
RA - 4 © 2024, Škraba, Rozman, FRI

COMPUTER

ARCHITECTURE

4 Instructions (machine, assembly)

RA - 4 2 © 2024, Škraba, Rozman, FRI

Basic types of information on your computer

Information

4. instructions

5. operands

numerical

operands

(number)

non-numerical

operands

fixed point

(integer)

floating point

(real numbers)

signed numbers

unsigned number

single precision

double precision

boolean variables

chars

RA - 4 3 © 2024, Škraba, Rozman, FRI

Instructions - content (Chapter 5 [Kodek]):

 General information about instructions

 Storage of the operands in the CPU
◼ Accumulator

◼ Stack

◼ Register set

 Number of explicit operands in instruction

 Operands location and addressing modes
◼ immediate addressing

◼ direct addressing

◼ indirect addressing

Instructions - contents

RA - 4 4 © 2024, Škraba, Rozman, FRI

 Operations (types of instructions)
◼ Arithmetic and logical operations (ALU operations)

◼ Data transfer

◼ Control operations

◼ Floating-point operations

◼ System operations

◼ Input / Output Operations

 Instruction types and number of operands
◼ Composed memory operands

◼ Big-endian rule

◼ Little-endian rule

◼ Alignment problem

 Instruction format

 RISC – CISC computers

Instructions - content

RA - 4 5 © 2024, Škraba, Rozman, FRI

◼ Instructions = Machine instructions (= instructions of the typical

machine language)

◼ Instruction set is important Computer architecture

ISA = Instruction Set Architecture

◼ Different computers -> different architectures -> different machine

instructions

Instruction basics

RA - 4 6 © 2024, Škraba, Rozman, FRI

◼ The operation of von Neumann’s computers is completely

determined by the instructions that the CPU fetches from the main

memory.

◼ Those instructions are machine instructions (instructions of the

typical machine language).

◼ By specifying a set of machine instructions we largely determine

the computer architecture.

◼ That's why we talk about „instruction architecture“ (ISA – Instruction

Set Architecture)

Instruction basics

RA - 4 7 © 2024, Škraba, Rozman, FRI

◼ Instructions are executed by the CPU, there are two ways of

executing instructions:

 Using hard-wired logic

◼ Fast execution (logic circuit directly performs hardware instructions)

◼ It is difficult to change and add new instructions (new logic circuit in the

CPU is needed new chip)

 Microprogramming (MiMo model: elective course OR – Comp. Org.)

◼ Slower execution (it is necessary to interpret to the microprogramming level

- logical circuit performs microinstructions)

◼ Easier to modify and add new instructions (change s needed in the

microprogram only)

4.1 In general about instructions

RA - 4 9 © 2024, Škraba, Rozman, FRI

◼ Each instruction must contain information about two strictly

separate types:

 information on the operation to be executed

 information on the operands on which to execute the operation

◼ Both types of information are determined with bits in fields into

which the instruction is divided to - the length (number of bits)

and the number of these fields largely differs for different

computers.

General information about instructions

RA - 4 10 © 2024, Škraba, Rozman, FRI

◼ Operation code - the name of the field that contains information

about the operation.

◼ Fields containing information on the operands:

 Can contain operand

 Or address information, where the operand is stored

◼ For some instructions, the information on the operands is already

contained in the operation code.

General information about instructions

RA - 4 11 © 2024, Škraba, Rozman, FRI

◼ Instruction format – defines the division into fields for bough types

of information, length of each field in bits and the bits meaning.

◼ What the instruction format looks like is dependent on:

 Number of operations

 Number of registers in the CPU

 Memory address size

 Memory word size

 …

Instruction basics – instruction format

RA - 4 12 © 2024, Škraba, Rozman, FRI

◼ Machine instruction format for length of n bits, with m explicitly

defined operands:

Instruction basics – instruction format

Operation

code
1. operand

information

2.nd operand

information

m.th operand

information

bit 0bit n-1

Instruction format of length n - bits

with m - explicitly defined operands

RA - 4 13 © 2024, Škraba, Rozman, FRI

◼ ARM9: Example of a 32-bit instruction (all instructions are 32-bit):

mov rd, # imm rd = destination register

imm = immediate operand

mov r0, #128 @ R0 128=0x080

Instruction basics – instruction format

1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

b31 20 19 16 15 12 11 4 3 b0

Operation code

mov

2.operand

immediate 128

1.operand

Rd=R0

Machine instruction:

Assembly Instruction:

Instruction format (from ARM documentation) :

Should Be

Zero

0x E 3 A 0 0 0 8 0

RA - 4 14 © 2024, Škraba, Rozman, FRI

◼ ARM9: example of an 32-bit instruction (all instructions are 32-bit):

add rd, rs1, rs2 rd = destination register

rsx = source register

add r5, r0, r1 @ R5 R0 + R1

Instruction basics – instruction format

1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

B31 20 19 16 15 12 11 4 3 b0

Operation code

add

1.operand

Rs1= R0

2.operand

Rs2=R1

3.operand

Rd= R5

Machine instruction:

Assembly Instruction :

Instruction format (from documentation):

RA - 4 15 © 2024, Škraba, Rozman, FRI

◼ Mini MiMo : example of an 16-bit instruction (all instructions are 16-bit):

add rd, rd, rs rd = destination register

rs = source register

add r0, r0, r1 @ R0 R0 + R1

Instruction basics – instruction format

1.operand

Rd= R0

Machine instruction:

Assembly Instruction :

Instruction format (from documentation):

0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

b15 12 11 7 4 3 b0

Operation

code

add

2.operand

Rs=R1
2.operand

immediate

RA - 4 16 © 2024, Škraba, Rozman, FRI

◼ The distinction between instructions and operations – execution of

the same operation (eg. addition) can be achieved by a variety of

instructions that have different formats (normally the information

about operands is provided in different ways).

◼ The number of instructions is therefore usually greater than the

actual number of operations.

◼ Example: ARM - arithmetic instructions (addition, subtraction):

add r0, r1, r2 @ r0 <- R1 + r2

adc r0, r1, r2 @ r0 <- R1 + r2 + C (add with C)

sub r0, r1, r2 @ r0 <- r1 - r2

SBC r0, r1, r2 @ r0 <- r1 - r2 + C - 1 (-Not (C) = - (1-C) = C-1

RSB r0, r1, r2 @ r0 <- r2 - r1 (reverse subtract)

rsc r0, r1, r2 @ r0 <- r2 - r1 + C - 1 (Rev. sub -not (C))

General information about instructions

RA - 4 17 © 2024, Škraba, Rozman, FRI

◼ Basic properties of instructions, according to which the instructions

differ:

 Storage of operands in the CPU

 Number of explicit operands in instruction

 Operands location and addressing modes

 Operations

 Type and length of the operands

◼ Decisions on each of the properties affect the structure and

function of the computer.

General information on the instructions - basic instruction properties

RA - 4 18 © 2024, Škraba, Rozman, FRI

4.2 Modes of saving operands in the CPU

◼ Property that the mostly affects how a user sees your computer.

◼ Notable are three ways to store operands in the CPU:

 Accumulator (a single software accessible register in the CPU)

 Stack (in the CPU)

 Set of registers (set of software accessible registers in the CPU)

RA - 4 19 © 2024, Škraba, Rozman, FRI

◼ Accumulator: Memory in the CPU is a single register, called

accumulator.

 Holds one operand

 The oldest solution, its the simplest

 For most instructions, one of the operands is in the accumulator, that’s

also where the result is stored.

Modes of saving of the operands in the CPU

RA - 4 20 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - accumulator

ALU

CPU memory

accumulator

The input (operand) Result

The execution of an ALU instruction

RA - 4 21 © 2024, Škraba, Rozman, FRI

 Instruction to transfer an operand from the main memory into the

accumulator or vice versa are LOAD and STORE.

 Because there is just one accumulator it’s not necessary to specify its

address – shorter instructions.

 Simpler compilers, because there is no selection on the modes of

saving operands.

 A lot of transfers between the CPU and main memory (more then for

the other two solutions), because there is just one register.

Modes of saving of the operands in the CPU - accumulator

RA - 4 22 © 2024, Škraba, Rozman, FRI

◼ Stack: a simple way of extending CPU memory is to make it in a

form of a stack.

 In stack only the top location is accessible – top of the stack.

 The operation of stacks is denoted as LIFO - Last In First Out.

 Instructions to transfer operands from main memory to stack and vice-

versa are PUSH and PULL or POP.

