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◼ von Neumann computer model
◼ von Neumann computer model

◼ Operation von Neumann computer

◼ Flynn‘s classification

◼ The main memory in von Neumann computer
◼ Memory word (location)

◼ memory address

◼ address space

◼ The content of the memory word

◼ Princeton and Harvard memory architecture

◼ Access to memory

◼ Amdahl‘s law

◼ Languages, levels and virtual computers
◼ The computer as a series of virtual computers

◼ Transition from the language L2 into the language L1

◼ Hardware and software of the computer

◼ Case: Execution of the program on the computer

Basic principles of computing - content
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing – goals :

 Basic understanding of computer operation

◼ Von Neumann model and extensions (parallel)

 Computer system levels (HW <-> SW)

 Understanding of program execution

Basic principles of computing - content

3 Basic principles of computing - content
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3.1  Von Neumann computer model

◼ Computers are built on the basis of computing model, known as 
„von Neumann“ model (John von Neumann 1945)

◼ von Neumann‘s:
 Computing model,

 Computer model,

 Computer,

 Architecture.
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3.1  Von Neumann computer model

◼ It consists of three basic parts:

 CPU (Central Processing Unit)

 Main Memory

 Input-Output (I/O) system

◼ It is the machine with a stored program in the main memory. 
Instructions in the program specify what the machine will do.

◼ The program leads the machine operation - program determines 
how the machine will work.

◼ CPU takes instructions from the main memory and execute them 
one after the other.
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Main Memory

Instructions

and

Operands

Input-Output system

Control unit

ALU

Registers

instructions

operands

CPU

Operation of Von Neumann computer

Von Neumann computer model 

CPU - Central Processing Unit

ALU  - Arithmetic Logic Unit



RA - 3         7                           © 2024, Rozman, Škraba, FRI

◼ CPU reads instructions from the main memory and executes them. 

In today's computers, in addition to the main, there are even more 

processors, thus we denote main processor as the Central 

Processing Unit. It consists of three parts:

 Control Unit – fetches the instructions & operands, and activates 

operations set by instructions. 

 ALU – performs arithmetic operations (addition, ...) 

                     and logic operations (AND, ...).

 REGISTERS - a number of connected memory cells which serve to 

store values. 

◼ Program Inaccessible registers - necessary for the operation of the CPU.

◼ Program Accessible registers (architectural registers) for storing operands -  

a small and fast memory in the CPU.

Von Neumann computing model

Von Neumann computer model - CPU
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◼ Main Memory is made up of memory words (locations). Each 

memory word has its own unique address.

 It stores instructions and operands.

 Identification „main“ again serves to distinguish it from other memory 

devices in today's computers (caches, virtual memory).

◼ I/O system serves for the transfer of information to the outside 

world or from the outside world. Information from the CPU and 

main memory is stored in a format that is not accessible to the 

outside world.

 An integral part of the I/O system are the input-output devices, which 

transform the information into another form which is suitable for the 

user or represent an auxiliary (secondary) memory. 

Von Neumann computing model

Von Neumann computer model  - memory, I/O
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Operation of Von Neumann computer

◼ Its operation is completely controlled by instructions (machine 

instructions), that are read by the CPU from the main memory in a 

order one after the other.

◼ Machine instructions are stored in the memory one after the other 

by increasing addresses. 

◼ There has to be a deterministic procedure how to start: First 

instruction is usually read from certain address in memory, after 

the computer is turned on or pressing the RESET button.

 The easiest way: the first or last memory location - the lowest or the highest 

address in the memory.
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For each instruction we distinguish two steps

◼ 1. step: Read instruction from the memory  (FETCH)

   - instruction fetch cycle

  
 The CPU includes the special register - the program counter (PC - Program 

counter) that always contains a memory address of the next instruction to be 
read and executed.

◼ 2. Step: Execution of the fetched instruction  (EXECUTE)

                    - Execute cycle 

Operation of Von Neumann computer
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◼ Each instruction contains two types of information:

 information about the operation to be executed,

 information on the operands, over which the operation is executed.

◼ CPU executes the operation, and ensure that the PC includes the 
address of the next instruction by increasing the content of the PC 
by 1.

◼ Rule: instructions are stored in memory by increasing addresses 
so PC  PC + 1. This rule is the result of an agreement and 
specifies the order in which the instructions are usually executed. 

Operation of Von Neumann computer
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RESET

Read the instruction

Execute the instruction
and

PC  PC + 1

step 1

step 2

FETCH

EXECUTE

Operation of Von Neumann computer – 2 steps
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Upon completion of Step 2, the CPU starts again with first step.

These two steps are repeated until the computer runs.

◼ Exception 1: Jump instructions, which can write in PC other 
address thna PC+1.

◼ Exception 2: Interrupt or trap 

     CPU after step 2 does not fetch next instruction by rule, PC  PC 
+ 1, but starts another program - Interrupt Service Program (ISP). 
Proper return to original program execution is needed.

