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5 Operands - objectives:

◼ Understanding the different formats of operands 

◼ Alphabets (characters)

◼ Numbers in fixed-point format (unsigned, signed – two‘s 

complement)

◼ Real numbers in floating point

◼ Understanding the implementation of the basic operations on operands

◼ Strengths, weaknesses of formats, presentations, ...

◼ The importance of the proper execution of operations

Presentation of information - content
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5 Operands - contents

◼ Presentation of non-numerical operands
◼ ASCII alphabet

◼ UNICODE alphabet 

◼ Presentation of numerical operands in fixed-point format
◼ Types of presentation

◼ Carry and overflow

◼ Example-1

◼ Arithmetic numbers in fixed-point arithmetic

◼ Presentation of numerical operands in floating point
◼ The general form

◼ Standard for the presentation of floating point

◼ Basic features of IEEE 754

◼ Example-2

◼ Arithmetic numbers in floating point

◼ Supplementing the IEEE Standard 754-2008 

Presentation of information - content
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Basic types of information on your computer

Information

instructions

operandi

numerical 

operands

(Numbers)

non-numerical

operands

fixed-point 

(Integer)

floating Point

(real number)

Signed numbers

unsigned number

single precision

double precision

boolean variable

signs



RA - 5         5                           © 2024, Škraba, Rozman, FRI

Example of 32-bit content:
 

1110 0000 1000 0000 0101 0000 0000 0001 (bin) = E0805001 (hex)

◼ Occupies the 8-bit memory 4 successive memory words, and may 

represent:

 Machine command (ARM 9): add r5, r0, r1      / * R5  R0 + R1

 Unsigned integer: 3766505473

 Integer with sign (two's complement): - 528461823

 Real number in floating point (single precision): - 73.967 * 1018

    exact:  - 73.967129076026048512 * 1018

 Four characters in ASCII alphabetical order:  r   undefined sign P NUL 

 Many other 
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5.1 Introduction non-numerical operands

◼ Non-numerical operands

 Characters

 Strings – sequences of characters 

 Character is represented by an alphabet

◼ Alphabet is a rule which provides the mapping of elements of one 

set to the elements of the second set.

Why use Unicode if your 

program is English only?

The company I work for, as a 

policy, will only release 

software in English, even 

though we have customers 

throughout the world.

What if I want to store a 

customer name which uses 

non-english characters? Or 

the name of a place in 

another country?

https://stackoverflow.com/questions/997681/why-use-unicode-if-your-program-is-english-only
https://stackoverflow.com/questions/997681/why-use-unicode-if-your-program-is-english-only
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Types of alphabets used in computers

◼ BCD alphabet

 6-bit (26 = 64 different characters)

 26 letters of the English alphabet, 10 digits, 28 special characters

 In use until 1964. (6-bit words)

◼ EBCDIC alphabet (8-bit)

 Used primarily from IBM in mainframe systems (IBM 1963/64 System/ 

360 →)

◼ Today, the use of 8-bit ASCII, and 8-bit and more alphabet 

Unicode (UCS) is quite common.
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◼ ASCII alphabet (8-bit)

 Originally 7-bit, but today computers use 8-bit format

◼ Bit 7 = 0 - original form

◼ Bit 7 = 1 - extended ASCII alphabet, the additional 128 characters 

(IBM PC)

 An additional 128 characters are different for different countries to form national 

ASCII alphabets (eg. Latin2 = ISO 8859-2)

Presentation of non-numeric operands - Characters
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The basic 7-bit ASCII alphabet

bit7 = 0

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20 

hex

0
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Extended 8-bit ASCII alphabet Latin2 

(ISO 8859-2), - the additional characters (b7 = 1)

hex

NBSP SHY

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20 

1
NBSP = A0 (hex) Non Breaking Space

SHY = AD (hex) Soft HYPHEN

unused

čć
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Extended 8-bit ASCII alphabet Latin2 (ISO 8859-2)

hex

NBSP SHY

unused

hex

čć
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◼ Unicode – UCS alphabet (standard ISO 10646)

 >= 8-bit: it allows the presentation of the characters in practically all 

known languages : (17 × 216) − 211 = 1112064 different characters.