 Great resemblance with concept of accumulator. All accumulator

advantages also apply to stack, however we can also save more

operands to the stack.

Modes of saving of the operands in the CPU - stack

STACK TOP

RA - 4 23 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - Stack

ALU

CPU memory

SP

Stack

SP - address of the top of the stack in the CPU. In this case

 it points to the last occupied location

The input (operand) Result

Execution of ALU instr. #1

RA - 4 24 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - Stack

ALU

CPU memory

SP

Stack

The input (operand) Result

Execution of ALU instr. #2

RA - 4 25 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - Stack

ALU

CPU memory

Stack

SP

The input (operand) Result

Execution of ALU instr. #3

RA - 4 26 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - Stack

ALU

CPU memory

Stack

SP

The input (operand) Result

Execution of ALU instr. #4

RA - 4 27 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU - Stack

ALU

CPU memory

Stack

SP

The input (operand) Result

Execution of ALU instr. #5

RA - 4 28 © 2024, Škraba, Rozman, FRI

 If you read the stack, the stack pointer moves down one position and

the top of the stack is new value.

 When writing to the Stack, the new value is stored on the highest free

location, which becomes the top of the stack.

 On two-operand operations (eg. adding A + B), the operands A and B

are read from the Stack (A must be at the top of stack and B just

below it), and the result is saved on the top of the stack.

 Stack computers or computers with stack architecture were popular

around the year 1960.

Modes of saving of the operands in the CPU - Stack

RA - 4 29 © 2024, Škraba, Rozman, FRI

◼ Register set: Memory in the CPU is designed as a set of registers

to which access is possible without restrictions.

 The number of registers in today's computers is from 8 to 100 or more.

 Each register has its own address, like words in main memory. For

register address the instruction needs significantly fewer bits than for

the memory address.

 There are two types according to restrictions on registers use:

◼ All registers are equivalent - general purpose registers

◼ The set of registers is divided into two groups. One is used for arithmetic-

logic operands, the other for calculating addresses (base or index

registers)

Modes of saving of the operands in the CPU– register set

RA - 4 30 © 2024, Škraba, Rozman, FRI

Modes of saving of the operands in the CPU– register set

ALU

CPU Memory

Registers

The input (operand) Result

RA - 4 31 © 2024, Škraba, Rozman, FRI

◼ Advantages of a set of programmatically accessible registers in

CPU:

 Higher speed. Because the memory in the CPU is small it can be

build in a faster technology then the main memory – shorter access

time. It is possible to access multiple register at the same time.

 Shorter instructions. Because there is smaller number of registers

then the main memory you need less bits for register address –

smaller fields in instruction to describe the operands.

 Number of transfers between CPU and main memory is reduced.

Registers allow to store intermediate results (as long as we don‘t run

out of free registers)

Modes of saving of the operands in the CPU

RA - 4 32 © 2024, Škraba, Rozman, FRI

 There are methods for compilers to enable the best possible use of

registers.

 Consequence: All after 1980 developed computers have register set

as „memory“ in CPU.

◼ For most computers, usually it can be easily understood which

method for storing operands they use.

Modes of saving of the operands in the CPU– register set

RA - 4 33 © 2024, Škraba, Rozman, FRI

◼ Some computers are somewhere in between:

 Microprocessor Intel 80x86 had in the beginning (Intel 8086 - year

1978) only one accumulator (general purpose register) and some

additional registers to help with operands access.

 Intel 80386 - year 1985: 8 general purpose registers.

 Pentium 4 - year 2006: 16 general purpose registers in 32 additional

registers (FPU, MMX, XMM).

Modes of saving of the operands in the CPU

RA - 4 34 © 2024, Škraba, Rozman, FRI

15 8 7 0

Program Counter (PC)

Conditional bits

AH AL

CL

DL

BL

SP

BP

SI

DI

CS

E

C

DS

SS

IP

FLAGS

CH

DH

BH

8086 - 16-bit processor (1978)

15 8 7 0

A PSW

C

E

L

SP

PC

B

D

H

8080 - 8-bit processor (1974,

 8085 1977)

Programmatically available registers

Accumulator AX

Counting register (char, string) CX

Data register (mult., divi.) DX

Base register BX

Stack pointer

Base pointer

Index register (source)

Index register (sink)

Commend segment pointer

Stack segment pointer

Data segment pointer

Additional data segment pointer

Accumulator A and flags register

Secondary accumulator / Counting register

stack pointer

Program Counter (PC)

Secondary accumulator / Counting register

Secondary accumulator / Counting register

RA - 4 35 © 2024, Škraba, Rozman, FRI

31 16 15 8 7 0

General-purpose register EAX

General-purpose register ECX

General-purpose register EDX

General-purpose register EBX

General-purpose register EDI

General-purpose register ESP

General-purpose register EBP

General-purpose register ESI

Instruction segment pointer

Stack segment pointer

Data segment pointer

Add. data segment pointer

Program Counter (PC)

Conditional bits

AH ALeAX

CL

DL

BL

SP

BP

SI

DI

CS

EC

FS

GS

DS

SS

CH

DH

BHEBX

ESP

EBP

ESI

EDI

ECX

EDX

EIP

EFLAGS

Programmatically available registers 80386 - 32-bit processor (1985 x86 architecture)

AX

CX

DX

BX

Data segment 2 pointer

Data segment 3 pointer

RA - 4 36 © 2024, Škraba, Rozman, FRI

EFLAGS

EIP PC

Registers of 8-bit processor Intel 8080

in year 1974 and Intel 8085 in year 1977

A Zastavice

B

D

C

H

E

L

Intel x86

Architecture Intel® 64 in mode IA-32

RA - 4 37 © 2024, Škraba, Rozman, FRI

Software accessible registers of the Intel x86 architecture Intel® 64

32-bit mode operation of the IA-32 64-bit mode operation of IA-32eDifferences

RA - 4 38 © 2024, Škraba, Rozman, FRI

4.3 The number of explicit operands in instruction

◼ The second most important instructions property that impacts the

user's view of the computer.

◼ A small number of operands in the instruction:

 Shorter instructions that take up less memory space

 Less powerful instructions

◼ A larger number of operands in the instruction:

 More powerful instructions

 More complex CPU structure, longer instructions

RA - 4 39 © 2024, Škraba, Rozman, FRI

◼ The number of operands in the instruction is also influenced by the

type of operation carried out by the instruction.

◼ Elementary operations with more than three operands are rare (two

input operand and result).

◼ Therefore, today's computers instructions contain at most three

explicit operands.

◼ Explicit operands are usually in the instruction given by direct or

indirect address information where operand is stored.

Number of explicit operands in instruction

RA - 4 40 © 2024, Škraba, Rozman, FRI

◼ Computer, which uses instructions with a maximum of m-operands

are called m-operand or m-address computer.

◼ Depending on the number of operands in explicit instructions

computers can be divided into five groups:

 3 + 1operand computers

 3-operand computers

 2-operand computers

 1-operand computers

 No-operand or stack computers

Presented in chronological order :

Number of explicit operands in instruction

RA - 4 41 © 2024, Škraba, Rozman, FRI

◼ 3 + 1 operand computers

 A representative of this type of computers was EDVAC

 Such computers today no longer exsist

 +1 (in „3+1“) means that the address of the next instruction is an

instruction operand

 Symbolically we can describe operation with :

OP3 OP2 OP1 (means any operation on the two operands)

PC OP4

Number of explicit operands in the instruction - 3 + 1-operand computers

IP 3
operation

code OP 1 OP 2 OP 4

RA - 4 42 © 2024, Škraba, Rozman, FRI

◼ No-operand (Stack) computers

 This group includes computers that have a CPU memory in a

form of stack

Number of explicit operands in the instruction - no-oprandn computers

operation

code

 Symbolically we can describe operation with :

 StackTOP StackTOP StackTOP-1

 PC PC + 1

RA - 4 43 © 2024, Škraba, Rozman, FRI

 Operations are performed on operands at the top of the stack, so the

instruction don’t need explicit operands

 Required are at least two instructions to transfer an operand from

memory to the stack (PUSH) and from the stack to memory (POP or

PULL)

 As with 1-operand computers, there are in addition to stack also

additional special purposes registers in no-operand computers

 Example: Computer Atlas 1961

 After 1980, there were no stack computers developed anymore

Number of explicit operands in the instruction - no-operand computers

RA - 4 44 © 2024, Škraba, Rozman, FRI

◼ 1-operand computer

 These are computers that have CPUs with a single accumulator

(maybe two, for example accumulator A and B in CPU 68HC11)

 One of the operands is always located in the accumulator, the result is

also stored there, so one explicit operand is enough

Number of explicit operands in the instruction - 1-operand computers

operation

code OP 1

 Symbolically we can describe operation with :

 AC AC OP1 (AC is abbreviation for accumulator)

 PC PC + 1

RA - 4 45 © 2024, Škraba, Rozman, FRI

 In addition to the accumulator (one or two) 1-operand computers

usually also have at least a few additional registers for special

purposes (eg. the index register for storing memory address).

