
RA - 5 © 2024, Škraba, Rozman, FRI

COMPUTER

ARCHITECTURE

5 Operands

COMPUTER

ARCHITECTURE

RA - 5 2 © 2024, Škraba, Rozman, FRI

5 Operands - objectives:

◼ Understanding the different formats of operands

◼ Alphabets (characters)

◼ Numbers in fixed-point format (unsigned, signed – two‘s

complement)

◼ Real numbers in floating point

◼ Understanding the implementation of the basic operations on operands

◼ Strengths, weaknesses of formats, presentations, ...

◼ The importance of the proper execution of operations

Presentation of information - content

RA - 5 3 © 2024, Škraba, Rozman, FRI

5 Operands - contents

◼ Presentation of non-numerical operands
◼ ASCII alphabet

◼ UNICODE alphabet

◼ Presentation of numerical operands in fixed-point format
◼ Types of presentation

◼ Carry and overflow

◼ Example-1

◼ Arithmetic numbers in fixed-point arithmetic

◼ Presentation of numerical operands in floating point
◼ The general form

◼ Standard for the presentation of floating point

◼ Basic features of IEEE 754

◼ Example-2

◼ Arithmetic numbers in floating point

◼ Supplementing the IEEE Standard 754-2008

Presentation of information - content

RA - 5 4 © 2024, Škraba, Rozman, FRI

Basic types of information on your computer

Information

instructions

operandi

numerical

operands

(Numbers)

non-numerical

operands

fixed-point

(Integer)

floating Point

(real number)

Signed numbers

unsigned number

single precision

double precision

boolean variable

signs

RA - 5 5 © 2024, Škraba, Rozman, FRI

Example of 32-bit content:

1110 0000 1000 0000 0101 0000 0000 0001 (bin) = E0805001 (hex)

◼ Occupies the 8-bit memory 4 successive memory words, and may

represent:

 Machine command (ARM 9): add r5, r0, r1 / * R5  R0 + R1

 Unsigned integer: 3766505473

 Integer with sign (two's complement): - 528461823

 Real number in floating point (single precision): - 73.967 * 1018

 exact: - 73.967129076026048512 * 1018

 Four characters in ASCII alphabetical order: r undefined sign P NUL

 Many other

RA - 5 6 © 2024, Škraba, Rozman, FRI

5.1 Introduction non-numerical operands

◼ Non-numerical operands

 Characters

 Strings – sequences of characters

 Character is represented by an alphabet

◼ Alphabet is a rule which provides the mapping of elements of one

set to the elements of the second set.

Why use Unicode if your

program is English only?

The company I work for, as a

policy, will only release

software in English, even

though we have customers

throughout the world.

What if I want to store a

customer name which uses

non-english characters? Or

the name of a place in

another country?

https://stackoverflow.com/questions/997681/why-use-unicode-if-your-program-is-english-only
https://stackoverflow.com/questions/997681/why-use-unicode-if-your-program-is-english-only

RA - 5 7 © 2024, Škraba, Rozman, FRI

Types of alphabets used in computers

◼ BCD alphabet

 6-bit (26 = 64 different characters)

 26 letters of the English alphabet, 10 digits, 28 special characters

 In use until 1964. (6-bit words)

◼ EBCDIC alphabet (8-bit)

 Used primarily from IBM in mainframe systems (IBM 1963/64 System/

360 →)

◼ Today, the use of 8-bit ASCII, and 8-bit and more alphabet

Unicode (UCS) is quite common.

RA - 5 8 © 2024, Škraba, Rozman, FRI

◼ ASCII alphabet (8-bit)

 Originally 7-bit, but today computers use 8-bit format

◼ Bit 7 = 0 - original form

◼ Bit 7 = 1 - extended ASCII alphabet, the additional 128 characters

(IBM PC)

 An additional 128 characters are different for different countries to form national

ASCII alphabets (eg. Latin2 = ISO 8859-2)

Presentation of non-numeric operands - Characters

RA - 5 9 © 2024, Škraba, Rozman, FRI

The basic 7-bit ASCII alphabet

bit7 = 0

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20

hex

0

RA - 5 10 © 2024, Škraba, Rozman, FRI

Extended 8-bit ASCII alphabet Latin2

(ISO 8859-2), - the additional characters (b7 = 1)

hex

NBSP SHY

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20

1
NBSP = A0 (hex) Non Breaking Space

SHY = AD (hex) Soft HYPHEN

unused

čć

RA - 5 11 © 2024, Škraba, Rozman, FRI

Extended 8-bit ASCII alphabet Latin2 (ISO 8859-2)

hex

NBSP SHY

unused

hex

čć

RA - 5 12 © 2024, Škraba, Rozman, FRI

◼ Unicode – UCS alphabet (standard ISO 10646)

 >= 8-bit: it allows the presentation of the characters in practically all

known languages : (17 × 216) − 211 = 1112064 different characters.