 UCS planes (Universal Coded Character Set): 

◼ hhhh subsets with 216 characters

◼ hh upper 16 bits represent plane

 BMP (Basic Multiling0ual Plane) or Plane 0: 

◼ Most frequently used characters with all the older standards

◼ 0x000000  ..   0x00​FFFF; usually shortened to U+hhhh.

 UCS provides each character code and the official name

◼ Hexadecimal number (UCS or Unicode code), has prefix U+

  e.g. U+0041 for character A (Latin capital letter A)

 Unicode Utilities: Character Properties

Presentation of non-numeric operands - Unicode

U+hhhhhh

U+00hhhh

U+000000

U+00FFFF

https://util.unicode.org/UnicodeJsps/character.jsp?a=0041
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There are several types of transformations for the presentation of 

characters with a sequence of bytes, for example: UTF-8 and UTF-16 

(UTF – UCS Transformation Format).

 2 cases:

◼ UTF-16 (Windows, Java)
 One character occupies 2 bytes (or 4)

 Variable order of bytes (big/little endian)

◼ UTF-8 (www, E-mail)
 Variable length of 1 to 4 bytes

 Compatible with the 7-bit ASCII alphabet (128 chars.)

Presentation of non-numeric operands - Unicode

UTF-32 (rare)
Fixed length 4 bytes
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Presentation of non-numeric operands - Unicode

Practical case: Notepad++ (Encoding->UTF-8, Plugins->Hex-Editor)
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◼ Unicode alphabet as the standard was adopted by IBM, Microsoft, 
Apple, HP, SunOracle and others.

◼ Use: The Java programming language, Javascript, XML, ...

◼ http://www.unicode.org

Presentation of non-numeric operands - Unicode

Sign
UTF-16

Big Endian
UTF-16

Little Endian
UTF-8Unicode

Z U+005A

Ž U+017D

005A 5A00 5A

017D 7D01 C5BD

http://www.unicode.org/
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
  Ž (Unicode) = U + 017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

0001 0111 1101

 The rule for transformation in the form of UTF-8 character codes of the 

U+00000080 to U+000007FF is:

110XXXXX 10XXXXXX                       
                                        

Example: char ‚Ž‘ in UTF-8:
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
   Ž (Unicode) = U + 017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

0001 0111 1101

        Ž (UTF-8) = 110X XXXX 10XX XXXX

                                        

Example: char ‚Ž‘ in UTF-8:
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
  Ž (Unicode) = U + 017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

0001 0111 1101

        Ž (UTF-8) = 110X XXXX 10XX 1101

                          
                                        

Example: char ‚Ž‘ in UTF-8:



RA - 5         19                           © 2024, Škraba, Rozman, FRI


  Ž (Unicode) = U + 017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

0001 0111 1101

        Ž (UTF-8) = 110X XX01 1011 1101

                          
                                        

Example: char ‚Ž‘ in UTF-8:
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
  Ž (Unicode) = U+017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

0001 0111 1101

        Ž (UTF-8) = 1100 0101 1011 1101

                          
                                        

Example: char ‚Ž‘ in UTF-8:
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
  Ž (Unicode) = U+017D = 0000 0001 0111 1101

                                        

Presentation of non-numeric operands - Unicode

        Ž (UTF-8) = 1100 0101 1011 1101 = C5BD (hex)

                          
                                        

5 DBC

Example: char ‚Ž‘ in UTF-8:

PRESENTATION:
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Presentation of non-numeric operands - Unicode

Declared character set for the 10 million most popular websites since 2010

https://en.wikipedia.org/wiki/UTF-8

https://en.wikipedia.org/wiki/UTF-8
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5.2 Presentation of numerical operands in fixed-point 

arithmetic 

◼ The comma is at a predetermined fixed position - a presentation 

with a fixed point.

◼ If the comma is on the right of the bit with the lowest weight, then 

the number is integer, otherwise it is not integer.