 In the years 1970 to 1980 were virtually all microprocessors, due to

technological limits, of 1-operand type.

Number of explicit operands in the instruction - 1-operand computers

RA - 4 46 © 2024, Škraba, Rozman, FRI

◼ 2-operand computers

 The result of the operation can in most cases be stored in the space
of one of the two input operands.

 Thus, there is no need for the third operand and we obtain 2-operand
computer from 3-operand computer

Number of explicit operands in the instruction - 2-operand computers

operation

code OP 1 OP 2

 Symbolically we can describe operation with:

 OP2 OP2 OP1

 PC PC + 1

RA - 4 47 © 2024, Škraba, Rozman, FRI

 Operands can be in memory or in the CPU registers

 Many 2-operand computers allow both operands to be in the memory

(in 3-operand almost never)

 Most often one of the operands is in the register and the second in

memory

 If we want to keep both input operands then one must be previously

stored in a different location, in which case the 2-operand computer is

slower than the 3-operand

 Until 1990 2-operand computers were the most common, today

3-operand computers prevail

Number of explicit operands in the instruction - 2-operand computers

RA - 4 48 © 2024, Škraba, Rozman, FRI

◼ 3-operand computers

 Using the random access memory, the address of the next instruction

is no longer needed

 Implicit order of instruction execution is set by rule PCPC + 1

Number of explicit operands in the instruction - 3-operand computers

operation

code IP 3OP 1 OP 2

 Symbolically we can describe operation with :

 OP3 OP2 OP1

 PC PC + 1

RA - 4 49 © 2024, Škraba, Rozman, FRI

◼ Basic arithmetic operations have three operands, so computers

with three explicit operands are closest to mathematic standards.

◼ Most computers developed after 1980 are 3-operand, but usually

with the restriction that the operands are in the registers of the CPU

(Load/Store computers).

Number of explicit operands in the instruction - 3-operand computers

RA - 4 50 © 2024, Škraba, Rozman, FRI

Depending on the number of operands in explicit instructions

computers can be divided into five groups – summary:

 3 + 1operand computers

 3-operand computers

 2-operand computers

 1-operand computers

 No-operand or stack computers

Number of explicit operands in instruction

RA - 4 51 © 2024, Škraba, Rozman, FRI

4.4 Operand location and addressing modes

◼ Operands can be stored in:

 Programmatically accessible registers in the CPU

 In one or more neighbour memory words in the main memory (or on

any level of the memory hierarchy)

 Operands can also be stored in one of the registers on controllers for

I/O devices or I/O processors. Because of the small number of I/O

instruction, we won’t elaborate on them.

 Operands can also be embedded in instructions („Immediate

operand“)

RA - 4 52 © 2024, Škraba, Rozman, FRI

◼ Register operands are operands that are stored in CPU registers

 Register operands are almost always given by the register address in

which they are stored.

 There is a special field in the instruction for the register address, but it

can be also part of the operation code.

 Only for accumulator (or stack) computers the address is not needed.

 Because there are just a few register we only need a small number of

bits to represent the address in the instruction. (eg. 16 = 24 registers

4 bit for the register address)

Operand location and addressing modes – register operands

RA - 4 53 © 2024, Škraba, Rozman, FRI

◼ Memory operands are those which are stored in the main memory

(or at various levels of the memory hierarchy)

 Addressing is much more complex then for register operands

 There is more space in the main memory which means a larger

address in the instruction (eg. main memory 4 GB = 232 B 32 bits for

the address)

 Access to operands in memory is subject to a certain rule, which

usually requires changing the address.

Operand location and addressing modes – memory operands

RA - 4 54 © 2024, Škraba, Rozman, FRI

◼ Immediate operands are those which are stored in the instruction

itself

 They are available "immediately" - after reading the command

 Fast path to transfer constants to registers (command read already

enough) Usually the place in the command is limited - so the stock of

values is also limited

Operand location and addressing modes – memory operands

RA - 4 55 © 2024, Škraba, Rozman, FRI

◼ With 2 - and 3 – operand computers we, considering the location

of the operands, differentiate between three types of computers:

 Register-register computers

 Register-memory computers

 Memory-memory computers

Operand location and addressing modes - operand location

RA - 4 56 © 2024, Škraba, Rozman, FRI

◼ Register-register computer

 All operands for ALU instructions are in CPU registers.

 Instruction LOAD and STORE are used to transfer operands from

memory to registers and vice versa, hence the name load/store

computer.

 Execution time of ALU instructions is always the same.

 We usually need more instructions for the same problems as with

computers that can have operands for ALU instructions in the memory.

Operand location and addressing modes – register-register computers

RA - 4 57 © 2024, Škraba, Rozman, FRI

ALU

CPU Memory

Registers

Operand location and addressing modes – register-register computer

The input (operand) Result

Case: ADD R3,R2,R0

RA - 4 58 © 2024, Škraba, Rozman, FRI

◼ Register-memory computer

 One of the operands is in the memory or the register and the rest is

always in the registers

 These computers include as a subset also instructions from register-

register computers

 ALU instructions can use memory operands without transferring them

first into registers with the LOAD instruction

Operand location and addressing modes – register-memory computer

RA - 4 59 © 2024, Škraba, Rozman, FRI

ALU

CPU Memory

Registers

Operand location and addressing modes – register-memory computer

The input (operand) Result

Primer: ADD R3,R0,[STEV1]

RA - 4 60 © 2024, Škraba, Rozman, FRI

 Instructions are longer and more complicated but for the same

problems we need fewer instructions.

 Execution time is dependent on operand location:

◼ Operand in register – shorter execution time

◼ Operand in memory – execution time is longer and is dependent on where

in the memory hierarchy the operand is located.

Operand location and addressing modes – register-memory computer

RA - 4 61 © 2024, Škraba, Rozman, FRI

◼ Memory-memory computer

 Each operand can be in the memory or the registers.

 Include instructions from register-memory computers and register-

register computers.

 Those computers are the most general and offer a lot of different

solutions for the same problem.

 Instructions are complex and have different lengths, the gep in

execution time is also wary big.

Operand location and addressing modes – memory-memory computer

RA - 4 62 © 2024, Škraba, Rozman, FRI

Operand location and addressing modes – memory-memory computers

ALU

CPU Memory

Registers

The input (operand) Result

RA - 4 63 © 2024, Škraba, Rozman, FRI

◼ Comparison

Operand location and addressing modes

RA - 4 64 © 2024, Škraba, Rozman, FRI

Addressing modes - how are operand addresses given

◼ To solve these problems many modes of addressing were
developed.

◼ All addressing modes can be divided into three basic groups:

 Immediate addressing

 Direct addressing

 Indirect addressing

RA - 4 65 © 2024, Škraba, Rozman, FRI

◼ Immediate addressing

 The operand is given in the instruction by its value

 Operand is part of instruction and is transferred to the CPU along with

it, so there is no need for additional memory access (access is faster)

 The operand is called immediate operand or literal

 Computers differ by the number of instructions which use immediate

addressing and the length of the immediate operand (8, 16, or 32-bit)

 Some computers do not have immediate addressing.

Operand location and addressing modes - immediate addressing

R2LOAD 27

Ukaz:

Oper. koda Takojšnji oper.

LOAD R2, #27 ; R2 ← 27D

RA - 4 66 © 2024, Škraba, Rozman, FRI

◼ An example of a instruction with immediate addressing:

 With the instruction LOAD we want for example to transfer the value

27D into the register R2

 # is usual the label for an immediate operand

Operand location and addressing modes - immediate addressing

R0

R2

R1

R15

R2LOAD 27

27

Instruction:
Registers in CPU

Oper. code Immediate oper.