 UCS planes (Universal Coded Character Set):

◼ hhhh subsets with 216 characters

◼ hh upper 16 bits represent plane

 BMP (Basic Multiling0ual Plane) or Plane 0:

◼ Most frequently used characters with all the older standards

◼ 0x000000 .. 0x00​FFFF; usually shortened to U+hhhh.

 UCS provides each character code and the official name

◼ Hexadecimal number (UCS or Unicode code), has prefix U+

 e.g. U+0041 for character A (Latin capital letter A)

 Unicode Utilities: Character Properties

Presentation of non-numeric operands - Unicode

U+hhhhhh

U+00hhhh

U+000000

U+00FFFF

https://util.unicode.org/UnicodeJsps/character.jsp?a=0041

RA - 5 13 © 2024, Škraba, Rozman, FRI

There are several types of transformations for the presentation of

characters with a sequence of bytes, for example: UTF-8 and UTF-16

(UTF – UCS Transformation Format).

 2 cases:

◼ UTF-16 (Windows, Java)
 One character occupies 2 bytes (or 4)

 Variable order of bytes (big/little endian)

◼ UTF-8 (www, E-mail)
 Variable length of 1 to 4 bytes

 Compatible with the 7-bit ASCII alphabet (128 chars.)

Presentation of non-numeric operands - Unicode

UTF-32 (rare)
Fixed length 4 bytes

RA - 5 14 © 2024, Škraba, Rozman, FRI

Presentation of non-numeric operands - Unicode

Practical case: Notepad++ (Encoding->UTF-8, Plugins->Hex-Editor)

RA - 5 15 © 2024, Škraba, Rozman, FRI

◼ Unicode alphabet as the standard was adopted by IBM, Microsoft,
Apple, HP, SunOracle and others.

◼ Use: The Java programming language, Javascript, XML, ...

◼ http://www.unicode.org

Presentation of non-numeric operands - Unicode

Sign
UTF-16

Big Endian
UTF-16

Little Endian
UTF-8Unicode

Z U+005A

Ž U+017D

005A 5A00 5A

017D 7D01 C5BD

http://www.unicode.org/

RA - 5 16 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U + 017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

0001 0111 1101

 The rule for transformation in the form of UTF-8 character codes of the

U+00000080 to U+000007FF is:

110XXXXX 10XXXXXX

Example: char ‚Ž‘ in UTF-8:

RA - 5 17 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U + 017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

0001 0111 1101

 Ž (UTF-8) = 110X XXXX 10XX XXXX

Example: char ‚Ž‘ in UTF-8:

RA - 5 18 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U + 017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

0001 0111 1101

 Ž (UTF-8) = 110X XXXX 10XX 1101

Example: char ‚Ž‘ in UTF-8:

RA - 5 19 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U + 017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

0001 0111 1101

 Ž (UTF-8) = 110X XX01 1011 1101

Example: char ‚Ž‘ in UTF-8:

RA - 5 20 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U+017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

0001 0111 1101

 Ž (UTF-8) = 1100 0101 1011 1101

Example: char ‚Ž‘ in UTF-8:

RA - 5 21 © 2024, Škraba, Rozman, FRI


 Ž (Unicode) = U+017D = 0000 0001 0111 1101

Presentation of non-numeric operands - Unicode

 Ž (UTF-8) = 1100 0101 1011 1101 = C5BD (hex)

5 DBC

Example: char ‚Ž‘ in UTF-8:

PRESENTATION:

RA - 5 22 © 2024, Škraba, Rozman, FRI

Presentation of non-numeric operands - Unicode

Declared character set for the 10 million most popular websites since 2010

https://en.wikipedia.org/wiki/UTF-8

https://en.wikipedia.org/wiki/UTF-8

RA - 5 23 © 2024, Škraba, Rozman, FRI

5.2 Presentation of numerical operands in fixed-point

arithmetic

◼ The comma is at a predetermined fixed position - a presentation

with a fixed point.

◼ If the comma is on the right of the bit with the lowest weight, then

the number is integer, otherwise it is not integer.

◼ Integers are partially also a synonym for a fixed-point presentation

RA - 5 24 © 2024, Škraba, Rozman, FRI

◼ The minimum and maximum conceivable unsigned (positive)

number that can be represented by n bits is:

◼ case of 8-bit length (n = 8)

◼ case of 32-bit length (n = 32)

◼ Carry - if the result of adding or subtracting positive (unsigned)

numbers is outside of the range, there is a carry (transfer) from the

highest bit (place)

120 − nx

DD xn 25508 =

Presentation of the numbers in fixed-point – carry and overflow

295.967.294.4032 = x n D

Unsigned number:

RA - 5 25 © 2024, Škraba, Rozman, FRI

◼ For integers with the sign, there are four modes of presentation

used (or were used) :

 Sign and magnitude

 Offset

 Ones‘ complement (the complement is for only negative numbers)

 Two's complement (the complement is for only negative numbers)

◼ n-bit sequence bn-1... b2b1b0 in any mode represents a signed

integer

Presentation of the number in fixed-point arithmetic

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20 weights of bits

8-bit sequence

Signed number:

RA - 5 26 © 2024, Škraba, Rozman, FRI

𝑉 𝑏 = (−1)𝑏𝑛−1෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖

◼ The highest bit is the sign (1 - negative, 0 positive

number)

10001110(2) = (-1)1(1x231x2 +21x2 +1) = (-1) (14) = -14(10)

◼ The process of conversion from the decimal number

into an n-bit binary number

1. Convert a number in binary to n-1 bits

2. The highest bit is set according to the sign

Presentation of the numbers in fixed point - Signed numbers

1. Sign and magnitude :

RA - 5 27 © 2024, Škraba, Rozman, FRI

◼ Examples:

-25(10) = 10011001

 33(10) = 00100001

◼ Maximum number in 8 bits

 01111111(2) = +127(10)

◼ Minimum number in 8 bits

 11111111(2) = -127(10)

◼ Zero

 00000000(2) = +0(10)

 10000000(2) = - 0(10)

Presentation of the numbers in fixed point - Signed numbers

1. Sign and magnitude :

RA - 5 28 © 2024, Škraba, Rozman, FRI

𝑉 𝑏 = ෍

𝑖=0

𝑛−1

𝑏𝑖2
𝑖 − 𝑜𝑑𝑚𝑖𝑘

◼ After the conversion to a decimal number subtract the offset

 in this case offset is 2n-1

10001110(2) =

(1x271x2 +31x2 +21x2 +1) - (27) = 128 + 8 + 4 + 2-128= 14(10)

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset : VALUE = PRESENTATION - OFFSET

8b: -128 .. 127 = 0 .. 255 - 128

RA - 5 29 © 2024, Škraba, Rozman, FRI

◼ Process conversion from the decimal number into an n-

bit binary number

1. Add the offset to the value

2. Convert like unsigned number

◼ The conversion process from n-bit binary number in

decimal number

1. Convert like unsigned number

2. Subtract offset to get value

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset :

VALUE = PRESENTATION - OFFSET

PRESENTATION = VALUE + OFFSET

RA - 5 30 © 2024, Škraba, Rozman, FRI

◼ Example (offset = 2n-1):

-26(10) = 01100110

 32(10) = 10100000

◼ The maximum number of bits per 8ih

 11111111(2) = +127(10)

◼ The minimum number of bits per 8ih

 00000000(2) = -128(10)

◼ Zero

 10000000(2) = 0(10)

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset : VALUE = PRESENTATION - OFFSET

8b: -128 .. 127 = 0 .. 255 - 128

RA - 5 31 © 2024, Škraba, Rozman, FRI

𝑉 𝑏 = ෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖 − 𝑏𝑛−1(2

𝑛−1 − 1)

◼ Converting into decimal value: subtract 2n-1-1 from the number if

the most significant bit is one

10001110(2) = (1x231x2 +21x2 +1) 1x (27-1) = 8 + 4 + 2-127 = -113(10)

◼ The process of conversion from the decimal number into an n-bit

binary number

1. Convert as unsigned number

2. If the number of negative, negate ("invert") all bits

Presentation of the numbers in fixed point - Signed numbers

3. Ones‘ complement:

RA - 5 32 © 2024, Škraba, Rozman, FRI

◼ Examples

-25(10) = 11100110

 33(10) = 00100001

◼ The maximum number of bits per 8ih

 01111111(2) = +127(10)

◼ The minimum number of bits per 8ih

 10000000(2) = -127(10)

◼ zero

 00000000(2) = +0(10)

 11111111(2) = -0(10)

Presentation of the numbers in fixed point - Signed numbers

3. Ones‘ complement:
8b: -127 .. 127

RA - 5 33 © 2024, Škraba, Rozman, FRI

𝑉 𝑏 = ෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖 − 𝑏𝑛−1(2

𝑛−1)

◼ When converting to a decimal number, subtract 2n-1 if

the most significant bit is one

10001110(2) = (1x231x2 +21x2 +1) 1x (27) = 8 + 4 + 2-128 =

-114(10)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:

RA - 5 34 © 2024, Škraba, Rozman, FRI

◼ The process of conversion from the decimal value into

an n-bit binary number

1. If the number is positive, convert as unsigned number

2. If the number is negative, invert the bits in absolute value and

add 1

◼ The process of conversion from n-bit binary

presentation to the decimal value

1. If the presentation is negative, invert the bits and add 1, then

add negative sign

2. converts as unsigned number (including a sign)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:

RA - 5 35 © 2024, Škraba, Rozman, FRI

◼ Examples

-25(10) = 11100111

 33(10) = 00100001

◼ The maximum number in 8 bits

 01111111(2) = +127(10)

◼ The minimum number in 8 bits

 10000000(2) = -128(10)

◼ Zero

 00000000(2) = 0(10)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:

RA - 5 36 © 2024, Škraba, Rozman, FRI

◼ Example 1: Which decimal value represents 8-bit presentation

10010100 in each of the four fixed-point signed presentations?