Operation of Von Neumann computer – 2 steps
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RESET

Read the instruction

Execute the instruction
and

PC  PC + 1 or PC new addr.

Jump to PSP

PC <- address of 1. instruction

Interrupt?

No

Yes

PC - the program counter

ISP - interrupt service program

Instruction execution
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◼ Sequential instruction execution is slow and represents a basic 

weakness of Von Neumann based computers.

◼ Extensions of the basic Von Neumann model are contained in the 

Flynn‘s classification.

Instruction execution
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing - content

3 Basic principles of computing - content
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3.2  Flynn‘s classification

◼ This classification of computers into four groups suggested 

M.J.Flynn in year 1966. The basic criteria in this classification are:

 The number of instructions that are executed at the same time 

(instruction stream)

 The number of operands that one instruction processes (data stream).

◼ Acording to these criteria every computer belongs to one of four 

classes:

◼ 1 SISD (Single Instruction Single Data)

 classic Von Neumann computers without parallelism for instructions 

and operands

 Intel Pentium 4



RA - 3         18                           © 2024, Rozman, Škraba, FRI

◼ 2  SIMD (Single Instruction Multiple Data)

 The real vector computers (parallel computers, graphics 

processors)

 Instructions SSE (Streaming SIMD Extensions) for x86 architecture 

processors

◼ 3 MISD (Multiple Instruction Single Data)

 Unusual architecture. More instructions on single operand - can be 

used where better robustness to errors is required .

◼ 4 MIMD (Multiple Instruction Multiple Data)

 Multiprocessor computers (parallel computers)

 This group could also include multicore superscalar computers 

(e.g. Intel Core i7) although they are generally attributed to SISD 

group because of limited number of cores.

Flynn‘s classification: SIMD, MISD, MIMD
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 In MIMD computers, several instructions are executed 

simultaneously, each on its operands.

 MIMD computer is formed from more common Von Neumann 

computers - more CPUs that are interconnected.

 Multicore computers are commonly attributed to SISD group, although 

nowadays multi-core processors could be classified laos in SIMD or 

MIMD groups.

Flynn‘s classification: SIMD, MISD, MIMD
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For example, matrix multiplication: (ARM: NEON unit as a SIMD extension):

GPU: similar philosophy, is a 

broader concept

Case: SIMD Unit inside CPU
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Eficient programing - case

◼ Because knowledge on computer architecture and 

operation leads to more efficient programming 

(programs). 

 Case 2: program code optimization regarding the parallel 

execution

Code below is 4-times faster !

Reference: „Pomen poznavanja računalniške arhitekture“, 

 avtor Miha Krajnc.

From RA LECTURE 1
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Examples: 

◼ 4 MIMD (Multiple Instruction multiple Data)

           Multiprocessor                                     Multicomputers

           (closely connected)                               (loosely connected)
CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik V/I sistem

Skupne 

spremenljivke

CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik Pomnilnik Pomnilnik

CPU CPU CPU

Cache Cache Cache

Interconnection

Memory I/O System

Common

variables
Interconnection

Cache Cache Cache

CPU CPU CPU

Memory Memory Memory

MIMD: Multiprocessors and Multicomputers
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing - content

3 Basic principles of computing - content
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3.3 Main Memory in Von Neumann based computer

◼ Definition

 Main memory is a passive device and serves for storage of 
instructions and operands.

 The basic cell in the memory is a memory cell which can store 1 bit of 
information (the content of 0 or 1).

◼ Memory word (memory location)

 The memory word is defined as the minimum number of bits that have 
their own address. Memory word is thus the smallest addressable unit 
of memory.

 The Memory is a one-dimensional sequence of memory words.

 The Memory word comprises a number of one-bit memory cells.

 The length of the memory word: the number of one-bit memory cells 
that make up the memory word. Nowadays, the most common word 
length is 1 byte (= 8 bits).
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◼ Memory Address

 It is a unique label for each memory word

 Each memory word has its own unique memory address.

 Address memory word is unchangeable.

 The number of bits that comprise the address, are denoted as 

Address Length.

 Title length of the address in bits determines an Address Space.

◼ Address Space (also a memory space)

 it is the set of all addresses 

 And also determines the maximum memory size.

The main memory of the von Neumann computer

Memory address, address space
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◼ The content of the memory words can change. In an 8-bit 

memory word can be stored for 28 = 256 different content.

◼ The Address of memory word is unchangeable.

◼ The number of memory words in the main memory is not 

necessarily equal to the size of the address space.

◼ Parts of the address space may be empty (all addresses are not 

used)  main memory is usually smaller than the maximum size.

The main memory of the von Neumann computer

Memory words
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5

0

1

2

3

4

b7   b6   b5   b4   b3   b2   b1  b0

MSB LSB

8-bit memory word

Memory Address

. . . . . . . . . . . . . .. .       .    

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101
.
.
.