LOAD R2, #27 ; R2 ← 27D

RA - 4 67 © 2024, Škraba, Rozman, FRI

◼ Examples of ARM9 instructions with immediate addressing:

 The immediate operand in the ARM9 processor is 8-bit and 4-bit for

offset

 Value (0 ... 255D) * 22 * (0..12)

mov r0, # 128 @ R0 128

add r3, r3, # 1 @ R3 R3 + 1

bic r0, r0, # 0x80 @ b7 (R0) 0

Operand location and addressing modes - immediate addressing

RA - 4 68 © 2024, Škraba, Rozman, FRI

◼ Direct addressing (also absolute addressing)

 Operand address is given in the instruction

 This mode is used especially for register operands and is in this case

called direct register addressing or shorter register addressing

 For memory operands, the operand address in the memory is given in

the instruction

 When the address is part of the instruction, it is also called absolute

addressing

Operand location and addressing modes - direct addressing

RA - 4 69 © 2024, Škraba, Rozman, FRI

◼ Example of instruction with direct addressing:

 With the instruction LOAD we want, for example to transfer the

content from the memory location with address 20512D into the

register R2,

 in assembly eg. LOAD R2, 20512

Operand location and addressing modes - direct addressing

R0

R2

R1

R15

R2LOAD

27

instruction:

Registers in CPU 20,512

main memory

20 512

mem. address

20 513

20 511

27

LOAD R2, 20512; R2← M [20512D]

RA - 4 70 © 2024, Škraba, Rozman, FRI

◼ Intel x86 („CISC“)

 has several types of direct memory addressing.

◼ ARM9 („RISC“)ž

 does not have direct memory addressing.

 direct addressing is in ARM9 used only for register operands.

Operand location and addressing modes - direct addressing

 add r5, r0, r1 @ R5 R0 + R1

 mov R2, R4 @ R2 R4

RA - 4 71 © 2024, Škraba, Rozman, FRI

◼ Indirect addressing (also deferred addressing)

 It’s used to address memory operands

 The address in the instruction is given indirectly via some other value

or intermediary

 This other value (or intermediary) is in:

◼ the memory - Memory indirect addressing

◼ The CPU register - Register indirect addressing

Operand location and addressing modes - indirect addressing

LOAD R2, 12 (R0); R2← M [12+ (R0)]

LOAD R2, @ (15703); R2← M [M (15703D)]

RA - 4 72 © 2024, Škraba, Rozman, FRI

◼ For memory indirect addressing, the memory address where the
operand address is stored in the memory, is given in the
instruction.

◼ For register indirect addressing the register address and offset
(displacement) is given in the instruction.

◼ The memory address of the operand is calculated from the content
of the register and the offset.

◼ Indirect addressing allows you to arbitrarily change the operand
address, thus eliminating the weakness of direct addressing.

Operand location and addressing modes– indirect addressing

RA - 4 73 © 2024, Škraba, Rozman, FRI

◼ An example of a instruction with memory indirect addressing:

 With the LOAD instruction we want for example to transfer the value of

the memory word with the address 20512D to the register R2

 The memory address 20512D (operand address) is saved on the

memory address 15703D (indirect address)

 In assembly LOAD R2, @(15703)

 @(….) is often used to denote indirect addressing

Operand location and addressing modes– memory indirect addressing

RA - 4 74 © 2024, Škraba, Rozman, FRI

Operand location and addressing modes– memory indirect addressing

R0

R2

R1

R15

R2LOAD

27

Instruction:

Registers in CPU

15703

Main memory

20512

Mem. address

20513

20511

27

15703 20512

Indirect address

LOAD R2, @(15703) ; R2 ← M[M(15703D)]

RA - 4 75 © 2024, Škraba, Rozman, FRI

◼ An example of a instruction with register indirect addressing:

 With the LOAD instruction we want, for example to transfer the value

of the memory word with the address 20512D to the register R2

 In the register R0 we stored the address 20500D (indirect addressing)

 In assembly e.g. LOAD R2, 12(R0)

 In the instruction 12D is the offset which is added to the address in the

register R0. The result is the operand address (20500D + 12D =

20512D)

Operand location and addressing modes – register indirect addressing

RA - 4 76 © 2024, Škraba, Rozman, FRI

Operand location and addressing modes - register indirect addressing

R0

R2

R1

R15

27

instruction:

The registers in

the CPU

offset

12R2LOAD R0

20500
main memory

20,512

Mem. address

20,513

20,511

27

LOAD R2, 12 (R0); R2← M[12+ (R0)]

+

RA - 4 77 © 2024, Škraba, Rozman, FRI

memory indirect addressing

Comparison of indirect addressing modes

register indirect addressing

ARM9: LDR R2[R0, # 12] ARM9: not supported

R0

R2

R1

R15

27

Ukaz:

Registri v CPE

Odmik

12R2LOAD R0

20500
Glavni pomnilnik

20512

pomn. naslov

20513

20511

27

LOAD R2, 12(R0) ; R2 ← m[12+(R0)]

+

R0

R2

R1

R15

R2LOAD

27

Ukaz:

Registri v CPE

15703

Glavni pomnilnik

20512

pomn. naslov

20513

20511

27

15703 20512

Posredni naslov

LOAD R2, @(15703) ; R2 ← m[m(15703D)]

RA - 4 78 © 2024, Škraba, Rozman, FRI

◼ Register indirect addressing has many variants.

◼ In majority of computers, the register indirect addressing is the
most common way of accessing memory operands.

◼ Operand address is always determined by the content of at least
one register, another name for this type of addressing is therefore
relative addressing.

Operand location and addressing modes - register indirect addressing

RA - 4 79 © 2024, Škraba, Rozman, FRI

◼ Variants of register indirect addressing:

 Base Addressing

 Indexed Addressing

 Auto-indexing Addressing

 PC-relative addressing

Operand location and addressing modes - register indirect addressing

RA - 4 80 © 2024, Škraba, Rozman, FRI

◼ Base addressing

 The most common type of register indirect addressing.

 The address of the register Rb and offset D is given to the instruction.

 Memory address (eg. A) of an operand is obtained by summing up the

contents of the register Rb and the offset D:

 A = Rb + D

 The length of the register Rb is usually equal to or longer than the

length of memory address

 Rb is called the base register and A the effective address

Operand location and addressing modes - register indirect addressing

RA - 4 81 © 2024, Škraba, Rozman, FRI

 According to the size of the offset D there are many variants of base

addressing

 The extreme examples are that there is no offset (D = 0) or that the

offset size in bits is equal to the size of the memory address

 In the second example base addressing changes into indexed

addressing

Operand location and addressing modes – register indirect addressing

RA - 4 82 © 2024, Škraba, Rozman, FRI

◼ Indexed addressing

 The length in bits of the offset is equal to the length of the memory

address, which means that we can, just by changing the offset,

address the whole address space

 The second option to change base addressing into indexed addressing

is by using additional register

 The actual address A is calculated by summing the content of the

index register and the offset D1, the offset D1 is the sum of the content

of the base register and the offset D:

Operand location and addressing modes – register indirect addressing

A = Rx + D1 = Rx + Rb + D

Offset by the size of

the memory addressing

Rx – index register

Rb – base register

RA - 4 83 © 2024, Škraba, Rozman, FRI

◼ ARM9:

 Indirect addressing with immediate offset (= base addressing with

offset):

LDR R5, [R3, #12] @ R5 M32[R3 + 12]

[] is used to mark indirect addressing in ARM9 assembly

 Indirect addressing with offset in the register (= indexed addressing):

LDR R5, [r3, r1] @ R5 M32[R3 + R1]

32-bit offset is in the register R1

Because registers are 32-bit, the offset can be 32-bit

 and can address any memory word

Operand location and addressing modes - register indirect addressing

RA - 4 84 © 2024, Škraba, Rozman, FRI

◼ Autoindexing

 Pre-decrement addressing

 Post-increment addressing

 Size indexed addressing

◼ In branch instructions many computers use PC–relative
addressing

 The program counter (PC) is used as the base register

 The offset is a signed number (presented in two's complement)

 The actual address is calculated relative to the PC value

Operand location and addressing modes – register indirect addressing

ARM9 example:

PC-relativ addressing:
 ldr r0,stev1 (not a valid instruction, replaced by)

 ldr r0,[pc,odm] @ r0<-M32[pc+odm]

ARM9 example:

Auto pre-indexing with immediate offset:
ldr r0,[r1,#4]! @ r1<-r1+4; r0<-M32[r1]

Auto post-indexing with register offset:
ldr r0,[r1],r2 @ r0<-M32[r1]; r1<-r1+r2

RA - 4 85 © 2024, Škraba, Rozman, FRI

ARM9 – Examples of register indirect addressing:

(on the lab exercises we only use the first one)

 Indirect addressing with immediate offset (= base addressing with offset):

ldr r5, [r3, #12] @ R5 M32[R3 + 12]

 Indirect addressing with offset in a register (= indexed addressing):

ldr r5, [r3, r1] @ R5 M32[R3 + R1]

 Auto pre-indexing with immediate offset

ldr r0,[r1,#4]! @ r1<-r1+4; r0<-M32[r1]

 Auto post-indexing with register offset:

ldr r0,[r1],r2 @ r0<-M32[r1]; r1<-r1+r2

 PC-relative addressing:

ldr r0,stev1 (not a valid instruction, replaced by)

ldr r0,[pc,odm] @ r0<-M32[pc+odm]

Operand location and addressing modes – register indirect addressing

RA - 4 87 © 2024, Škraba, Rozman, FRI

4.5 Operations (types of instructions)

◼ Computers differ a lot according to the number and types of
operations.