Presentation of the numbers in fixed-point arithmetic - Example-1

Presentation of the sign and magnitude: b7 = 1  number is negative

Value = 0x26 0x2 +5 1x2 +4 0x2 +3 1x2 +2 0x2 +1 0x2 +0 = 16 + 4 = 20 (dec)

In presentation of the sign and magnitude, this presentation implies value -20(dec)

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20 weights of bits

1 0 0 1 0 1 0 0

Presentation by offiset: offset can be 2n-1= 128, or 2n-1-1 = 127; let‘s select 128 (dec)

The decimal value of the 8-bit presentation 10010100 includes an offset, and is

128 + 16 + 4 = 148,

To get value, we subtract offset: 148-128 = 20

In a presentation by offset of 128, the value is +20(dec)

Presentation in ones‘ complement: b7 = 1  number is negative, therefore, the

presentation 10010100 is a complement of the corresponding positive number.

10010100  ones‘ complement = 01101011 = 64 + 32 + 8 + 2 + 1 = 107 (DEC)

Presentation 10010100 in ones‘ complement represents the value of -107(dec)

RA - 5 37 © 2024, Škraba, Rozman, FRI

Presentation of the numbers in fixed-point arithmetic - Example-1

27 26 25 24 23 22 21 20

1 0 0 1 0 1 0 0

Presentation of two‘s the binary complement: b7 = 1  number is negative, therefore, the

presentation 10010100 is a complement of the corresponding positive number.

10010100  two's complement = 01101100 = 64 + 32 + 8 + 4 = 108 (DEC)

Presentation 10010100 in two‘s complement represents the number of -108(dec)

= -20 (dec) in a presentation „sign and magnitude“

1 = + 20 (dec), in a presentation by offset

1 = -107 (dec), in a presentation ones‘ complement

1 = -108 (dec), in a presentation two‘s complement

0 0 1 0 1 0 0

0 0 1 0 1 0 0

0 0 1 0 1 0 0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

RA - 5 38 © 2024, Škraba, Rozman, FRI

◼ Which decimal number represents 8-bit combination 00010100 in

each of the four fixed-point signed presentations?

Presentation of the numbers in fixed-point arithmetic - Example-2

Presentation of the sign and magnitude: b7 = 0  number is positive

Value = 0x26 0x2 +5 1x2 +4 0x2 +3 1x2 +2 0x2 +1 0x2 +0 = 16 + 4 = 20 (dec)

The presentation of the sign and magnitude, this presentation implies value +20 (dec)

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20 weights of bits

0

Presentation by offset: offset may be 2n-1= 128, or 2n-1-1 = 127; let‘s select 128 (dec)

The decimal value of the 8-bit combination 00010100 includes offset and is 16 + 4 = 20

Subtract offset 20-128 = -108

In a presentation by offset, this combination represents the number of -108(dec)

Presentation in ones‘ complement: b7 = 0  number is positive, therefore,

combination 00010100 is not the complement and the value can be calculated directly.

00010100 = 16 + 4 = + 20(dec)

Combination 00010100 in ones‘complement represents the value of +20 (dec)

0 0 1 0 1 0 0

RA - 5 39 © 2024, Škraba, Rozman, FRI

Presentation of the numbers in fixed-point arithmetic - Example-2

b7 b6 b5 b4 b3 b2 b1 b0

27 26 25 24 23 22 21 20

0 = +20 (dec) in the presentation of the sign and magnitude

b7 b6 b5 b4 b3 b2 b1 b0

0 = -108 ° C (dec), in a presentation at a distance

b7 b6 b5 b4 b3 b2 b1 b0

0 = +20 (dec) in the presentation of the complement eniškim

b7 b6 b5 b4 b3 b2 b1 b0

0 = +20(dec), in a presentation using a binary complement

Presentation of the binary complement: b7 = 0  number is positive, therefore,

combination 00010100 is not the complement and the value can be calculated directly.

00010100 = 16 + 4 = + 20 ° C (dec)

Combination 00010100 in binary complement represents the number of +20 (dec)

0 0 1 0 1 0 0

0 0 1 0 1 0 0

0 0 1 0 1 0 0

0 0 1 0 1 0 0

RA - 5 40 © 2024, Škraba, Rozman, FRI

◼ The maximum and minimum number you can present with n bits in

two‘s complement is:

◼ In case of 8-bit

◼ In case of 32-bit

◼ Oveflow - if the result is outside the range that is presentable in

two‘s complement

Presentation of the numbers in fixed-point arithmetic

122 11 −− −− nn x

DD x

xn

127128

1228 77

+−

−=

DD xn 647.483.147.2648.483.147.232 +−=

Singed number – range, overflow:

-

RA - 5 41 © 2024, Škraba, Rozman, FRI

◼ Carry or overflow can be the cause of the error.

◼ The CPU must include the mechanism by which a programmer can

determine whether the outcome of the operation has a carry or

overflow.

◼ Bits (flags) C (Carry) and V (oVerflow) in the condition (or status)

register in the CPU are set to values, that indicate, whether an

operation caused carry or overflow.