Memory words

The main memory of the Von Neumann computer

16-bit memory address         Decimal

8 bits

Memory structure sketch  
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0005

0000

0001

0002

0003

0004

.

.

.

memory words

Memory Address

. . . . . . . . . . . . . . . . . .. . .     

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . .      . . . .      

Binary (16-bit address)         Hex               Decimal

0000 0000 0000 0000

0000 0000 0000 0001

0000 0000 0000 0010

0000 0000 0000 0011

0000 0000 0000 0100

0000 0000 0000 0101

FFFF

FFFB

FFFC

FFFD

FFFE

1111 1111 1111 1011

1111 1111 1111 1100

1111 1111 1111 1101

1111 1111 1111 1110

1111 1111 1111 1111

.

5

0

1

2

3

4

65531

65532

65533

65534

65535

6
4
 K

 (
=

 2
1
6
) 

o
f 

M
e
m

o
ry

 w
o
rd

s

16 bit address space sketch
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The prefixes kilo, mega, giga et al. are only in memory size 

related to powers of 2!

◼ 1K (kilo) = 210 = 1024 (1 KB = 1024 B)

◼ 1M (mega) = 220 = 1,048,576 (1 MB = 1048576 B)

◼ 1G (giga) = 230 = 1073741824 (1 GB = 1024 * 1024 * 1024 = 1073741 824 B)

 The reason is technological: eg. 10-bit memory address allows 210 = 1024 different 
addresses and not 1000 !

 Proposal of IEC 1998: KiB = 210 B, MiB = 220 B GiB = 230 B

◼ Other areas (frequency, transfer capacity ...)

◼ 1k (kilo) = 103 = 1000   (1 km = 1000 m)

◼ 1M (mega) = 106 = 1 000 000  (100 Mb / s = 100 000 000 b/ S)

◼ 1G (giga) = 109 = 1,000,000,000 (1 GHz = 1000000000 Hz)
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An example of the memory on the processor ARM AT91SAM9260 (32-bit memory address)

256MB

2048MB

256MB

Address space:

 232 = 4G titles

internal memory

32-bit address - 8 hex characters

Circuits and devices 

on the external bus

Internal I / O devices

0x00000000 0

0x0FFFFFFF 268435455

0x10000000 268435456

0x8FFFFFFF
2415919103

Offline address 

space

(Trap Abort)

1536MB

0x90000000
2415919104

0xEFFFFFFF
4026531839

0xF0000000 4026531840

0xFFFFFFFF 4294967295
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Picture of the internal memory (the first 256 MB) of AT91SAM9260

0x00504000

0x0FFFFFFF

32kB

4kB

16KB

256M Addresses =

262144K

Loadable memory 1MB 

= 1024KB

internal memory

Reserved 250,98MB

= 257008KB

0x00000000

10485760x00100000

0x00201000

1081344

2097152

0x00300000

0x00500000

2101248

5242880

5259264

32KB ROM

Reserved 992KB

4KB SRAM 0

Reserved 1020KB

4KB SRAM 1

Reserved 2044KB

UHP 16KB

0x00108000

0x00200000

0x00301000 3149824

3145728

4kB

SRAM - Random Access

UHP      memory

ROM - Read Only 

Memory

Memory word

Is 1B (Byte)

SRAM - static RAM

UHP - USB Host Port
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An example of the memory on the microcontroller STM32H750XB 

Address space:

 232 = 4G addresses

https://www.st.com/en/evaluation-tools/stm32h750b-dk.html
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For example, the image of memory (memory map) the processor 68HC11 - the processor has a 16-bit 

memory address

$0000

$00FF

$2000

$3FFF

$B600

$B7FF

$E000

$FFFF

0

255

8192

16383

256B

8KB

46592

47,03
512B

57344

65535

8KB

Address space:

216 = 64K addresses
The white parts of 

the address area 

are not used.

RAM 1

RAM 2

I / O registers

EPROM

The 16-bit memory address

1011 0110 0000 0000 =

1011 0111 1111 1111 =

1110 0000 0000 0000 = 

1111 1111 1111 1111 =

0000 0000 0000 0000 =

0000 0000 1111 1111 =

0010 0000 0000 0000 =

0011 1111 1111 1111 =

RAM - Random 

Access

     memory

EPROM – read-only 

                 memory
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Von Neumann bottleneck

◼ Transfers CPU  Main Memory – produce a lot of traffic

◼ Von Neumann‘s bottleneck – is the connection between the CPU 
and the main memory. All instructions are transferred from the 
main memory to the CPU, and all operands are transferred in both 
directions - from memory or in the memory.

◼ One way to extend this bottleneck, is the split of the main memory 
into two parts. 
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Extension of the Von Neumann bottleneck

CPU

instruction memory operand memory

operands

CPU

Memory

instructions and operands

instructions 

and 

operands

Princeton memory

architecture

Harvard memory architecture

von Neumann

bottleneck 

instructions
solution
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◼ Memory in the Harvard architecture is divided into two separate 

memories.