◼ The computer has to have enough operations to guarantee
equivalence with the Turing machine (it has to be possible to
calculate with it all that is calculable).

◼ For this just a small number of primitive operations is enough or in
the extreme case even only one that is powerful enough.

RA - 4 88 © 2024, Škraba, Rozman, FRI

◼ There are two starting points to determine the type and number of

operations on computers:

 The instruction set should be strong. For commonly used functions

one or a small number of operations should be used.

 Operations should be similar to already established types of

operation. Most manufactures use the same or very similar operations

which simplifies programming, creation of compilers and digital

electronics in the CPU

◼ The type of the operation can be determined by its instruction name

◼ The instruction is denoted with a mnemonic with which the

instruction is defined in the assembly language

Operations

RA - 4 89 © 2024, Škraba, Rozman, FRI

◼ All computers have the same basic groups of operations:

 Arithmetical and logical operations

 Data transfer

 Control operations

 Floating point operations

 System operations

 Input/Output operations

Operations

RA - 4 90 © 2024, Škraba, Rozman, FRI

4.5.1 Arithmetic and Logic operations (ALU)

 These operations are executed in the ALU, instructions which execute

those operations are called ALU instructions

Arithmetic operations : in this group are operations on fixed

point operands (integers)

 Typical arithmetic operations are:

◼ Two-operand - summation, subtraction, multiplication and division

◼ One-operand - negation, absolute value, increment in decrement

Operations - arithmetic and logic operations

RA - 4 91 © 2024, Škraba, Rozman, FRI

Example ARM9: add Rd, Rn, shift_op @ Rd = Rn + shift_op

add, sub, ALU instr. (similar in operands)

 shift_op = label for the second operand, that can be:

◼ Immediate operand:

add r1, r2, #5 @ R1 = R2 + 5

◼ Register:

add r1, r2, r7 @ R1 = R2 + R7

◼ Shifted register

add r1, r2, r7, LSL #2 @ R1 = R2 + R7 * 4

LSL #2 … two shifts left = multipl. by 4

add r1, r2, r7, LSL r3 @ R1 = R2 + R7*2^r3

Operations - arithmetic and logic operations

OR

RA

RA - 4 92 © 2024, Škraba, Rozman, FRI

 Logical operations are in addition to Boolean also Shift operations

Boolean operations:

 Although all logical operations can be implemented only with NAND or

NOR operation, the majority of computers implement for easer use

four Boolean operations

◼ two-operand - conjunction (AND), disjunction (OR) and the exclusive

disjunction (XOR)

◼ single-operand - logical negation (NOT)

Operations - arithmetic and logic operations

RA - 4 93 © 2024, Škraba, Rozman, FRI

Shifts:

 Conventional shift

 Circular shift – rotation

 Both support left or right shift

Operations - arithmetic and logic operations

b7 b6 b5 b4 b3 b2 b1 b0

MSB LSB

b7 b6 b5 b4 b3 b2 b1 b0

MSB LSB

0

Right conventional shift Right circular shift

RA - 4 94 © 2024, Škraba, Rozman, FRI

 For right conventional shifts we distinguish:

◼ Logical shift – zeros are inserted into the empty positions

◼ Arithmetic shift - left most bit (sign) remains unchanged and is expanded

into the empty positions

 In binary arithmetic, a right arithmetic shift is equal to the signed

division by 2

 For left conventional shift, the arithmetic shift is equal to the logical

(multiplication by 2)

Operations - arithmetic and logic operations

RA - 4 95 © 2024, Škraba, Rozman, FRI

◼ Logical operations are not only used in the calculation of the logic

function but more often for example for :

 Elimination of the individual bits of the word (AND operation or shifts)

 To insert the individual bits in a word (OR operation or shifts)

 Generally, when a single word contains bits with different, specific

meanings

◼ eg. programming of I/O devices

Operations - arithmetic and logic operations

RA - 4 96 © 2024, Škraba, Rozman, FRI

◼ Example: CPSR register (Current Program Status Register) for

ARM processors

Fixed point number representation – carry and overflow

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

◼ Bit N, Z, C and V – flag bits, status flags

◼ Flag bits are set to 1 or 0 after arithmetic or logical operation

according to the operation result.

RA - 4 97 © 2024, Škraba, Rozman, FRI

Fixed point number representation – carry and overflow

 oVerflow (bit 28) V = 1: there is an overflow;

 V = 0: no overflow

 Carry (bit 29) C = 1: there is a carry;

 C = 0, no carry

 Zero (bit 30) Z = 1: the result is 0;

 Z = 0: the result is not 0

 Negative (bit 31) N = 0, bit 31 of the result is 0;

 N = 1: bit 31 of the result is 1

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

RA - 4 98 © 2024, Škraba, Rozman, FRI

4.5.1 Data transfer

 The operation of transferring information from one part of the computer

to another is the most elementary operation

 With any transfer, we have the source of information and sink of

informations

 After the execution of the transfer operation is the information at both

places, the drain and source. Therefore, it would be more precise to

name it as duplication or copying of operands

 Instructions for transfer are for different length of the operands (eg. 8,

16, 32 or 64 bits)

Operations - data transfers

RA - 4 99 © 2024, Škraba, Rozman, FRI

 Most computers have several types of instructions for this operation

 The reason for this is that the operands can be in the CPU registers,

in the instruction or in the main memory

 Typically, we use the following mnemonics for data transfer

operations:

◼ LOAD when transferring from memory to register (ARM9: ldr)

◼ STORE when transferring from register to memory (ARM9: str)

◼ MOVE when transferring from register to register or from memory to
memory (ARM9: mov - transfers between registers or imm. operand to

register)

◼ PUSH when transferring onto stack (ARM9: push,stm - transfer from

registers to memory)

◼ POP (PULL) when transferring from stack (ARM9: pop,ldm - transfer

from memory to registers)

Operations - data transfers

RA - 4 100 © 2024, Škraba, Rozman, FRI

4.5.3 Control operations

 Usually order of instruction execution is determined by PC PC + 1.

 Control operations (instructions) alter the normal order of instruction

execution.

 Control instructions include the address of the instruction at which to

continue the program execution,

 target address

 Information on the target address is part of the instruction and is

◼ usually given by PC - relative addressing, where offset is given by

the instruction and is added to the current value of PC (usually

denoted as branch instructions)

◼ Cab expressed as absolute address (usually denoted as „jump“

instructions

Operations - control operations

RA - 4 101 © 2024, Škraba, Rozman, FRI

Control operations are divided into three types:

 conditional jumps. Jump to target address is executed only if the

condition in the instruction is satisfied, if the condition is not satisfied

the next instruction is executed (conventional order of execution)

◼ Presentation of the conditional jump instruction in the flow

diagram:

Operations - control operations

Condition

 satisfied?

Next instruction

No

Instruction on

target address

Yes

RA - 4 102 © 2024, Škraba, Rozman, FRI

 Unconditional jump. The jump to the target address is always

executed.

◼ Typical manufacturers‘ terminology – usually unconditional jumps have

the name (mnemonic) jump and conditional are named branch.

Sometimes jump is also related to absolute and branch to relative

address.

 Call and return from procedures or subprograms. Procedure or

subprogram is a sequence of instructions which execute some

specific work and can be called from any part of the program.

◼ After the procedure finishes its work, the next instruction after the

procedure call has to be executed.

Operations - control operations

RA - 4 103 © 2024, Škraba, Rozman, FRI

◼ That's why the call instruction has to save the address into which to return

- it is called return address.

◼ Typical mnemonics from procedure call are CALL or JSR (Jump to

Subroutine).

◼ The return address can be saved to some registers in the CPU or on the

stack in the main memory.

