

0x2E

0x2F

0x30

LDR R1,[R0]

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[RO]

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#0
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Case execution of program

Control
unit

ALU unit

REGISTER

VALUE

RO

R1

R2

R3

R15=PC

0x2C

Instruction

STEP

Comment

ADR RO,STEV1

FETCH

Read 1. instruction

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x2C

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

<- OxE24F0014

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

0x2E

Control Bus

0x2F

0x30

LDR R1,[RO]

Read ->

ADR RO,STEV2

LDR R2,[RO]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#1
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Case execution of program

Instruction

STEP

Comment

ADR RO,STEV1

EXECUTE

ALE: RO <- PC +- ODMIK

Control
unit

#ODM

+|  ALU unit

REGISTER

CONTENT

RO

0x00000020

R1

R2

R3

R15=PC

0x2C

Address Bus

Control Bus

RA -0

CONTENT

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

O0x2E

0x2F

0x30

LDR R1,[RO]

ADR RO,STEV2

LDR R2,[RO]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#2

© 2024, Rozman, Skraba, FRI



Case execution of program

Control
unit

ALU unit

REGISTER

CONTENT

RO

0x00000020

R1

R2

R3

R15=PC

0x30

Instruction

STEP

Comment

LDR R1,[R0]

FETCH

Read 2. instruction

CONTENT

ADDRESS

Address Bus
0x40

0x20

0x21

0x22

0x30

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

<- 0xE5901000

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

Ox2E

Control Bus

O0x2F

0x30

LDR R1,[R0]

Read ->

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#3
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Case execution of program

Control
unit

ALU unit

REGISTER

CONTENT

RO

0x00000020

R1

0x00000040

R2

R3

R15=PC

0x30

Instruction

STEP

Comment

£t

LDR R1,[R0]

EXECUTE

Read operand from M[RO0] to R1

Address Bus

0x20

Data Bus

<- 0x00000040

Control Bus

Read ->

RA -0

CONTENT

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

Ox2A

0x2B

0x2C

ADR RO,STEV1

0x2D

Ox2E

Ox2F

0x30

LDR R1,[R0]

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[RO]

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

4
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Case execution of program

Control
unit

ALU unit

REGISTER CONTENT
RO 0x00000020
R1 0x00000040
R2
R3
R15=PC 0x34

Instruction

STEP

Comment

ADR RO,STEV2

FETCH

Read 3. instruction

Address Bus

0x34

Data Bus

<- OxE24F0018

Control Bus

Read ->

RA -0

CONTENT

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

0x2E

0x2F

0x30

LDR R1,[RO]

ADR R0,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#5

024, Rozman, Skraba, FRI



Case execution of program

Control
unit

+|  ALU unit

#ODM

REGISTER CONTENT
RO 0x00000024
R1 0x00000040
R2
R3
R15=PC 0x34

Address Bus

Data Bus

Control Bus

Instruction

STEP

Comment

ADR RO,STEV2

EXECUTE

ALE: RO <- PC +- ODMIK

RA -0

CONTENT

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

0x27

0x28

0x29

Ox2A

0x2B

0x2C ADR RO,STEV1

0x2D

Ox2E

Ox2F

0x30 LDR R1,[R0]

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[RO]

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000

#6
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Case execution of program

Control
unit

ALU unit

REGISTER CONTENT
RO 0x00000024
R1 0x00000040
R2
R3
R15=PC 0x38

Instruction

STEP

Comment

LDR R2,[R0]

FETCH

Read 4. instruction

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x38

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

<- 0xE5902000

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

0x2E

Control Bus

0x2F

0x30

LDR R1,[RO]

Read ->

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000
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Case execution of program

Control
unit

ALU unit

REGISTER CONTENT
RO 0x00000024
R1 0x00000040
R2 0x00000010
R3
R15=PC 0x38

Instruction

STEP

Comment

£t

LDR R2,[R0]

EXECUTE

Read operand from M[RO0] to R1

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x24

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

<- 0x00000010

Ox2A

0x2B

0x2C

ADR RO,STEV1

0x2D

Ox2E

Control Bus

Ox2F

0x30

LDR R1,[R0]

Read ->

ADR R0O,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[RO]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000
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Case execution of program

Control
unit

ALU unit

REGISTER CONTENT
RO 0x00000024
R1 0x00000040
R2 0x00000010
R3
R15=PC 0x3C

Instruction

STEP

Comment

ADD R3,R2,R1

FETCH

Read 5. instruction

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x3C

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

<- 0xE0823001

0x2A

0x2B

0x2C

ADR RO,STEV1

0x2D

0x2E

Control Bus

0x2F

0x30

LDR R1,[R0]

Read ->

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[RO]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000
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Case execution of program

Control
unit

+|  ALU unit

REGISTER CONTENT

RO 0x00000024

R1 0x00000040

R2 0x00000010

R3 0x00000050
R15=PC 0x3C

Instruction

STEP

Comment

£t

ADD R3,R2,R1

EXECUTE

ALE: R3 <-R2 +R1 (sum)

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

0x2A

0x2B

0x2C ADR RO,STEV1

0x2D

0x2E

Control Bus

0x2F

0x30 LDR R1,[R0]

ADR RO,STEV2

LDR R2,[R0]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000
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" J nstucion [ sTeP Comment_ |8