◼ In one only operands are stored – „operand memory“, second only 

includes instructions – „instruction memory“.

◼ Instruction and operand memories can operate simultaneously. 

Thus we can achieve double speed.

◼ Harvard architecture is used nowadays in cache memories at the 

lowest level (separate operand and instruction L1 caches), but the 

main memory of most computers is usually uniform (Princeton 

architecture).

Princeton and Harvard architecture

Harvard architecture
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Access to memory

◼ CPU accesses to memory word by first sending its address to the 
memory and the signal that determines the direction of transfer.

◼ The direction of transfer - type of access

 CPU  main memory - reading (read access)

 CPU → main memory - write (write access)
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Interconnection CPU <-> main memory?

Bus = group of lines

(Address, Data, Control 

buses)

Main memory

CPU

Control 
signals

Program 
counter/add

ress reg.

Instruction/da
ta register

Control unit

Data 
signals

Address 
signals

Line = physical connection
Signal = content transferred over the line (1bit)
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The connection between the CPU and main memory

 - read access

Data

signals

Data register

CPE

address registerAddress register Data register

Control unit

Control signal - 

- read

0 1 0 1 0 1 0 1

Main memory

Address

signals

0 1 0 1 0 1 0 1
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The connection between the CPU and main memory

 - write access

Data

signals

CPE

address registerAddress register Data register

Control unit

Control signal - 

- write

Main memory

Address

signals

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

Data register
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◼ Memory is one-dimensional and organized as a sequence of 
words. Each word has its own, unique address.

◼ There is no difference between instructions and operands in 
memory.

◼ Type or description is not included in operands.

◼ More read than write accesses,

 Ratio: approximately 80% are read (R), 

 20% are write accesses (W)

 Why?

Summary of the memory properties in Von Neumann 

computer

example 

program

PROGRAM

1R adr   r0,STEV1

2R ldr   r1,[r0]

1R adr   r0,STEV2

2R ldr   r2,[r0]

1R add   r3,r1,r2

1R adr   r0,REZ

1R1W str   r3,[r0]
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The combination of 8 bits in the memory,

eg. 1000 1011, can represent:

◼ Unsigned: 139 (decimal)
        or

◼ number with sign: - 11 (decimal)
        or

◼ Extended ASCII character :       <
        or

◼ Hardware instruction: ADDA (op.code of the machine instruction 

for processor 68HC11)
        or

◼ memory address 139 (decimal)
        or

◼ combination of bits
        or

◼ point in image (pixel), audio sample,  . . .
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Memory

Demonstration – Logisim EVO

RAM_pomnilnik_demo_EVO.circ

The main memory of the Von Neumann computer

https://github.com/LAPSyLAB/RALab-

STM32H7/tree/main/LogisimEVO_vezja

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing - content

3 Basic principles of computing - content
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3.4 Amdahl‘s law (1967)

◼ G.M. Amdahl was one of the architects of the famous family of 
computers IBM 370

◼ If the computer speeds up all operations by a factor N (N-times), 
except the relative f-part of all operations, then increase in the 
speed of entire computer S(N) is

 S (N) = Increase in the speed of the entire system

 N = a scaling factor of the speed of (1 - f) portion of operations 

 f = portion of operations, which are not accelerated 

 1 - f = fraction of operations that are N times accelerated 

 

fN

N

N

f
f

NS
−+

=
−

+

=
)1(11

1
)(

f  - the portion of operations that are not accelerated !
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Case 1:

◼ Implementation of programs on a computer would like to be 

accelerated so that the single-core processor is replaced with eight-

core CPU (8 CPUs operating in parallel).

◼ How much faster will software run, if only 60% of the programs can 

be performed in parallel?

 

 

 

Amdahl‘s law – case 1
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◼ N = 8  (part of the programs can be performed eight times faster)

◼ 1 - f = 0.6, the proportion of the programs that have 8-fold speed up;   

◼ f = 0.4, the proportion of the programs which are not sped up (40% of the programs 

can not be executed in parrallel)

◼ S (N) speed up the whole SW (all programs)

◼ The speed of all programs will be increased by a factor of 2.1

 (2.1 times).

◼ If the programs were executed before the replacement 100 seconds, will 

be then executed in 47.6 seconds (100 / 2.1 = 47.6) on 8-core CPU.

f = 0.4 1-f = 0.6

acceleration by 8x (0.6/8=0.075)

before

after f = 0.4

𝑺 𝑵 =
𝟖

𝟏 + 𝟖 − 𝟏 ∗ 𝟎. 𝟒
=

𝟖

𝟏 + 𝟐. 𝟖
= 𝟐. 𝟏

Amdahl‘s law – case 1
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Case 2:

 

◼ Execution of the program on a computer would like to accelerated so 

that the 90% of all instructions will be executed two times faster. 

◼ How many times faster will run the program on this computer?

S(N)=?

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then

Amdahl‘s law – case 2
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Case 2:

 

◼ Execution of the program on a computer would like to accelerated so 

that the 90% of all instructions will be executed two times faster. 