◼ The saved return address is used by the return instruction which is the

last instruction in the procedure.

◼ Mnemonics for return instructions are typically RET or RTS.

Operations - control operations

RA - 4 104 © 2024, Škraba, Rozman, FRI

 ARM9:

◼ Unconditional jump b address1 @ jump to address1

... @ executes always

...

address1 ...

◼ Conditional jum beq address2 @ jump to address2

... @ is executed if the

... @ result from the

address2 ... @ previous operation

 @ is equal to 0

◼ Call subroutine bl subrout @ jump to subroutine

 ... @ lr=r14 return address

 subrout ... @

 ...

 ...

 mov pc,lr @ vrnitev iz podprograma

Operations - control operations

RA - 4 105 © 2024, Škraba, Rozman, FRI

4.5.4 Floating point operations

 Those operations are typically considered separately although they

belong to arithmetic-logical operations.

 The reason is they are typically executed in a separate unit inside the

CPU called floating point unit (FPU)

 This unit is not a part of the ALU and can typically work in parallel to

ALU.

 Intel processors with the Core architecture have 3 ALU and 2 FPU.

Operations – floating point operations

RA – 5. chapter

RA - 4 106 © 2024, Škraba, Rozman, FRI

◼ Floating point operations contain:

 The basic four arithmetic operations

 and often also dditional arithmetic:

◼ Square root

◼ Logarithm

◼ Exponential functions

◼ Trigonometric functions

Operations - floating point operations

STM32H7

RA - 4 107 © 2024, Škraba, Rozman, FRI

4.5.5 System operations

 Operations with which we change the parameters of the computer

operation and monitor its behavior (privileged operations)

 With those operations we can influence on:

◼ Interrupts and traps (eg. SWI, …)

◼ Operation of the cache

◼ Operation of the virtual memory

◼ Privilege-level: user/supervisor mode (eg. MRS, MSR (ARM), …)

◼ Stop of the operation (eg. HALT, STOP, …)

Operations – system operations

RA - 4 108 © 2024, Škraba, Rozman, FRI

 On most computers, system operations are treated as privileged

instructions.

 Most of the system operations are used only by the operating system

and are forbidden for the normal users.

 Example of setting privileged mode on ARM9:

Operations - system operations

mrs r0, cpsr

bic r0, r0, #0x1F /*clear mode flags */

orr r0, r0, #0xDF /* set supervisor mode

(0b11111) + DISABLE IRQ, FIQ */

msr cpsr, r0

RA - 4 109 © 2024, Škraba, Rozman, FRI

4.5.6 Input / Output operations

 Instructions for input/output operations transfer or

trigger a transfer of information between:

◼ Main memory and input/output device

◼ CPU and input/output device

 Computers that use

◼ memory mapped access to input/output devices

don’t have special instructions for I/O operations.

They use normal memory data transfer instructions

(i.e. ARM: LDR, STR) to certain addresses.

◼ separate I/O address space, have special

instructions for I/O operations (e.g. LOADIO,

STOREIO are accessing memory of I/O devices

 I/O instructions are typically privileged and are only

used by the system programs, e.g. operating system.

Operations – input/output operations

STM32H7

RA - 4 110 © 2024, Škraba, Rozman, FRI

4.5.7 Scalar, vector and SIMD instructions

◼ Arithmetic, logical operations and floating point operations can also
be executed by scalar, vector and SIMD operations.

◼ Typical computers have scalar instructions, operations are
executed on operands which are given by the instruction.
 Vector instruction executes an operation on a sequence of N operands.

 For vector instructions it’s not necessary for N operations to execute in parallel,
but anyway in this case, only one instruction is necessary to be read.

◼ SIMD commands mean the parallel execution of N operations
simultaneously on N pairs of fixed-width operands

Operations – scalar, vector and SIMD instructions

RA - 4 111 © 2024, Škraba, Rozman, FRI

Operations – scalar, vector and SIMD instructions

◼ Scalar instr.
ADD R3,R1,R2
 1 instr.: 1 operation, 1 result

 for N operations, N
instructions

◼ Vector instr.
ADDV V3,V1,V2
 1 instr.: N operations, N results

 Pipelined/parallel execution

 „older supercomputers– e.g. Cray“

 N - variable length of vectors

◼ SIMD instr.
VADD.U16 D2,D1,D0
 ARM NEON SIMD unit

 1 instr.: N operations,

 N results

 SIMD, parallel,

 fixed width (N=2,4,8,…)

STM32H7

Arithmetic, logical operations and floating point operations can also be
executed by scalar, vector and SIMD operations.

RA - 4 112 © 2024, Škraba, Rozman, FRI

4.6 Type and size of operands

◼ For operands we wish to handle all types of operands that are also

present in higher level programing languages

◼ The most common types of operands are:

 Bit

 Character

 Integer

 Real number

 Decimal number

RA - 4 113 © 2024, Škraba, Rozman, FRI

◼ Bit. One bit operands are not present in most higher level
programing languages, but they are useful for system and I/O
functions.

◼ Character. 8 bits in size (also 16 bits), represented in the ASCII,
EBCDIC or Unicode table. Used also in strings with various
lengths.

◼ Integer. 8, 16, 32 or 64 bits in size. These operands are typically
represented as signed numbers with fixed point (in two’s
complement).

Type and size of operands

RA - 4 114 © 2024, Škraba, Rozman, FRI

◼ Real number. Floating point numbers (standard IEEE 754), with

32, 64 or 128 bits in size.

◼ Decimal number. String of 8-bits characters in:

 Unpacked form (one number in ASCII or EBCDIC in 8-bits character)

 Packed form (two BCD numbers in 8-bits characters). Because the

highest four bits in ASCII are the same for numbers from 0 to 9

(0011XXXX) we can omit them in BCD format

Type and size of operands

RA - 4 115 © 2024, Škraba, Rozman, FRI

Operand location and addressing modes

R2LOAD #27

R2LOAD 20512

R2LOAD (15703)

#12R2LOAD R0

1

2

3

4

27D = immediate operand

20512D = direct memory address

15703D = indirect memory address

R2 = direct register address

R0 = base register

12D = offset

How to determine how the operand is given in this field ?

 - different operation codes for the LOAD instruction

 - or same operation code and special bit that determines the addressing mode

R2LOAD #27Add.

RA - 4 116 © 2024, Škraba, Rozman, FRI

◼ Composed memory operands

 The length of the operands in bits is a multiple of 8 because nowadays

the memory word is typically 8 bit long.

 Operands that are longer then 8 bits occupy more memory words, they

are called composed memory operands.

 We can have 32-bits operands on a computer with 8-bits memory word

and they occupy four sequential memory words.

Type and size of operands – composed memory operands

RA - 4 117 © 2024, Škraba, Rozman, FRI

 Word must be sequential so we can address the operand with one

address (address of the first one)

 It’s necessary to agree on which of the four words points the address

and what is the order of saving them

 For saving composed operands in the memory we nowadays use two

common rules:

◼ Big Endian Rule

◼ Little Endian Rule

Type and size of operands - composed memory operands

RA - 4 118 © 2024, Škraba, Rozman, FRI

◼ Big Endian Rule

 Address of the composed operand is the address of the word

containing the most significant byte of the operand

 Example: 32-bit composed memory operand 0x1F01A05C(hex), saved

in the big endian rule on the address 1000(dec):

Type and size of operands - composed memory operands

1F 01 A0 5C

byte 3 byte 2 byte 1 byte 0

b0b31

Memory with 8-bit words

Composed 32-bit memory operand

1000

1001

1002

1003

1F

01

A0

5C

RA - 4 119 © 2024, Škraba, Rozman, FRI

◼ Little Endian Rule

 Address of the composed operand is the address of the word

containing the least significant byte of the operand

 Example: 32-bit composed memory operand 0x1F01A05C(hex),

saved in the little endian rule on the address 1000(dec):

Type and size of operands - composed memory operands

1F 01 A0 5C

byte 3 byte 2 byte 1 byte 0

b0b31

Memory with 8-bit words

Composed 32-bit memory operand

1000

1001

1002

1003 1F

01

A0

5C

RA - 4 120 © 2024, Škraba, Rozman, FRI

32-bit combination:

1110 0000 1000 0000 0101 0000 0000 0001 (bin)

E 0 8 0 0 15 0

Memory

address

m

m+1

m+2

m+3

m+4

m-2

m-1

m+5

(hex)