Presentation of the numbers in fixed-point arithmetic - carry and overflow

RA - 5 42 © 2024, Škraba, Rozman, FRI

The example of the condition (status) register:

◼ register CPSR (Current Program Status Register) in ARM9 CPU

Presentation of the numbers in fixed-point arithmetic - carry and overflow

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

◼ Being N, Z, C and V - a flag (flag bitsthe status flags)

◼ Be the flags They can put in the state of 1 or 0, after they

executed an arithmetic or logical operation according to the result

of the operation.

Register CPSR

RA - 5 43 © 2024, Škraba, Rozman, FRI

Presentation of the numbers in fixed-point arithmetic - carry and overflow

 oVerflow (Bit 28 in the CPSR) V = 1: the result has an overflow;

 V = 0: no overflow

 Carry (Bit 29 in the CPSR) addition:
C = 1: the result has a carry;

C = 0, no carry

 subtraction:
C = 0: the result has a carry;

C = 1, no carry

 Zero (Bit 30 in the CPSR) Z = 1: result is 0;

 Z = 0: result is not 0

 Negative (Bit 31 in the CPSR) N = 0, bit 31 of the result is 0;

 N = 1: bit 31 of the result is 1

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

Register CPSR

◼ register CPSR (Current Program Status Register) in ARM9 CPU

RA - 5 44 © 2024, Škraba, Rozman, FRI

Presentation of the numbers in fixed-point arithmetic

122 11 −− −− nn x

DD x 647.483.147.2648.483.147.2 +−

Unsigned and signed numbers – comparison on 32 bits

120 − nx

295.967.294.40  xD

RA - 5 45 © 2024, Škraba, Rozman, FRI

5.3 Arithmetic with numbers in fixed-point

◼ Arithmetic - four basic operations: addition, subtraction,

multiplication and division.

◼ Arithmetic operations are executed in the arithmetic-logic unit

(ALU), which is part of the CPU.

◼ The type and number of operations that are executed by ALU differ

between different computers – at simplest computers, only the

addition and logical operations are done by ALU, other operations

are implemented by programs.

RA - 5 46 © 2024, Škraba, Rozman, FRI

◼ The key circuit for the realization of the arithmetic operations, is the
n-bit parallel universal binary adder that calculates sum of two
unsigned integers.

◼ With this device, we can implement all basic operations, including
subtraction (to represent negative numbers we commonly use two's
complement), and also multiplication, and division (if specific units
are not present)

◼ The basic element, with which we build n-bit adder, is 1-bit full
adder.

Arithmetic with numbers in fixed-point

RA - 5 47 © 2024, Škraba, Rozman, FRI

◼ 1-bit full adder has three inputs

 two summands xi and yi

 input carry ci

◼ and two outputs

 sum si

 output transfer ci+1

Arithmetic with numbers in fixed-point

xi yi

ci

si

Ci+1

1 - bit

full adder

Truth Table

 Inputs Outputs

xi yi c i s i ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

RA - 5 48 © 2024, Škraba, Rozman, FRI

◼ n-bit adder is obtained by connecting n 1-bit adders – we get an

adder with the emerging carry

Arithmetic with numbers in fixed-point

c1

x0 y0

0

wi

th

0

1 - bit

full adder

xn-1 yn-1

cn-1

wit

hn-1

cn

1 - bit

full adder

x1 y1

wi

th

1

c2

1 - bit

full adder

◼ the adder with (emerging) ripple carry

 Disadvantage: slow speed (increasing with the number of bits)

 Faster, more complex solution is

 -> "the carry-lookahead adder"

RA - 5 49 © 2024, Škraba, Rozman, FRI

Subtraction (x-y) is carried out as sum

with complemented value in 2‘C (x + y'),

M = 1, the operand y is complemented:

• negation of bits (1‘C -> XOR gate)

• add 1 (+1 -> c0 = 1)

Universal adder

(addition, subtraction, unsigned and signed numbers)

Arithmetic with numbers in fixed-point

n-bit binary adder

M… 0 sum, 1 sub

carry

overflow

XOR gate

RA - 5 50 © 2024, Škraba, Rozman, FRI

Subtraction (x-y) is carried out as sum

with complemented value in 2‘C (x + y'),

M = 1, the operand y is complemented:

• negation of bits (1‘C -> XOR gate)

• add 1 (+1 -> c0 = 1)

Universal adder – Logisim model

Arithmetic with numbers in fixed-point

RA - 5 51 © 2024, Škraba, Rozman, FRI

5.4 presentation of numerical operands in floating point

◼ The range of numbers that can be represented in a presentation

with fixed point, is usually for technical problems too small.

◼ These numbers are usually written in scientific notation, which

allows the presentation with the relatively small number of digits

◼ Presentation of numbers in floating point format is only a

computer-modified form of a scientific notation.