◼ How many times faster will run the program on this computer?

𝑆 𝑁 =
1

0.1 +
0.9
2

=
1

0.1 + 0.45
=

1

0.55
= 1.818181

◼ Speed of the program execution is increased by a factor of 1.82.

f = 0.1

f = 0.1

1-f = 0.9

acceleration by 2x (half-time)

before

then

Amdahl‘s law – case 2
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Amdahl‘s law:

◼ Parallelism is not ideal 

◼ Importance of relative share of operations that can speed up

◼ Greater the share, less speed up is needed for a similar overall effect

Parallelism:

◼ Only viable possibility cause by specifities of elektronic technology evolution

◼ Not simple from speed up and programming viewpoints

◼ Has a potential of greater efficiency from energy consumption viewpoint

Amdahlov zakon

Amdahl‘s law – importance and consequences
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing - content

3 Basic principles of computing - content
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3.5 Languages, Levels and Virtual computers

◼ For the vast majority of users, the details of the structure and 
operation of computers are insignificant.

◼ Computer and its features are seen mostly through the features of 
the programming language that you use.

◼ A programming language can be realized in a wide variety of 
computers, this means that different computers for a user who uses 
the same programming language look more or less the same.
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The computer as a series of virtual computers

◼ The vast majority of today's computers have 6 levels.

◼ At each level we see a computer through a different computer 
programming language. 

◼ This programming language can be represented as the „machine 
language of a certain virtual machine“.

◼ At the lowest level (level 0) Electronics (logic gates and flip-flops)  
directly executes the simplest (machine) instructions. 
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A computer with six levels

General definition

Assembly language 
(assembler)

Operating system

Usual Machine lang. (ISA)

Digital electronics

Machine instr. Eecution
(Micro-program-SW, Hardwired-HW)

Higher programming languagelevel 5

level 4

level 3

level 2

level 1

level 0

The usual boundaries between 

the physical and software part 

of the computer

(between hardware and software)

ISA = Instruction Set Architecture
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◼ Level 1 can be seen in many of today's computers. RISC 

computers don‘t have first level.

 Each instruction of „usual“ machine language is executed as a 

sequence of micro instructions - computer, which operate in this 

manner (with level 1) are denoted as micro-programmed.

 For these computers, micro-program language is actually the real 

machine language.

 Since at the beginning of the computers, this level was invisible to the 

user, the term „machine language“ is usually used for the level 2.

 Micro-program on level 1 is written by the manufacturer of the CPU and 

actually defines the usual machine language. Usually, it can not be 

changed by the user.

Language levels and virtual computers

Level 1
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◼ The user sees the computer on the level 2 through the use of 

conventional machine instructions, which form the conventional 

machine language.

 Computer architecture is determined by the structure and properties of 

the computer, as seen by the programmer at this level.

 

 Therefore, the name of the ISA - Instruction Set Architecture.

 With the conventional machine language programmer has full control 

over all parts of the computer.

 At early stages of evolution, the computers didn‘t have higher levels, 

and programming took place only in the normal machine language.

Language levels and virtual computers

Level 2
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◼ Level 3 is the level of the operating system.

 Language at this level contains all the instructions of Level 2, with the 

addition of new instructions to better control the computer (eg. 

operations with I/O devices, parallel execution of programs, diagnostic 

instructions).

 The operating system is a program that facilitates computer work and 

serves as an interface between the user and the computer hardware.

 With operating system we want to achieve:

◼ easier work

◼ better utilization of hardware capabilities of the computer (do more work in  

given time).

Language levels and virtual computers

Level 3
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 The functions of the operating system could be implemented in the 

hardware Level 2, but is currently more economical to do it in 

software (multiple operating systems, upgrade...).

 At this level, we usually divide users with different rights to use the 

instructions.

 Some instructions in Level 2 are in level 3 inaccessible (available only 

to system programmers) to normal users .

 For most of today's programmers is level 3 the lowest level at which 

they can work. 

Language levels and virtual computers

Level 3
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◼ At level 4 user can see the computer through the assembly 

language.

 Assembly language is only symbolic form, closer to humans, of 

language on Level 3 (and thus the Level 2).

 Programs in assembly language must be translated before the 

execution to the language on Level 3 (or 2).

◼ Level 5 is formed of higher programming languages, which are 

designed to majority of computer programmers.

 This are, for example, C, C#, C++, Java, Python, BASIC, FORTRAN, 

COBOL, and many others.

 Programs written in these languages must be translated to the 

language on Level 4 or Level 3.

Language levels and virtual computers

Levels 4, 5
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◼ Regarding computers, we can establish also higher levels, e.g. 

programs for AI, databases, …

◼ Each level can be thought of as a virtual computer that has own 

„machine language“ as the language of this level. Therefore, a 

typical user at higher levels doesn‘t need to know the details 

about actual „machine level“. 