◼ Integers are partially also a synonym for a fixed-point presentation
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◼ The minimum and maximum conceivable unsigned (positive) 

number that can be represented by n bits is:

◼ case of 8-bit length (n = 8)

◼ case of 32-bit length (n = 32) 

◼ Carry - if the result of adding or subtracting positive (unsigned) 

numbers is outside of the range, there is a carry (transfer) from the 

highest bit (place)

120 − nx

DD xn 25508 =

Presentation of the numbers in fixed-point – carry and overflow

295.967.294.4032 = x  n D

Unsigned number:
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◼ For integers with the sign, there are four modes of presentation 

used (or were used) :

 Sign and magnitude

 Offset

 Ones‘ complement (the complement is for only negative numbers)

 Two's complement (the complement is for only negative numbers)

◼ n-bit sequence  bn-1... b2b1b0  in any mode represents a signed 

integer

Presentation of the number in fixed-point arithmetic

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20 weights of bits 

8-bit sequence

Signed number:
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𝑉 𝑏 = (−1)𝑏𝑛−1෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖

◼ The highest bit is the sign (1 - negative, 0 positive 

number)

10001110(2) = (-1)1(1x231x2 +21x2 +1) = (-1) (14) = -14(10)

◼ The process of conversion from the decimal number 

into an n-bit binary number

1. Convert a number in binary to n-1 bits

2. The highest bit is set according to the sign 

Presentation of the numbers in fixed point - Signed numbers

1. Sign and magnitude :
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◼ Examples:

-25(10) =  10011001

 33(10) =  00100001

◼ Maximum number in 8 bits

 01111111(2) = +127(10)

◼ Minimum number in 8 bits

 11111111(2) = -127(10)

◼ Zero

 00000000(2) = +0(10)

 10000000(2) = - 0(10)

Presentation of the numbers in fixed point - Signed numbers

1. Sign and magnitude :
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𝑉 𝑏 = ෍

𝑖=0

𝑛−1

𝑏𝑖2
𝑖 − 𝑜𝑑𝑚𝑖𝑘

◼ After the conversion to a decimal number subtract the offset

 in this case offset is 2n-1

10001110(2) =

(1x271x2 +31x2 +21x2 +1) - (27) = 128 + 8 + 4 + 2-128= 14(10)

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset : VALUE = PRESENTATION - OFFSET

8b: -128 .. 127 = 0 .. 255 - 128
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◼ Process conversion from the decimal number into an n-

bit binary number

1. Add the offset to the value

2. Convert like unsigned number

◼ The conversion process from n-bit binary number in 

decimal number

1. Convert like unsigned number

2. Subtract offset to get value

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset :

VALUE = PRESENTATION - OFFSET

PRESENTATION = VALUE + OFFSET



RA - 5         30                           © 2024, Škraba, Rozman, FRI

◼ Example (offset = 2n-1):

-26(10) = 01100110

 32(10) = 10100000

◼ The maximum number of bits per 8ih

 11111111(2) = +127(10)  

◼ The minimum number of bits per 8ih

 00000000(2) = -128(10)

◼ Zero

 10000000(2) = 0(10)

Presentation of the numbers in fixed point - Signed numbers

2. Presentation with offset : VALUE = PRESENTATION - OFFSET

8b: -128 .. 127 = 0 .. 255 - 128
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𝑉 𝑏 = ෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖 − 𝑏𝑛−1(2

𝑛−1 − 1)

◼ Converting into decimal value: subtract 2n-1-1 from the number if 

the most significant bit is one

10001110(2) = (1x231x2 +21x2 +1) 1x (27-1) = 8 + 4 + 2-127 = -113(10)

◼ The process of conversion from the decimal number into an n-bit 

binary number

1. Convert as unsigned number

2. If the number of negative, negate ( "invert") all bits

Presentation of the numbers in fixed point - Signed numbers

3. Ones‘ complement:
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◼ Examples

-25(10) = 11100110

 33(10) = 00100001

◼ The maximum number of bits per 8ih

 01111111(2) = +127(10)  

◼ The minimum number of bits per 8ih

 10000000(2) = -127(10)

◼ zero

 00000000(2) = +0(10)

 11111111(2) = -0(10)

Presentation of the numbers in fixed point - Signed numbers

3. Ones‘ complement:
8b: -127 .. 127
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𝑉 𝑏 = ෍

𝑖=0

𝑛−2

𝑏𝑖2
𝑖 − 𝑏𝑛−1(2

𝑛−1)