==== −186 100,320000001003200000,01020000000,300,000.200.3

RA - 5 52 © 2024, Škraba, Rozman, FRI

◼ The general form

 m - mantissa (significand, fraction) = 0.03200000

 r - base (radix) = 10

 e - exponent = 8

Presentation of floating point numbers

81003200000,0:. → nprrm e

RA - 5 53 © 2024, Škraba, Rozman, FRI

Standard for the presentation in floating point

◼ The numbers in floating point can be presented in many ways:

 various number of bits for the representation of mantissa and an exponent,

 various ways of presenting exponent and mantissa,

 various methods of rounding.

◼ Computer manufacturers have for many years used a variety of formats,

that were not compatible. Therefore, the same program on different

computers gave different results.

◼ In 1981, in the context of the IEEE organization, a standard for floating

point arithmetic was proposed, and in 1985 adopted in the final form

marked as „IEEE 754“ and is still used by majority of computers.

◼ In addition to the format for the presentation of numbers specified in the

standard, also the implementations of arithmetic operations (rounding) and

procedures in case of errors (overflow, divide by 0, etc.) are specified.

RA - 5 54 © 2024, Škraba, Rozman, FRI

◼ Basic features presentations numbers in IEEE 754

 Standard uses a base r = 2

 Mantissa is presented as „the sign and magnitude“.

 The implicit representation of the normal bit: the comma is right of

the normal bit (= left from the first bit of mantissa).

 Exponent is presented in a presentation with offset.

 Defined are two formats:

◼ 32-bit format or single precision and

◼ 64-bit format or double precision.

Presentation of numbers in floating point - IEEE 754

RA - 5 55 © 2024, Škraba, Rozman, FRI

Presentation of numbers in floating point - IEEE 754 32-bit and 64-bit format

S E m

023 of 2231

The sign

0 → +

1 → -

8-bit exponent

with offset of 127

E = e +127

23-bit mantissa

32-bit format (single precision)

value = (-1)S (1, m) 2E-127

 approx. range ± 2.0 x10-38 to ± 2.0 x 1038

S E m

052 5163

The sign

0 → +

1 → -

11-bit exponent

With offset of 1023

E = e +1023

52-bit mantissa

value = (-1)S (1, m) 2E-1023

approx. range ± 2.0 x10-308 to ± 2.0 x 10308

64-bit format (double precision)

RA - 5 56 © 2024, Škraba, Rozman, FRI

Presentation of numbers in floating point - IEEE 754

Exponent EPresented number Mantissa m

000 ... 000 000 ... 000Zeros ±0

000 ... 001 to 111 ... 110 anynormalized number (1,m)

000 ... 000 different from 0denormalized number (0,m)

111 ... 111 000 ... 000Infinity ± 

111 ... 111 different from 0Not A Number NaN

Presentation of numbers – standard IEEE 754

(single precision)

RA - 5 58 © 2024, Škraba, Rozman, FRI

Important facts related to presentation of numbers in floating point 1:

 Interpretation aspect :
 1 <= Mantissa <= 2, if exponent = 0

 2 <= 2*Mantissa <= 4, if exponent = 1

 4 <= 4*Mantissa <= 8, if exponent = 2

◼ Exponent defines window, mantissa is offset

Challenge:

• How are FP presentations of

x in 2*x different ?

Presentation of numbers in floating point - IEEE 754

RA - 5 59 © 2024, Škraba, Rozman, FRI

Important facts related to presentation of numbers in floating point 2:

 Still only a finite number of bits, and consequently, the number of values !

 Limitations (base=2): ->

◼ Example: (8.5 - 8.4)

◼ Example: (0.1, 0.125) A=0.1

B=0.125

print "A=%.30f" % (A)

print "B=%.30f" % (B)

STEV1=8.5

STEV2=8.4

REZ = STEV1 – STEV

Explanation?

Presentation of numbers in floating point - IEEE 754

http://www.pythontutor.com/visualize.html#code=STEV1%3D8.5%0ASTEV2%3D8.4%0AREZ%20%3D%20STEV1%20-%20STEV2%0Aprint%20%28%22%20STEV1%20%3D%20%25.20f%5Cn-STEV2%20%3D%20%25.20f%5Cn-------------%5Cn%20%20%20REZ%20%3D%20%25.20f%22%20%25%20%28STEV1,%20STEV2,%20REZ%29%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=2&rawInputLstJSON=%5B%5D&textReferences=false
http://www.pythontutor.com/live.html#code=A%3D0.1%0AB%3D0.125%0Aprint%20%22A%3D%25.30f%22%20%25%20%28A%29%0Aprint%20%22B%3D%25.30f%22%20%25%20%28B%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-live.js&py=2&rawInputLstJSON=%5B%5D&textReferences=false

RA - 5 60 © 2024, Škraba, Rozman, FRI

Important facts related to presentation of numbers in floating point 3:

 Non-uniform density in „windows“ :

◼ In each „window“ equal number of points, but different range !