◼ However, it is mandatory that programs written in any higher level 

language (for coresponding virtual machine) are converted into a 

sequence of machine language instructions.

◼ Users don‘t need to be fully aware of this translation, providers of 

HW and SW products must ensure the tools for translation from 

one language to another. 

Language levels and virtual computers

Levels
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◼ The mechanism of transition from one language to another can be 

realized in two ways:

 Translation (or compilation)

 Interpretation.

◼ After 1990, an intermediate solution emerged:

 partial translation (compilation).

◼ The main difference between translation (compilation) and 

interpretation is that in interpretation, the translated (compiled) 

program does not exist.

Language levels and virtual computers

Transitions between levels
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Transition from the language L2 into the language L1

Program in 

L2 language

Translate

L2 → L1

Program in 

language L1
Execution

Translation (compilation)

Program in

L2 language

Interpreter

L2 → L1

Source program

Interpretation

Source program

Each instruction of the language L2 is 

simultaneously translated into the 

instructions in language L1 

and executed

(No translated program!)

Language levels and virtual computers

Translated program
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 Compiled programs work only on the computer with machine language 

in which they were translated.

 Before transferring to another computer (using a different machine 

language L1a) we should recompile the source code of a program.

◼ By integrating a large number of different computers on the 

network, the portability of programs enabled by interpretation, has 

become very important.

◼ Partial translation is an intermediate solution between the 
interpretation and translation, which enables faster interpretation 
on target machine.

Language levels and virtual computers

Transition from the language L2 into the language L1
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◼ Partial translation: Source language program in L2 is translated 

into an intermediate language program in L1, and then L1 program 

is interpreted on a target machine. 

◼ Partial translation in the intermediate language L1 allows faster 

interpretation, but is still typically 10 times slower than full 

implementation of the program translation (compilation).

◼ Despite this, it still allows portability of programs at a significantly 

lower loss of speed than if we used the interpretation only.

Language levels and virtual computers

Transition from the language L2 into the language L1
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◼ JVM (Java Virtual Machine)

 Virtual Machine - VM (Virtual Machine) is a software implementation of 
the machine (computer), operating (running programs) like a real 
machine (computer).

 Java programs are executed so, that they are first translated (partial 
translation) in an intermediate language (Java byte code), which is 
interpreted by the program JVM on a target machine.

Language levels and virtual computers

Practical case of virtual machine: 
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Computer with six levels (Micro-programmed)

Older generation of computers

Assembly language 

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Micro-program language

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation (Micro-program)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0
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Assembly language 

(assembler)

Operating system

Usual machine language (ISA)

Digital electronics

Translation (compiler)

Translation (Assembler)

Partial interpretation (operating system)

Interpretation

Higher programming lang.Level 5

Level 4

Level 3

Level 2

Level 1

Level 0

Newer generation of computers

Instructions execution in HW

Computer with five levels 
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Hardware and software on computer

◼ The boundary between hardware and software of the computer is 
not solid - it can be moved.

◼ Each of the levels can be realized in both hardware and software 
way.

◼ Level 2 for example: It can be realized with a program running on 
another computer.

Hardware and software are logically equivalent.
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◼ Each operation carried out by the software can be realized as 

hardware directly.

◼ Also, each machine instruction, executed by hardware, can also be 

simulated with the program.

◼ Evolution of multi-level computing machines

 Invention of Micro-programming  (1951)

 Invention of Operating system (OS) (around 1960)

 Moving functionality in Micro-programs (around 1970)

 Abandonment of Micro-programming  (after 1984)

 Today usually the combination of: 

◼ the complex instructions at normal machine level are realized in 

micro-program (software), simpler instructions are realized in 

hardware. 

Hardware and software on computer
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◼ von Neumann computer model

◼ Flynn‘s classification

◼ The main memory in von Neumann computer

◼ Amdahl‘s law

◼ Languages, levels and virtual computers

◼ Case: Execution of the program on the computer

Basic principles of computing - content

3 Basic principles of computing - content
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An example of adding two numbers:

 rez: = stev1 + stev2

3.6 Example of program execution on the computer
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An example of adding two numbers:

 rez: = stev1 + stev2Mikro MiMo CPU model
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An example of adding two numbers:

 rez: = stev1 + stev2Mikro MiMo CPU model
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https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja/Prispevki

Mini MiMo 

– HW 

Simple 

CPU 

Model CA

(6. 

chapter)

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja/Prispevki
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CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

#0

Instruction STEP Comment

Initial state

REGISTER VALUE

R0

R1

R2

R3

…

R15=PC 0x2C

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,STEV1 FETCH Read 1. instruction

#1

0x2C

<- 0xE24F0014

Read ->

REGISTER VALUE

R0

R1

R2

R3

…

R15=PC 0x2C

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x00 0x2D

0x4F 0x2E

0xE2 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,STEV1 EXECUTE ALE: R0 <- PC +- ODMIK

