
Vaje SPO, Vaje SPO, ©© JM JM

System softwareSystem software

Resolving symbolsResolving symbols

Vaje SPO, Vaje SPO, ©© JM JM

Code representationCode representation

● Class Code
● name, start address, program
● program is an array of Nodes

– List<Node> program

● symbol table
– Map<String, Integer> symbols

– defineSymbol(sym, val)

– resolveSymbol(sym)

● Node
● Comment
● InstructionF1
● InstructionF2
● InstructionF3
● InstructionF4
● Directive
● Storage

Vaje SPO, Vaje SPO, ©© JM JM

Code representationCode representation

● Class Node.
● String label
● Mnemonic mnemonic
● String comment

● toString()
● …

Vaje SPO, Vaje SPO, ©© JM JM

Code visitationCode visitation

● Visitor design pattern (simplified)
● commands are visited sequentially

LDA RMO ADD

enter leave enter leave enter leave

begin end

activate activate activate

Node

Code

Vaje SPO, Vaje SPO, ©© JM JM

Code visitationCode visitation

● Class Code
● begin() … start of traversal

– initialization of LOCCTR (location counter)
● loc = start; nextLoc = start

– initialization of base addressing
● regB = -1

● end() … end of traversal
– any extensions

Vaje SPO, Vaje SPO, ©© JM JM

Code visitationCode visitation

● Class Code
● visitors

– resolve()
● resolving symbols

– dumpText()
● generating object file

– dumpCode()
● generating raw code

– etc

public void resolve() throws SemanticError {
begin();
for (Node node : program) {

node.enter(this);
node.resolve(this);
node.leave(this);

}
length = nextLoc – start;
end();

}

Vaje SPO, Vaje SPO, ©© JM JM

Code visitationCode visitation

● Class Node
● enter(Code code) … command enter

– code.loc = code.nextLoc;

– code.nextLoc += length();

● leave(Code code) … command leave
– directive ORG

Vaje SPO, Vaje SPO, ©© JM JM

Code visitationCode visitation

● Class Node
● different visitor

– activate(Code code)
● 1st pass (see lectures)
● defines symbol (label) in the symbol table

– resolve(Code code)
● 2nd pass (see lectures)
● resolve symbols in formats F3, F4

– emitCode(byte[] data, int pos)
– emitText(StringBuffer buf)

● use emitCode() and transform data into buf
● but be careful with RESB and RESW

Vaje SPO, Vaje SPO, ©© JM JM

First passFirst pass

● Reading and parsing the source code
● adding the command to the AST

● Filling up the symbol table
● all labels (left symbols) are defined

● Visitation
● code.append(Node node)

– program: add(node)
– node: enter() activate(), leave()

Vaje SPO, Vaje SPO, ©© JM JM

Second passSecond pass

● Resolving right symbols
● based on the symbol table
● replace right symbols with addresses

● Resolving addressing
● address use

– immediate, simple, indirect
● address calculation

– PC-relative, base-relative, direct (absolute)

Vaje SPO, Vaje SPO, ©© JM JM

Address useAddress use

● Bits ni and x.
● can be treated already in the first pass
● x – indexed addressing

n i operand description

0 0 (addr) simple – SIC format

0 1 addr immediate (slov. takojšnje)

1 0 ((addr)) indirect (slov. posredno)

1 1 (addr) simple (slov. preprosto)

Vaje SPO, Vaje SPO, ©© JM JM

Address calculationAddress calculation

● Bits bp.
● SIC/XE format 3
● the bits are determined when resolving symbols

b p calculation description

0 0 disp direct

0 1 (PC) + disp PC-relative (2048 <= disp <= 2047)

1 0 (B) + disp B-relative (0 <= disp <= 4095)

1 1 invalid / undefined

Vaje SPO, Vaje SPO, ©© JM JM

Resolving F3Resolving F3

● Try PC-relative
● -2048 ≤ displacement from the PC register ≤ 2047

● Try base-relative
● 0 ≤ displacement from the B register ≤ 4095

● Try direct (absolute)
● 0 ≤ address ≤ 4095
● relocatable code?

● * Try SIC format, direct (absolute)
● 0 ≤ address ≤ 32767 (15 bits)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