◼ When converting to a decimal number, subtract 2n-1 if 

the most significant bit is one

10001110(2) = (1x231x2 +21x2 +1) 1x (27) = 8 + 4 + 2-128 = 

-114(10)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:
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◼ The process of conversion from the decimal value into 

an n-bit binary number

1. If the number is positive, convert as unsigned number

2. If the number is negative, invert the bits in absolute value and 

add 1

◼ The process of conversion from n-bit binary 

presentation to the decimal value

1. If the presentation is negative, invert the bits and add 1, then 

add negative sign

2. converts as unsigned number (including a sign)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:
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◼ Examples

-25(10) = 11100111

 33(10) = 00100001

◼ The maximum number in 8 bits

 01111111(2) = +127(10)  

◼ The minimum number in 8 bits

 10000000(2) = -128(10)

◼ Zero

 00000000(2) = 0(10)

Presentation of the numbers in fixed point - Signed numbers

4. Two's complement:
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◼ Example 1: Which decimal value represents 8-bit presentation 

10010100 in each of the four fixed-point signed presentations?  

Presentation of the numbers in fixed-point arithmetic - Example-1

Presentation of the sign and magnitude: b7 = 1  number is negative

Value = 0x26 0x2 +5 1x2 +4 0x2 +3 1x2 +2 0x2 +1 0x2 +0 = 16 + 4 = 20 (dec)

In presentation of the sign and magnitude, this presentation implies value -20(dec)

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20 weights of bits 

1 0   0   1   0   1   0    0

Presentation by offiset: offset can be 2n-1= 128, or 2n-1-1 = 127; let‘s select 128 (dec)

The decimal value of the 8-bit presentation 10010100 includes an offset, and is 

128 + 16 + 4 = 148, 

To get value, we subtract offset: 148-128 = 20

In a presentation by offset of 128, the value is +20(dec)

Presentation in ones‘ complement: b7 = 1  number is negative, therefore, the

presentation 10010100 is a complement of the corresponding positive number.

10010100  ones‘ complement = 01101011 = 64 + 32 + 8 + 2 + 1 = 107 (DEC)

Presentation 10010100 in ones‘ complement represents the value of  -107(dec)
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Presentation of the numbers in fixed-point arithmetic - Example-1

27   26   25    24    23   22    21   20

1 0   0   1   0   1    0   0

Presentation of two‘s the binary complement: b7 = 1  number is negative, therefore, the

presentation 10010100 is a complement of the corresponding positive number.

10010100  two's complement = 01101100 = 64 + 32 + 8 + 4 = 108 (DEC)

Presentation 10010100 in two‘s complement represents the number of  -108(dec)

= -20 (dec) in a presentation „sign and magnitude“

1 = + 20 (dec), in a presentation by offset

1 = -107 (dec), in a presentation ones‘ complement

1 = -108 (dec), in a presentation two‘s complement

0   0   1   0   1   0   0

0   0   1   0   1   0   0

0   0   1   0   1   0   0

b7   b6   b5   b4   b3   b2   b1   b0

b7   b6   b5   b4   b3   b2   b1   b0

b7   b6   b5   b4   b3   b2   b1   b0

b7   b6   b5   b4   b3   b2   b1   b0
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◼ Which decimal number represents 8-bit combination 00010100 in 

each of the four fixed-point signed presentations?  

Presentation of the numbers in fixed-point arithmetic - Example-2

Presentation of the sign and magnitude: b7 = 0  number is positive

Value = 0x26 0x2 +5 1x2 +4 0x2 +3 1x2 +2 0x2 +1 0x2 +0 = 16 + 4 = 20 (dec)

The presentation of the sign and magnitude, this presentation implies value +20 (dec)

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20 weights of bits 

0

Presentation by offset: offset may be 2n-1= 128, or 2n-1-1 = 127; let‘s select 128 (dec)

The decimal value of the 8-bit combination 00010100 includes offset and is 16 + 4 = 20

Subtract offset 20-128 = -108

In a presentation by offset, this combination represents the number of -108(dec) 

Presentation in ones‘ complement: b7 = 0  number is positive, therefore, 

combination 00010100 is not the complement and the value can be calculated directly.