#2

REGISTER CONTENT

R0 0x00000020

R1

R2

R3

…

R15=PC 0x2C

PC

#ODM
+ R0

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

LDR R1,[R0] FETCH Read 2. instruction

#3

0x30

<- 0xE5901000

Read ->

REGISTER CONTENT

R0 0x00000020

R1

R2

R3

…

R15=PC 0x30

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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REGISTER CONTENT

R0 0x00000020

R1 0x00000040

R2

R3

…

R15=PC 0x30

Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

LDR R1,[R0] EXECUTE Read operand from M[R0] to R1

#4

0x20

<- 0x00000040

Read ->

R0

R1

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,STEV2 FETCH Read 3. instruction

#5

0x34

<- 0xE24F0018

Read ->

REGISTER CONTENT

R0 0x00000020

R1 0x00000040

R2

R3

…

R15=PC 0x34

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x00 0x2D

0x4F 0x2E

0xE2 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,STEV2 EXECUTE ALE: R0 <- PC +- ODMIK

#6

REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2

R3

…

R15=PC 0x34

PC

#ODM
+ R0

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

LDR R2,[R0] FETCH Read 4. instruction

#7

0x38

<- 0xE5902000

Read ->

REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2

R3

…

R15=PC 0x38

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2 0x00000010

R3

…

R15=PC 0x38

Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

LDR R2,[R0] EXECUTE Read operand from M[R0] to R1

#8

0x24

<- 0x00000010

Read ->

R0

R2

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADD R3,R2,R1 FETCH Read 5. instruction

#9

0x3C

<- 0xE0823001

Read ->

REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2 0x00000010

R3

…

R15=PC 0x3C

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADD R3,R2,R1 EXECUTE ALE: R3 <- R2 + R1   (sum)

#10

REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x3C

R1

R2
+ R3

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,REZ FETCH Read 6. instruction

#11

0x40

<- 0xE24F0020

Read ->

REGISTER CONTENT

R0 0x00000024

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x40

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x00 0x2D

0x4F 0x2E

0xE2 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

ADR R0,REZ EXECUTE ALE: R0 <- PC +- ODMIK

#12

REGISTER CONTENT

R0 0x00000028

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x40

PC

#ODM
+ R0

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

STR R3,[R0] FETCH Read 7. instruction

#13

0x44

<- 0xE5803000

Read ->

REGISTER CONTENT

R0 0x00000028

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x44

PC

IR

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

STR R3,REZ EXECUTE Store R3 to M[REZ]

#14

0x28

0x00000050 ->

Write ->

REGISTER CONTENT

R0 0x00000028

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x44

R0

R3

CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C ADR R0,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x30 LDR R1,[R0]

…

0x34… ADR R0,STEV2

0x38… LDR R2,[R0]

0x3C… ADD R3,R2,R1

0x40… ADR R0,REZ

0x44… STR R3,[R0]

…

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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CONTENT ADDRESS LABEL

0x40 0x20 STEV1

0 0x21

0 0x22

0 0x23

0x10 0x24 STEV2

0 0x25

0 0x26

0 0x27

0x50 0x28 REZ

0 0x29

0 0x2A

0 0x2B

0x14 0x2C LDR R1,STEV1

0x10 0x2D

0x1F 0x2E

0xE5 0x2F

0x14 0x30 LDR R2,STEV2

0x20 …

0x1F 0x34…

0xE5 0x38…

0x01 0x3C… ADD R3,R2,R1

0x40…

0x18 0x44… STR R3,REZ

0x48… ???

Control 

unit

ALU unit

Address Bus

Data Bus

Control Bus

Instruction STEP Comment

? FETCH Final state ?

#15

REGISTER CONTENT

R0 0x00000028

R1 0x00000040

R2 0x00000010

R3 0x00000050

…

R15=PC 0x48

PROGRAM

ADR   R0,STEV1

LDR   R1,[R0]

ADR   R0,STEV2

LDR   R2,[R0]

ADD   R3,R1,R2

ADR   R0,REZ

STR   R3,[R0]

Case execution of program
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CPU CPU BUSes MEMORY