8 bit = 1byte

Example of an 32-bit composed memory operand

RA - 4 121 © 2024, Škraba, Rozman, FRI

Example of an 32-bit composed operand

1110 0000 1000 0000 0101 0000 0000 0001 (bin)

E 0 8 0 0 1 5 0

Memory

address

m

m+1

m+2

m+3

m+4

m-2

m-1

m+5

1 1 1 0 0 0 0 0

(hex)

8 bit = 1byte

RA - 4 122 © 2024, Škraba, Rozman, FRI

Example of an 32-bit composed operand

1110 0000 1000 0000 0101 0000 0000 0001 (bin)

E 0 8 0 0 1 5 0

memory

address

m

m + 1

m + 2

m + 3

m + 4

m-2

m-1

m + 5

0 0 0 0 0 0 0 1

(hex)

8 bit = 1byte

RA - 4 123 © 2024, Škraba, Rozman, FRI

Example of an 32-bit composed operand

1110 0000 1000 0000 0101 0000 0000 0001

E 0 8 0 0 15 0

memory

address

m

m + 1

m + 2

m + 3

m + 4

1 1 1 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1

m-2

m-1

m + 5

B31 B0

LSBMSB

B0

B31

memory

address

m

m + 1

m + 2

m + 3

m + 4

0 0 0 0 0 0 0 1

0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0

m-2

m-1

m + 5

B0

B31

Big Endian Rule Little Endian Rule

RA - 4 124 © 2024, Škraba, Rozman, FRI

◼ The problem of alignment of composite memory operands

 Operand in the memory is an aligned operand when the

following holds:

A mod s = 0
A - address of the composed memory operand

s - number of words of the composite memory operand

 If the above equation holds, then A is a natural address

 ARM Processor:

◼ see pseudo instruction .align

◼ saves composite memory operands (more than 8 bits),

according to the little endian rule. Composed memory

operands have to be on aligned addresses.

RA - 4 125 © 2024, Škraba, Rozman, FRI

Organization of main memory in ARM processor

0x00

0x01

memory address byte 0

ARM uses little endian rule for

Composed operands!

8 bits

byte 1

byte 2

byte 3

Half-Word

0x02

0x03

0x04

0x05

0x06

0x07

Half-Word (2 bytes) at the address 4

byte 6

0x08

0x09

0x0A

0x0B

0x0C

0x0D

0x0E

0x0F

0x10

Word Word (4 bytes) at 8

byte 8

byte 9

byte 10

byte 11

byte 4

byte 5

Byte at address 0

RA - 4 126 © 2024, Škraba, Rozman, FRI

◼ For our use case (ARM9), the address of our 32-bit composed

memory operand must be divisible by four without reminder for the

operand to be aligned (eg.1000D mod 4 = 0)

 The memory, which allows access to 4 memory words at the same

time can be implemented as 4 parallel working memories.

 If the 32-bit operand is aligned, the lower two bits of a n-bit memory

address determine in which of the 4 memories the individual bytes of

the composite operand are located, the remaining n-2 bits of the

memory address are for all 4 bytes the same.

Type and size of operands - composed memory operands

RA - 4 127 © 2024, Škraba, Rozman, FRI

Type and size of operands - composed memory operands

11010000 00

11010000 01

11010000 10

11010000 11

Aligned composed memory

operand saved by the little

endian rule

natural

address A

11001111 11

11001111 10

5C

A0

01

1F

 That’s how it’s possible to access all four memories (bytes) in parallel

 However, if the 32-bit operand is not aligned, the remaining n-2 bits of

the memory address are not the same for all 4 bytes and the

simultaneous access to each of the four bytes is not possible.

RA - 4 128 © 2024, Škraba, Rozman, FRI

Type and size of operands - composed memory operands

11010000 00

11010000 01

11010000 10

11010000 11

aligned

natural

address A

11001111 11

11001111 10

5C

A0

01

1F

unaligned

5C

A0

01

1F

In natural addresses are the

lower two bits equal to 0, therefore

it is divisible by 4 without a remainder

 That’s how it’s possible to access all four memories (bytes) at the

same time.

 However, if the 32-bit operand is not aligned, the remaining n-2 bits of

the memory address are not the same for all 4 bytes and the

simultaneous access to each of the four bytes is not possible.

RA - 4 129 © 2024, Škraba, Rozman, FRI

Type and size of operands - composed memory operands

11010000 00

11010000 01

11010000 10

11010000 11

aligned

natural

address A

11001111 11

11001111 10

5C

A0

01

1F

unaligned

5C

A0

01

1F

2 accesses (slower) !1 access (faster) !

RA - 4 130 © 2024, Škraba, Rozman, FRI

Cases of different computer memory organization

Unified memory

 (32Kx32b)

4 modules per

32Kx8b

4*(32Kx8b)

RA - 4 131 © 2024, Škraba, Rozman, FRI

Type and size of operands - composed memory operands

Size of the composed operand

in bits

Address A on which the

composed operand is aligned

8 (not composed) XXX…XXXXXXXX

16 XXX…XXXXXXX0

32 XXX…XXXXXX00

64 XXX…XXXXX000

128 XXX…XXXX0000

Memory address of 8-bit memory words on which

the composed memory operands are aligned

X = 0 or 1

RA - 4 132 © 2024, Škraba, Rozman, FRI

4.7 Instruction format (structure)

◼ The properties which were selected by developers, have to be build

into the instruction

◼ The selected properties determine the instruction format to some

extent, but it’s still possible to construct an instruction in different

ways

◼ The most important factors that determine the instruction structure

are:

 The size of the memory word. The size of the instruction should be a

multiple of the memory word size.

RA - 4 133 © 2024, Škraba, Rozman, FRI

 Number and type of explicit operands in instruction. For each
explicit operand we must specify where and how it is placed in the
instruction

 The type and number of registers in the CPU. Registers can be
equivalent and equal in size but can also have different size for
different purposes. The number of bits in the instruction for the
register addressing is dependent on the number of registers

 Size of the memory address. In direct memory addressing, the
instruction includes the memory address; that’s why the direct
memory addressing is not often used. An exception are processors
with short memory addresses (eg. 68HC11 - 16-bit address)

Instruction structure

RA - 4 134 © 2024, Škraba, Rozman, FRI

◼ The most commonly used instructions usually have the shorter
instruction formats

◼ The order of the information on operations and operands can be
arranged in different ways

◼ Example of non-systematic instruction structure are Intel
microprocessors, where additional instructions needed to be
integrated into the existing ones.

◼ The result is a large number of unusual and hard to understand
instruction formats

Instruction structure

RA - 4 135 © 2024, Škraba, Rozman, FRI

◼ Typical modes of building instructions in today's computers:

 Variable Length instruction

◼ Number of explicit operands in the instructions is changing, many different

formats of instructions (Intel, AMD - x86: 1 to 15 bytes)

 Fixed length instructions

◼ Number of explicit operands in instructions is always the same, few

instruction formats (PowerPC, SPARC, ARM)

 Hybrid mode

◼ A few different fixed length instructions (IBM 370, ARM Thumb2)

 ARM Thumb2 (16 or 32 bits instructions) – e.g. STM32H7

Instruction structure

RA - 4 136 © 2024, Škraba, Rozman, FRI

◼ Orthogonality of instructions – instruction structure to which

applies:

 Information about the operation is independent of the information on

the operands

 Information about each operand in the instruction is independent of the

information about the rest of the operands

With orthogonal instructions we can used different types of addressing for

each operand and all sizes of operands.

Instruction structure

RA - 4 137 © 2024, Škraba, Rozman, FRI

Instruction structure

◼ ARM9: Case of limited orthogonality on one of the operands:

mov r0, #128 @ R0 128=0x080

add r5, r0, r1 @ R5 R0 + R1

RA - 4 138 © 2024, Škraba, Rozman, FRI

4.8 Number of instructions in RISC - CISC computers

Debates on the number of instructions in computers started after the

year 1980

◼ CISC computers (Complex Instruction Set Computer) –

computers with a greater number of (even complex) instructions

◼ RISC computers (Reduced Instruction Set Computer) –

computers with a lower number of simple instructions

RA - 4 139 © 2024, Škraba, Rozman, FRI

◼ The computer development showed that the number of instructions

was constantly increasing

◼ But measurements on the frequency of instruction execution on

CISC computers shows that the majority of instructions are used

very rarely

◼ And the most often used instructions were the simple ones with

simple addressing

RISC - CISC dilemma

RA - 4 140 © 2024, Škraba, Rozman, FRI

◼ Reasons to increase the number of instructions (up to 1980):

 Semantic gap – the difference between how programmer in a higher-

level programming language sees the computer in comparison to a

programmer in machine language.