00010100 = 16 + 4 = + 20(dec)

Combination 00010100 in ones‘complement represents the value of +20 (dec)

0   0   1   0   1   0   0
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Presentation of the numbers in fixed-point arithmetic - Example-2

b7 b6 b5 b4 b3 b2 b1 b0

27   26   25    24    23   22    21   20

0 = +20 (dec) in the presentation of the sign and magnitude

b7 b6 b5 b4 b3 b2 b1 b0

0 = -108 ° C (dec), in a presentation at a distance

b7 b6 b5 b4 b3 b2 b1 b0

0 = +20 (dec) in the presentation of the complement eniškim

b7 b6 b5 b4 b3 b2 b1 b0

0 = +20(dec), in a presentation using a binary complement

Presentation of the binary complement: b7 = 0  number is positive, therefore, 

combination 00010100 is not the complement and the value can be calculated directly.

00010100 = 16 + 4 = + 20 ° C (dec)

Combination 00010100 in binary complement represents the number of +20 (dec)

0   0   1   0   1   0   0

0   0   1   0   1   0   0

0   0   1   0   1   0   0

0   0   1   0   1   0   0
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◼ The maximum and minimum number you can present with n bits in 

two‘s complement is:

◼ In case of 8-bit

◼ In case of 32-bit

◼ Oveflow - if the result is outside the range that is presentable in 

two‘s complement

Presentation of the numbers in fixed-point arithmetic

122 11 −− −− nn x

DD x

xn

127128

1228 77

+−

−=

DD xn 647.483.147.2648.483.147.232 +−=

Singed number – range, overflow:

-
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◼ Carry or overflow can be the cause of the error.

◼ The CPU must include the mechanism by which a programmer can 

determine whether the outcome of the operation has a carry or 

overflow.

◼ Bits (flags) C (Carry) and V (oVerflow) in the condition (or status) 

register in the CPU are set to values, that indicate, whether an 

operation caused carry or overflow.

Presentation of the numbers in fixed-point arithmetic - carry and overflow
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The example of the condition (status) register: 

◼ register CPSR (Current Program Status Register) in ARM9 CPU

Presentation of the numbers in fixed-point arithmetic - carry and overflow

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

◼ Being N, Z, C and V - a flag (flag bitsthe status flags)

◼ Be the flags They can put in the state of 1 or 0, after they 

executed an arithmetic or logical operation according to the result 

of the operation.

Register CPSR
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Presentation of the numbers in fixed-point arithmetic - carry and overflow

 oVerflow (Bit 28 in the CPSR)  V = 1: the result has an overflow; 

                                  V = 0: no overflow

 Carry (Bit 29 in the CPSR)   addition:
C = 1: the result has a carry;                                                

C = 0, no carry

 subtraction:
C = 0: the result has a carry;                                       

C = 1, no carry

 Zero (Bit 30 in the CPSR)         Z = 1: result is 0; 

                                                       Z = 0: result is not 0

 Negative (Bit 31 in the CPSR)  N = 0, bit 31 of the result is 0; 

                                                       N = 1: bit 31 of the result is 1

N Z C V unused mode

31 28 27 8 7 6 5 4 0

I F T

Register CPSR

◼ register CPSR (Current Program Status Register) in ARM9 CPU
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Presentation of the numbers in fixed-point arithmetic

122 11 −− −− nn x

DD x 647.483.147.2648.483.147.2 +−

Unsigned and signed numbers – comparison on 32 bits

120 − nx

295.967.294.40  xD
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5.3 Arithmetic with numbers in fixed-point

◼ Arithmetic - four basic operations: addition, subtraction, 

multiplication and division.

◼ Arithmetic operations are executed in the arithmetic-logic unit 

(ALU), which is part of the CPU.

◼ The type and number of operations that are executed by ALU differ 

between different computers – at simplest computers, only the 

addition and logical operations are done by ALU, other operations 

are implemented by programs.
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◼ The key circuit for the realization of the arithmetic operations, is the 
n-bit parallel universal binary adder that calculates sum of two 
unsigned integers.

◼ With this device, we can implement all basic operations, including 
subtraction (to represent negative numbers we commonly use two's 
complement), and also multiplication, and division (if specific units 
are not present)

◼ The basic element, with which we build n-bit adder, is 1-bit full 
adder.