Description CPU Description Address Data Control Description

ADR   R0,STEV1 FETCH

EXECUTE

LDR   R1,[R0] FETCH

EXECUTE

ADR   R0,STEV2 FETCH

EXECUTE

LDR   R2,[R0] FETCH

EXECUTE

ADD   R3,R1,R2 FETCH

EXECUTE

ADR   R0,REZ FETCH

EXECUTE

STR   R3,[R0] FETCH

EXECUTE

Case execution of program - Table


	Diapozitiv 1: COMPUTER ARCHITECTURE
	Diapozitiv 2: 3 Basic principles of computing - content
	Diapozitiv 3: 3 Basic principles of computing - content
	Diapozitiv 4: 3.1  Von Neumann computer model
	Diapozitiv 5: 3.1  Von Neumann computer model
	Diapozitiv 6: Von Neumann computer model 
	Diapozitiv 7: Von Neumann computer model - CPU
	Diapozitiv 8: Von Neumann computer model  - memory, I/O
	Diapozitiv 9: Operation of Von Neumann computer
	Diapozitiv 10: For each instruction we distinguish two steps
	Diapozitiv 11: Operation of Von Neumann computer 
	Diapozitiv 12: Operation of Von Neumann computer – 2 steps
	Diapozitiv 13: Operation of Von Neumann computer – 2 steps
	Diapozitiv 14: Instruction execution
	Diapozitiv 15: Instruction execution
	Diapozitiv 16: 3 Basic principles of computing - content
	Diapozitiv 17: 3.2  Flynn‘s classification
	Diapozitiv 18: Flynn‘s classification: SIMD, MISD, MIMD
	Diapozitiv 19: Flynn‘s classification: SIMD, MISD, MIMD
	Diapozitiv 20: Case: SIMD Unit inside CPU 
	Diapozitiv 21: Eficient programing - case
	Diapozitiv 22: MIMD: Multiprocessors and Multicomputers
	Diapozitiv 23: 3 Basic principles of computing - content
	Diapozitiv 24: 3.3 Main Memory in Von Neumann based computer
	Diapozitiv 25: Memory address, address space
	Diapozitiv 26: Memory words
	Diapozitiv 27: Memory structure sketch  
	Diapozitiv 28: 16 bit address space sketch
	Diapozitiv 29: The prefixes kilo, mega, giga et al. are only in memory size related to powers of 2!
	Diapozitiv 30: An example of the memory on the processor ARM AT91SAM9260 (32-bit memory address)
	Diapozitiv 31: Picture of the internal memory (the first 256 MB) of AT91SAM9260
	Diapozitiv 32: An example of the memory on the microcontroller STM32H750XB 
	Diapozitiv 33: For example, the image of memory (memory map) the processor 68HC11 - the processor has a 16-bit memory address
	Diapozitiv 34: Von Neumann bottleneck
	Diapozitiv 35: Extension of the Von Neumann bottleneck
	Diapozitiv 36: Harvard architecture
	Diapozitiv 37: Access to memory
	Diapozitiv 38: Interconnection CPU <-> main memory?
	Diapozitiv 39: The connection between the CPU and main memory  - read access
	Diapozitiv 40: The connection between the CPU and main memory  - write access
	Diapozitiv 41: Summary of the memory properties in Von Neumann computer
	Diapozitiv 42: The combination of 8 bits in the memory, eg. 1000 1011, can represent:
	Diapozitiv 43: Memory Demonstration – Logisim EVO
	Diapozitiv 44: 3 Basic principles of computing - content
	Diapozitiv 45: 3.4 Amdahl‘s law (1967)
	Diapozitiv 46: Amdahl‘s law – case 1
	Diapozitiv 47: Amdahl‘s law – case 1
	Diapozitiv 48: Amdahl‘s law – case 2
	Diapozitiv 49: Amdahl‘s law – case 2
	Diapozitiv 51: Amdahl‘s law – importance and consequences
	Diapozitiv 52: 3 Basic principles of computing - content
	Diapozitiv 53: 3.5 Languages, Levels and Virtual computers
	Diapozitiv 54:  The computer as a series of virtual computers
	Diapozitiv 55: A computer with six levels General definition
	Diapozitiv 56: Level 1
	Diapozitiv 57: Level 2
	Diapozitiv 58: Level 3
	Diapozitiv 59: Level 3
	Diapozitiv 60: Levels 4, 5
	Diapozitiv 61: Levels
	Diapozitiv 62: Transitions between levels
	Diapozitiv 63: Transition from the language L2 into the language L1
	Diapozitiv 64: Transition from the language L2 into the language L1
	Diapozitiv 65: Transition from the language L2 into the language L1
	Diapozitiv 66: Practical case of virtual machine: 
	Diapozitiv 67: Computer with six levels (Micro-programmed)  Older generation of computers
	Diapozitiv 68: Computer with five levels  
	Diapozitiv 69: Hardware and software on computer
	Diapozitiv 70: Hardware and software on computer
	Diapozitiv 71: 3 Basic principles of computing - content
	Diapozitiv 72: 3.6 Example of program execution on the computer
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75
	Diapozitiv 76: Case execution of program
	Diapozitiv 77: Case execution of program
	Diapozitiv 78: Case execution of program
	Diapozitiv 79: Case execution of program
	Diapozitiv 80: Case execution of program
	Diapozitiv 81: Case execution of program
	Diapozitiv 82: Case execution of program
	Diapozitiv 83: Case execution of program
	Diapozitiv 84: Case execution of program
	Diapozitiv 85: Case execution of program
	Diapozitiv 86: Case execution of program
	Diapozitiv 87: Case execution of program
	Diapozitiv 88: Case execution of program
	Diapozitiv 89: Case execution of program
	Diapozitiv 90: Case execution of program
	Diapozitiv 91: Case execution of program
	Diapozitiv 92: Case execution of program - Table