◼ Example: 8-bit FP format (4-bit mantissa, 3-bit exponent)

Presentation of numbers in floating point - IEEE 754

RA - 5 61 © 2024, Škraba, Rozman, FRI

Important facts related to presentation of numbers in floating point 4:

 Only fractions with powers of 2 in denominator can be exactly presented!

 Non-negative FP presentations can be compared as integers ?

A=0.1

B=0.125

print "A=%.30f" % (A)

print "B=%.30f" % (B)

STEV1=8.5

STEV2=8.4

REZ = STEV1 – STEV

Why?

Presentation of numbers in floating point - IEEE 754

RA - 5 62 © 2024, Škraba, Rozman, FRI

◼ Example-1: Write negative decimal number -4.625 in the

presentation for floating point numbers in single precision.

Presentation of numbers in floating point - IEEE 754 – Example 1

First, we convert number in binary format (integer and fractional part separately)

4 (dec) = 100 (bin)

0.625 (dec) = 0.101 (bin) 0.625 x 2 = 1.25  0.1

0.25 x 2 = 0.5  0.10

0.5 x 2 = 1.0  0.101

0.0 x 2 = 0  0.1010

- 4.625 = - (4 + 0.625)

4: 2 = 2 remainder 0 b0 (LSB) = 0

2: 2 = 1 remainder 0 b1 = 0

1: 2 = 0 remainder 1 b2 = 1

4.625 = 100.101 = 100.1010000 we can add zeros on the right end

RA - 5 63 © 2024, Škraba, Rozman, FRI

Presentation of numbers in floating point - IEEE 754 – Example 1

Normalizing number  100.101 = 1.00101 x 22

normal bit

Number is normalized as follows: the decimal point is moved to the extreme left

position after the first bit with value of 1, and the value is corrected by multiplying

with the power of 2

Each shift of point one place to the left means division by two, shift right by one means

multiplication by two.

To preserve the value of the number, we multiply by the power of two

When we move point to the left for n places, we multiply by 2n .

When we move point to the right for n places, we multiply by 2-n .

RA - 5 64 © 2024, Škraba, Rozman, FRI

Presentation of numbers in floating point - IEEE 754 – Example 1

S E m

023 of 2231

The number is negative  S = 1

Mantissa without the normal bit  m = 001010 ... 0

Exponent  e = 2

Exponent in the presentation by offset 127 (dec)  E = e + 127 = 127 + 2 = 129 (dec)

E = 129 (dec) = 10000001 (bin)

- 4.625 = - 1.00101 x 22

1 10000001 00101000000000000000000

023 of 2231
A decimal number - 4.624 presented

in floating point single precision format

RA - 5 65 © 2024, Škraba, Rozman, FRI

5.5 Arithmetic with numbers in floating point

◼ Arithmetic in floating point has always been considered in

computers separately from the fixed-point arithmetic

◼ Basic differences with respect to the fixed-point arithmetic

operations are:

 The operations should use in addition to the mantissa also exponent -

these operations requires arithmetic in fixed-point arithmetic

 Rounding - the result of the operation should be the mathematically

correct values, which are then rounded to the length of mantissa

 When the result of floating point operations, in addition to the oveflow,

also underflow can occur

RA - 5 66 © 2024, Škraba, Rozman, FRI

◼ Overflow: if the result of the operation is greater than the maximum

representable number (the exponent is greater than presentable

by bits of the exponent)

 If overflow occurs, the result is presented as + or -.

◼ Underflow

 In presenting numbers in floating point also underflow can occur, if the

result of the operation is smaller than the smallest presentable

number (when the negative exponent is too small for the number of

bits of the exponent).

 If there is a underflow, then the number is replaced with zero, or

presented as denormalized number.

Arithmetic with numbers in floating point

RA - 5 69 © 2024, Škraba, Rozman, FRI

Intel Core architecture (2007): [Kodek]

Arithmetic with numbers in floating point

Ukaz Latenca

ADD, SUB 1

IMUL 3

IDIV 22

FADD,FSUB 3

FMUL 5

FDIV 32

FSQRT 58

FCOS 119

Execution time of operations (instructions) – chronological comparison

ARM Cortex M7 (STM32H750)

RA - 5 70 © 2024, Škraba, Rozman, FRI

◼ Execution time of operations (instructions) – SW vs HW

 ARM Cortex M7 (STM32H750)

Arithmetic with numbers in floating point

RA - 5 71 © 2024, Škraba, Rozman, FRI

Arithmetic with numbers in floating point

0 10-100 1099-10-100- 1099

zero positive presentable

numbers

negative presentable

numbers

positive

underflow

negative

underflow
positive

overflow
negative

overflow

Example: Numeric lines of decimal real numbers with double-digit

exponent and 3-digit mantissa with the range of 0.1  | m | < 1

Positive: Min 0.1 * 10^-99 = 10^-100 Max 0.999*10^99

RA - 5 72 © 2024, Škraba, Rozman, FRI

5.6 Revisions of the standard IEEE 754:

(IEEE 754 → IEEE 754-2008)

◼ August 2008: a revised standard IEEE 754-2008 was published

that replaces IEEE 754 from y. 1985

 The most important additions:

◼ Two new binary format with a base r = 2
 128-bit format (quadruple precision) with 112-bit mantissa and 15-bit exponent.