Arithmetic with numbers in fixed-point
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◼ 1-bit full adder has three inputs

 two summands xi and yi

 input carry ci

◼ and two outputs

 sum si

 output transfer ci+1

Arithmetic with numbers in fixed-point

xi yi

ci

si

Ci+1

1 - bit

full adder

Truth Table 

      Inputs     Outputs

xi  yi c i    s i  ci+1

0  0  0   0   0

0  0  1   1   0

0  1  0   1   0

0  1  1   0   1

1  0  0   1   0

1  0  1   0   1

1  1  0   0   1

1  1  1   1   1    
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◼ n-bit adder is obtained by connecting n 1-bit adders – we get an 

adder with the emerging carry

Arithmetic with numbers in fixed-point

c1

x0 y0

0

wi

th

0

1 - bit

full adder

xn-1 yn-1

cn-1

wit

hn-1

cn

1 - bit

full adder

x1 y1

wi

th

1

c2

1 - bit

full adder

◼ the adder with (emerging) ripple carry

 Disadvantage: slow speed (increasing with the number of bits)

 Faster, more complex solution is

                                                  -> "the carry-lookahead adder"
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Subtraction (x-y) is carried out as sum 

with complemented value in 2‘C (x + y'), 

M = 1, the operand y is complemented:

• negation of bits (1‘C -> XOR gate)

• add 1                   (+1  -> c0 = 1)

Universal adder 

(addition, subtraction, unsigned and signed numbers)

Arithmetic with numbers in fixed-point

n-bit binary adder

M… 0 sum,   1 sub

carry

overflow

XOR gate



RA - 5         50                                             © 2024, Škraba, Rozman, FRI

Subtraction (x-y) is carried out as sum 

with complemented value in 2‘C (x + y'), 

M = 1, the operand y is complemented:

• negation of bits (1‘C -> XOR gate)

• add 1                   (+1  -> c0 = 1)

Universal adder – Logisim model

Arithmetic with numbers in fixed-point
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5.4 presentation of numerical operands in floating point

◼ The range of numbers that can be represented in a presentation 

with fixed point, is usually for technical problems too small.

◼ These numbers are usually written in scientific notation, which 

allows the presentation with the relatively small number of digits

◼ Presentation of numbers in floating point format is only a 

computer-modified form of a scientific notation.

==== −186 100,320000001003200000,01020000000,300,000.200.3
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◼ The general form

 m - mantissa (significand, fraction) = 0.03200000

         

  r - base (radix) = 10

 e - exponent = 8

Presentation of floating point numbers

81003200000,0:. → nprrm e
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Standard for the presentation in floating point

◼ The numbers in floating point can be presented in many ways:

 various number of bits for the representation of mantissa and an exponent,

 various ways of presenting exponent and mantissa,

 various methods of rounding.

◼ Computer manufacturers have for many years used a variety of formats, 

that were not compatible. Therefore, the same program on different 

computers gave different results.

◼ In 1981, in the context of the IEEE organization, a standard for floating 

point arithmetic was proposed, and in 1985 adopted in the final form 

marked as „IEEE 754“ and is still used by majority of computers.

◼ In addition to the format for the presentation of numbers specified in the 

standard, also the implementations of arithmetic operations (rounding) and 

procedures in case of errors (overflow, divide by 0, etc.) are specified.
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◼ Basic features presentations numbers in IEEE 754

 Standard uses a base  r = 2

 Mantissa is presented as „the sign and magnitude“.

 The implicit representation of the normal bit: the comma is right of 

the normal bit (= left from the first bit of mantissa).

 Exponent is presented in a presentation with offset.

 Defined are two formats: 

◼ 32-bit format or single precision and 

◼ 64-bit format or double precision.

Presentation of numbers in floating point - IEEE 754
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Presentation of numbers in floating point - IEEE 754      32-bit and 64-bit format

S E m

023 of 2231

The sign

0 → +

1 → -

8-bit exponent 

with offset of 127

E = e +127

23-bit mantissa

32-bit format (single precision)

value  = (-1)S (1, m) 2E-127

 approx. range ± 2.0 x10-38 to  ± 2.0 x 1038

S E m

052 5163

The sign

0 → +

1 → -

11-bit exponent 

With offset of 1023

E = e +1023

52-bit mantissa

value = (-1)S (1, m) 2E-1023

approx. range  ± 2.0 x10-308 to  ± 2.0 x 10308

64-bit format (double precision)
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Presentation of numbers in floating point - IEEE 754