Case execution of program ADRROREZ | FETCH | Read 6. instruction

CONTENT | ADDRESS
Address Bus
0x40 0x20
C t | 0x21 ADR RO,STEV1
ontro 0x22
. PC 0x40 LDR R1,[RO]
unit = | ==
oo ADR RO,STEV2
0x25 LDR R2,[R0O]
0x26
0"27 ADD R3,R1,R2
. Data Bus =
ALU unit o ADR RO,REZ
0x29 STR R3,[R0]
IR <- 0xE24F0020 0x2A
Uz Machine lang
0x2C ADR RO,STEV1
REGISTER CONTENT 0x2D OxE24F0014
RO 0x00000024 OX2E O = 590 1 O
R1 0x00000040 Control Bus 0x2F OxE24F00] &
X
R2 0x00000010 0x30 LDR R1,[RO]
R3 0x00000050 0xE5902000
Read -> .. | ADRRO,STEV2 OxE0823001
R15=PC 0x40 LDR R2,[R0] OxE24F0020
ADD R3,R2,R1 '
e OxES803000
STR R3,[R0] # 1 1
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Case execution of program

Control
unit

+|  ALU unit

#ODM

REGISTER CONTENT
RO 0x00000028
R1 0x00000040
R2 0x00000010
R3 0x00000050
R15=PC 0x40

Instruction

STEP

Comment

ADR RO,REZ

EXECUTE

ALE: RO <- PC +- ODMIK

CONTENT

Address Bus

ADDRESS

0x40

0x20

0x21

0x22

0x23

0x24

0x25

0x26

Data Bus

0x27

0x28

0x29

0x2A

0x2B

0x2C ADR RO,STEV1

0x2D

0x2E

Control Bus

0x2F

0x30 LDR R1,[RO]

ADR RO,STEV2

LDR R2,[RO]

ADD R3,R2,R1

ADR RO,REZ

STR R3,[R0]

RA -0

ADR RO,STEV1
LDR R1,[RO]
ADR RO,STEV2
LDR R2,[RO]
ADD R3,R1,R2
ADR RO,REZ
STR R3,[R0]

Machine lang
0xE24F0014

OxE5901000
OxE24F0018
0xE5902000
0xE0823001
OxE24F0020
OxE5803000
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" J nstucion [ sTeP Comment_ |8

Case exeCUtiOn Of prog ram STR R3,[R0] FETCH Read 7. instruction
Add 5 CONTENT | ADDRESS
ress Bus 0x40 0x20
C t | 0x21 ADR RO,STEV1
ontro 0x22
LDR R1,[RO
unit PC Ox44 v =
00 ADR R0,STEV2
0x25 LDR R2,[R0O]
0x26
e ADD RS3,R1,R2
. Data Bus X
ALU unit o ADR RO,REZ
0x29 STR R3,[R0]
IR <- 0xE5803000 0x2A
0x28 Machine lang
0x2C ADR R0,STEV1
REGISTER | CONTENT 0x2D OXE24F0014
RO 0x00000028 OX2E O = 590 1 O
R1 0x00000040 Control Bus 0x2F
OxE24F001 8
R2 0x00000010 0x30 LDR R1 ,[RO]
R3 0x00000050 0xE3902000
Read -> .. | ADRRo,STEV2 (xE0823001
Rio=PC o Lo R0 0xE24F0020
ADD R3,R2,R1
ADR RO.REZ OxES803000
STR R3,[R0] # 1 3
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" J nstucion [ sTeP Comment_ |

Case execution of program STRRS.REZ EXECUTE | Store R3 to M[REZ]

CONTENT | ADDRESS
Address Bus
0x40 0x20
C t I 0x21 ADR RO,STEV1
ontro 0x22
LDR R1,[RO
unit RO 0x28 0x23 b
>y ADR RO,STEV2
0x25 LDR R2,[R0O]
0x26
e ADD RS3,R1,R2
. Data Bus X
ALU unit e ADR RO,REZ
0x29 STR R3,[R0]
R3 0x00000050 -> 0X2A
- Machine lang
0x2C ADR RO,STEV1
REGISTER | CONTENT 0x2D OXEZ4F0014
RO 0x00000028 OX2E O = 590 1 O
R1 0x00000040 Control Bus 0x2F
OxE24F001 &
R2 0x00000010 0x30 LDR R1 ,[RO]
R3 0x00000050 0xE3902000
ADR RO,STEV2 0xE0823001
R15=PC 0x44
LDR R2,[R0I 0xE24F0020
ADD R3,R2,R1
TG OxES803000
STR R3,[R0] # 1 4
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" J nstucion [ sTeP Comment_ |8

Case execution of program ? FETCH Final state ?

CONTENT | ADDRESS
Address Bus
0x40 0x20
C t | 0x21 ADR RO,STEV1
ntr 0x22
(0] .O X LDR R1,[R0O]
unlt 0x23
oo ADR RO,STEV2
0x25 LDR R2,[R0O]
0x26
e ADD RS3,R1,R2
. Data Bus X
ALU unit o ADR RO,REZ
0x29 STR R3,[R0]
0x2A
— Machine lang
0x2C LDR R1,STEV1
REGISTER | CONTENT 0x2D OXEZ4F0014
RO 0x00000028 OX2E O = 590 1 O
R1 0x00000040 Control Bus 0x2F OxE24FO01 &
X
R2 0x00000010 0x30 LDR R2,STEV2
R3 0x00000050 0xE3902000
OxEOR23001
R15=PC 0x48
OxE24F0020
ADD R3,R2,R1
OxES803000
STR R3,REZ
#15

RA-S S © 2024, Rozman, Skraba, FRI



nNCESe execution of program - Table

CPU CPU BUSes MEMORY
Description CPU Description Address Data Control Description
ADR RO,STEV1 FETCH
EXECUTE
LDR R1,[RO] FETCH
EXECUTE
ADR RO,STEV2 FETCH
EXECUTE
LDR R2,[R0] FETCH
EXECUTE
ADD R3,R1,R2 FETCH
EXECUTE
ADR RO,REZ FETCH
EXECUTE
STR R3,[R0] FETCH
EXECUTE

RA-3
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