 Microprogramming – allows simple addition of new instructions

 The ratio between the speed of the main memory and the CPU – in

the years 1960 to 1980 was the speed of access to information in the

CPU (to microinstructions) more the 10-times higher then access to

main memory.

RISC - CISC dilemma

RA - 4 141 © 2024, Škraba, Rozman, FRI

◼ Reasons to decrease the number of instructions (after 1980):

 Difficulties of using complex instructions in compilers – its better
that the architecture enables simple elements for solving problems
than solutions that are complex and often useless

 Change in the ratio between the speed of the main memory and
the CPU – microprogram solutions have become slower compared to
fixed wired solutions, and complex instructions difficult to realize in a
fixed wired logic; caches have bridged the speed gap between CPU
and main memory.

 The introduction of parallelism in the CPU – the realization of the
pipelines is easier for simple instructions than for complex

RISC - CISC dilemma

RA - 4 142 © 2024, Škraba, Rozman, FRI

The idea of RISC computers (Milestones)

 The first RISC computer was the IBM 801 from 1975

◼ On determinaton of the instruction set, two criteria were used:
1. The instruction must e simple enough to be executed in one clock cycle.

2. The instruction executes such operation that is not possible to realize faster

with some sequence of instruction that are generated by a compiler, that has a

higher level of understanding the program

 1980: Berkeley (RISC I,II), Stanford (MIPS)

 1985: ARM1

 2011: RISC-V

RISC - CISC dilemma

RA - 4 143 © 2024, Škraba, Rozman, FRI

◼ Definition of RISC architecture. A computer has a RISC

architecture, if it meets the following six criteria:

1. Most of the instructions are executed in one clock cycle

2. Register-register design (load/store computer)

3. Instructions are realized with fixed wired logic and not

microprogramed

4. Small number of instructions and addressing modes

5. All instructions have the same length

6. Good compilers (take into account the structure of the CPU)

RISC - CISC dilemma - RISC architecture

RA - 4 144 © 2024, Škraba, Rozman, FRI

◼ The RISC architecture concept means more than just the small

number of instructions. In fact this criteria is nowadays the least

taken into account.

◼ Basically majority of all after 1990 developed computers are RISC

◼ But that doesn’t mean there are no more CISC computers

 Intel 80x86, AMD

RISC - CISC dilemma

RA - 4 145 © 2024, Škraba, Rozman, FRI

◼ Intel has succeeded to integrate ideas from RISC into his CISC

based architecture of Pentium processors

◼ From the 80486 processor onwards, Intel processors use a „RISC

like core“ which executes simple (and most often used) instructions

◼ CPU translates CISC instructions in simpler (RISC like) instructions

– „micro operations“.

◼ On the other hand, more complex and powerful instructions are

executed according to special sequence of micro-ops, defined on a

microprogram level

RISC - CISC dilemma

RA - 4 146 © 2024, Škraba, Rozman, FRI

RISC-V (https://riscv.org/)
RISC-V: The Free and Open RISC Instruction Set Architecture

RISC-V is a free and open ISA enabling a new era of processor innovation through open standard

collaboration. Born in academia and research, RISC-V ISA delivers a new level of free, extensible

software and hardware freedom on architecture, paving the way for the next 50 years of

computing design and innovation.

https://riscv.org/

RA - 4 147 © 2024, Škraba, Rozman, FRI

Commercial (license) models comparison

ARM, X86 RISC-V RISC-V

https://riscv.org/wp-content/uploads/2021/01/Codasip_Open-Source-Vs-Commercial-RISC-V-Licensing-Models-fig1.png

https://riscv.org/wp-content/uploads/2021/01/Codasip_Open-Source-Vs-Commercial-RISC-V-Licensing-Models-fig1.png

	Diapozitiv 1: COMPUTER ARCHITECTURE
	Diapozitiv 2: Basic types of information on your computer
	Diapozitiv 3
	Diapozitiv 4
	Diapozitiv 5
	Diapozitiv 6
	Diapozitiv 7: 4.1 In general about instructions
	Diapozitiv 9
	Diapozitiv 10
	Diapozitiv 11
	Diapozitiv 12
	Diapozitiv 13
	Diapozitiv 14
	Diapozitiv 15
	Diapozitiv 16
	Diapozitiv 17
	Diapozitiv 18: 4.2 Modes of saving operands in the CPU
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 21
	Diapozitiv 22
	Diapozitiv 23
	Diapozitiv 24
	Diapozitiv 25
	Diapozitiv 26
	Diapozitiv 27
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32
	Diapozitiv 33
	Diapozitiv 34
	Diapozitiv 35
	Diapozitiv 36
	Diapozitiv 37: Software accessible registers of the Intel x86 architecture Intel® 64 32-bit mode operation of the IA-32 64-bit mode operation of IA-32e
	Diapozitiv 38: 4.3 The number of explicit operands in instruction
	Diapozitiv 39
	Diapozitiv 40
	Diapozitiv 41
	Diapozitiv 42
	Diapozitiv 43
	Diapozitiv 44
	Diapozitiv 45
	Diapozitiv 46
	Diapozitiv 47
	Diapozitiv 48
	Diapozitiv 49
	Diapozitiv 50
	Diapozitiv 51: 4.4 Operand location and addressing modes
	Diapozitiv 52
	Diapozitiv 53
	Diapozitiv 54
	Diapozitiv 55
	Diapozitiv 56
	Diapozitiv 57
	Diapozitiv 58
	Diapozitiv 59
	Diapozitiv 60
	Diapozitiv 61
	Diapozitiv 62
	Diapozitiv 63
	Diapozitiv 64: Addressing modes - how are operand addresses given
	Diapozitiv 65
	Diapozitiv 66
	Diapozitiv 67
	Diapozitiv 68
	Diapozitiv 69
	Diapozitiv 70
	Diapozitiv 71
	Diapozitiv 72
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75
	Diapozitiv 76
	Diapozitiv 77
	Diapozitiv 78
	Diapozitiv 79
	Diapozitiv 80
	Diapozitiv 81
	Diapozitiv 82
	Diapozitiv 83
	Diapozitiv 84
	Diapozitiv 85
	Diapozitiv 87: 4.5 Operations (types of instructions)
	Diapozitiv 88
	Diapozitiv 89
	Diapozitiv 90
	Diapozitiv 91
	Diapozitiv 92
	Diapozitiv 93
	Diapozitiv 94
	Diapozitiv 95
	Diapozitiv 96
	Diapozitiv 97
	Diapozitiv 98
	Diapozitiv 99
	Diapozitiv 100
	Diapozitiv 101
	Diapozitiv 102
	Diapozitiv 103
	Diapozitiv 104
	Diapozitiv 105
	Diapozitiv 106
	Diapozitiv 107
	Diapozitiv 108
	Diapozitiv 109
	Diapozitiv 110
	Diapozitiv 111
	Diapozitiv 112: 4.6 Type and size of operands
	Diapozitiv 113
	Diapozitiv 114
	Diapozitiv 115
	Diapozitiv 116
	Diapozitiv 117
	Diapozitiv 118
	Diapozitiv 119
	Diapozitiv 120: 32-bit combination: 1110 0000 1000 0000 0101 0000 0000 0001 (bin)
	Diapozitiv 121: Example of an 32-bit composed operand 1110 0000 1000 0000 0101 0000 0000 0001 (bin)
	Diapozitiv 122: Example of an 32-bit composed operand 1110 0000 1000 0000 0101 0000 0000 0001 (bin)
	Diapozitiv 123: Example of an 32-bit composed operand 1110 0000 1000 0000 0101 0000 0000 0001
	Diapozitiv 124
	Diapozitiv 125
	Diapozitiv 126
	Diapozitiv 127
	Diapozitiv 128
	Diapozitiv 129
	Diapozitiv 130
	Diapozitiv 131
	Diapozitiv 132: 4.7 Instruction format (structure)
	Diapozitiv 133
	Diapozitiv 134
	Diapozitiv 135
	Diapozitiv 136
	Diapozitiv 137
	Diapozitiv 138: 4.8 Number of instructions in RISC - CISC computers
	Diapozitiv 139
	Diapozitiv 140
	Diapozitiv 141
	Diapozitiv 142
	Diapozitiv 143
	Diapozitiv 144
	Diapozitiv 145
	Diapozitiv 146: RISC-V (https://riscv.org/)
	Diapozitiv 147: Commercial (license) models comparison