Exponent EPresented number Mantissa m

000 ... 000 000 ... 000Zeros  ±0

000 ... 001 to 111 ... 110 anynormalized number (1,m)

000 ... 000 different from 0denormalized number (0,m)

111 ... 111 000 ... 000Infinity  ± 

111 ... 111 different from 0Not A Number NaN

Presentation of numbers – standard IEEE 754

(single precision)
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Important facts related to presentation of numbers in floating point 1:

 Interpretation aspect :
 1 <=    Mantissa <= 2,   if exponent = 0

 2 <= 2*Mantissa <= 4,   if exponent = 1

 4 <= 4*Mantissa <= 8,   if exponent = 2

◼ Exponent defines window, mantissa is offset  

Challenge: 

• How are FP presentations of 

x in 2*x different ?

Presentation of numbers in floating point - IEEE 754
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Important facts related to presentation of numbers in floating point 2:

 Still only a finite number of bits, and consequently, the number of values !

 Limitations  (base=2): ->

◼ Example: (8.5 - 8.4)

◼ Example: (0.1, 0.125) A=0.1

B=0.125

print "A=%.30f" % (A)

print "B=%.30f" % (B)

STEV1=8.5

STEV2=8.4

REZ = STEV1 – STEV

Explanation?

Presentation of numbers in floating point - IEEE 754

http://www.pythontutor.com/visualize.html#code=STEV1%3D8.5%0ASTEV2%3D8.4%0AREZ%20%3D%20STEV1%20-%20STEV2%0Aprint%20%28%22%20STEV1%20%3D%20%25.20f%5Cn-STEV2%20%3D%20%25.20f%5Cn-------------%5Cn%20%20%20REZ%20%3D%20%25.20f%22%20%25%20%28STEV1,%20STEV2,%20REZ%29%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=2&rawInputLstJSON=%5B%5D&textReferences=false
http://www.pythontutor.com/live.html#code=A%3D0.1%0AB%3D0.125%0Aprint%20%22A%3D%25.30f%22%20%25%20%28A%29%0Aprint%20%22B%3D%25.30f%22%20%25%20%28B%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-live.js&py=2&rawInputLstJSON=%5B%5D&textReferences=false
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Important facts related to presentation of numbers in floating point 3:

 Non-uniform density in „windows“ :

◼ In each „window“ equal number of points, but different range !

◼ Example: 8-bit FP format (4-bit mantissa, 3-bit exponent)

Presentation of numbers in floating point - IEEE 754
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Important facts related to presentation of numbers in floating point 4:

 Only fractions with powers of 2 in denominator can be exactly presented!

 Non-negative FP presentations can be compared as integers ?

A=0.1

B=0.125

print "A=%.30f" % (A)

print "B=%.30f" % (B)

STEV1=8.5

STEV2=8.4

REZ = STEV1 – STEV

Why?

Presentation of numbers in floating point - IEEE 754
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◼ Example-1: Write negative decimal number -4.625 in the 

presentation for floating point numbers in single precision.  

Presentation of numbers in floating point - IEEE 754 – Example 1

First, we convert number in binary format (integer and fractional part separately)

4 (dec) = 100 (bin)

0.625 (dec) = 0.101 (bin) 0.625 x 2 = 1.25  0.1

0.25 x 2   = 0.5    0.10

0.5 x 2     = 1.0    0.101

0.0 x 2     = 0       0.1010

- 4.625 = - (4 + 0.625)

4: 2 = 2 remainder 0 b0 (LSB) = 0

2: 2 = 1 remainder 0 b1 = 0

1: 2 = 0 remainder 1 b2 = 1

4.625 = 100.101 = 100.1010000 .... we can add zeros on the right end
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Presentation of numbers in floating point - IEEE 754 – Example 1

Normalizing number  100.101 = 1.00101 x 22

normal bit

Number is normalized as follows: the decimal point is moved to the extreme left 

position after the first bit with value of 1, and the value is corrected by multiplying 

with the power of 2

Each shift of point one place to the left means division by two, shift right by one means

multiplication by two.

 

To preserve the value of the number, we multiply by the power of two

When we move point to the left for n places, we multiply by 2n .