 16-bit format (half-precision) with a 10-bit mantissa and a 5-bit exponent.

◼ Two new decimal format with a base r = 10
 64-bit format: 16-digit mantissa (16 decimal digits)

 128-bit format: 34-digit mantissa

RA - 5 73 © 2024, Škraba, Rozman, FRI

◼ The standard IEEE 754-2008 defines:

 Six basic formats, four binary and two decimal.

 Arithmetic formats that are used in arithmetic and other operations.

 Exchange formats used for exchanging operands in floating point

 Algorithms for rounding, which determine the methods of rounding

numbers on calculations and conversions

 Arithmetic and other operations on the arithmetic formats.

 Procedures in case of extraordinary events (division by 0, overflow,

underflow, ...).

◼ Latest revision : IEEE 754-2019

Presentation of floating point numbers - updated IEEE 754-2008

RA - 5 74 © 2024, Škraba, Rozman, FRI

Designation Name Base

Number of

places in

mantissa *

E min E max
Decimal

accuracy

Max decimal

exponent

binary32
Single

precision
2 23 + 1 -126 +127 7.22 38,23

binary64
Double

precision
2 52 + 1 -1022 +1023 15.95 307.95

binary128
quadruple

accuracy
2 112 + 1 -16,382 +16383 34.02 4931.77

decimal64 10 15 + 1 -383 +384 16 384

decimal128 10 33 + 1 -6143 +6144 34 6144

* mantissa + 1 bit for the sign

Presentation of floating point numbers - updated IEEE 754-2008

	Diapozitiv 1: COMPUTER ARCHITECTURE
	Diapozitiv 2
	Diapozitiv 3
	Diapozitiv 4: Basic types of information on your computer
	Diapozitiv 5: Example of 32-bit content: 1110 0000 1000 0000 0101 0000 0000 0001 (bin) = E0805001 (hex)
	Diapozitiv 6: 5.1 Introduction non-numerical operands
	Diapozitiv 7: Types of alphabets used in computers
	Diapozitiv 8: Presentation of non-numeric operands - Characters
	Diapozitiv 9: The basic 7-bit ASCII alphabet bit7 = 0
	Diapozitiv 10: Extended 8-bit ASCII alphabet Latin2 (ISO 8859-2), - the additional characters (b7 = 1)
	Diapozitiv 11: Extended 8-bit ASCII alphabet Latin2 (ISO 8859-2)
	Diapozitiv 12: Presentation of non-numeric operands - Unicode
	Diapozitiv 13: Presentation of non-numeric operands - Unicode
	Diapozitiv 14: Presentation of non-numeric operands - Unicode
	Diapozitiv 15: Presentation of non-numeric operands - Unicode
	Diapozitiv 16: Presentation of non-numeric operands - Unicode
	Diapozitiv 17: Presentation of non-numeric operands - Unicode
	Diapozitiv 18: Presentation of non-numeric operands - Unicode
	Diapozitiv 19: Presentation of non-numeric operands - Unicode
	Diapozitiv 20: Presentation of non-numeric operands - Unicode
	Diapozitiv 21: Presentation of non-numeric operands - Unicode
	Diapozitiv 22: Presentation of non-numeric operands - Unicode
	Diapozitiv 23: 5.2 Presentation of numerical operands in fixed-point arithmetic
	Diapozitiv 24
	Diapozitiv 25: Presentation of the number in fixed-point arithmetic
	Diapozitiv 26
	Diapozitiv 27
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32
	Diapozitiv 33
	Diapozitiv 34
	Diapozitiv 35
	Diapozitiv 36
	Diapozitiv 37
	Diapozitiv 38
	Diapozitiv 39
	Diapozitiv 40
	Diapozitiv 41
	Diapozitiv 42
	Diapozitiv 43
	Diapozitiv 44
	Diapozitiv 45: 5.3 Arithmetic with numbers in fixed-point
	Diapozitiv 46
	Diapozitiv 47
	Diapozitiv 48
	Diapozitiv 49
	Diapozitiv 50
	Diapozitiv 51: 5.4 presentation of numerical operands in floating point
	Diapozitiv 52
	Diapozitiv 53: Standard for the presentation in floating point
	Diapozitiv 54
	Diapozitiv 55
	Diapozitiv 56
	Diapozitiv 58
	Diapozitiv 59
	Diapozitiv 60
	Diapozitiv 61
	Diapozitiv 62
	Diapozitiv 63
	Diapozitiv 64
	Diapozitiv 65: 5.5 Arithmetic with numbers in floating point
	Diapozitiv 66
	Diapozitiv 69
	Diapozitiv 70
	Diapozitiv 71
	Diapozitiv 72: 5.6 Revisions of the standard IEEE 754: (IEEE 754 → IEEE 754-2008)
	Diapozitiv 73
	Diapozitiv 74