When we move point to the right for n places, we multiply by 2-n .
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Presentation of numbers in floating point - IEEE 754 – Example 1

S E m

023 of 2231

The number is negative  S = 1

Mantissa without the normal bit  m = 001010 ... 0

Exponent  e = 2

Exponent in the presentation by offset 127 (dec)  E = e + 127 = 127 + 2 = 129 (dec)

E = 129 (dec) = 10000001 (bin) 

- 4.625 = - 1.00101 x 22

1 10000001 00101000000000000000000

023 of 2231
A decimal number - 4.624 presented

in floating point single precision format



RA - 5         65                  © 2024, Škraba, Rozman, FRI

5.5 Arithmetic with numbers in floating point

◼ Arithmetic in floating point has always been considered in 

computers separately from the fixed-point arithmetic

◼ Basic differences with respect to the fixed-point arithmetic 

operations are:

 The operations should use in addition to the mantissa also exponent - 

these operations requires arithmetic in fixed-point arithmetic

 Rounding - the result of the operation should be the mathematically 

correct values, which are then rounded to the length of mantissa

 When the result of floating point operations, in addition to the oveflow, 

also underflow can occur
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◼ Overflow: if the result of the operation is greater than the maximum 

representable number (the exponent is greater than presentable 

by bits of the exponent)

 If overflow occurs, the result is presented as + or -.

◼ Underflow

 In presenting numbers in floating point also underflow can occur, if the 

result of the operation is smaller than the smallest presentable 

number (when the negative exponent is too small for the number of 

bits of the exponent).

 If there is a underflow, then the number is replaced with zero, or 

presented as denormalized number.

Arithmetic with numbers in floating point
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Intel Core architecture (2007): [Kodek]

Arithmetic with numbers in floating point

Ukaz Latenca

ADD, SUB 1

IMUL 3

IDIV 22

FADD,FSUB 3

FMUL 5

FDIV 32

FSQRT 58

FCOS 119

Execution time of operations (instructions) – chronological comparison

ARM Cortex M7  (STM32H750)
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◼ Execution time of operations (instructions) – SW vs HW

 ARM Cortex M7  (STM32H750)

Arithmetic with numbers in floating point
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Arithmetic with numbers in floating point

0 10-100 1099-10-100- 1099

zero positive presentable

numbers

negative presentable

numbers

positive

underflow

negative

underflow
positive

overflow
negative

overflow

Example: Numeric lines of decimal real numbers with double-digit 

exponent and 3-digit mantissa with the range of 0.1  | m | < 1

Positive:        Min 0.1 * 10^-99 = 10^-100      Max 0.999*10^99
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5.6 Revisions of the standard IEEE 754:

(IEEE 754 → IEEE 754-2008)

◼ August 2008: a revised  standard IEEE 754-2008 was published 

that replaces IEEE 754 from y. 1985

 The most important additions:

◼ Two new binary format with a base r = 2
 128-bit format (quadruple precision) with 112-bit mantissa and 15-bit exponent.

 16-bit format (half-precision) with a 10-bit mantissa and a 5-bit exponent.

◼ Two new decimal format with a base r = 10
 64-bit format: 16-digit mantissa (16 decimal digits)

 128-bit format: 34-digit mantissa
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◼ The standard IEEE 754-2008 defines:

 Six basic formats, four binary and two decimal.

 Arithmetic formats that are used in arithmetic and other operations.

 Exchange formats used for exchanging operands in floating point

 Algorithms for rounding, which determine the methods of rounding 

numbers on calculations and conversions

 Arithmetic and other operations on the arithmetic formats.

 Procedures in case of extraordinary events (division by 0, overflow, 

underflow, ...).

◼ Latest revision : IEEE 754-2019

Presentation of floating point numbers - updated IEEE 754-2008
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Designation Name Base

Number of 

places in 

mantissa * 

E min E max
Decimal

accuracy

Max decimal 

exponent 

binary32
Single 

precision
2 23 + 1 -126 +127 7.22 38,23

binary64
Double 

precision
2 52 + 1 -1022 +1023 15.95 307.95

binary128
quadruple

accuracy
2 112 + 1 -16,382 +16383 34.02 4931.77

decimal64 10 15 + 1 -383 +384 16 384

decimal128 10 33 + 1 -6143 +6144 34 6144

* mantissa + 1 bit for the sign

Presentation of floating point numbers - updated IEEE 754-2008
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