COMPUTER

ARCHITECTURE

6 Central Processing Unit - CPU

" &

6 Central Processing Unit - objectives

6 Central Processing Unit — objectives and outcomes:

m A basic understanding of:
m architecture (basic electronic circuits) and the operation of the CPU
m synchronization of circuits with clock signal

m Micro-programmed (SW) or Hard-wired (HW) implementation of the
CPU

m Understanding of parallelism :
m origins of existence
m parallelisation on the instruction level
pipeline

m Understanding the execution of instructions in CPU

RA -6 2 © 2024, Skraba, Rozman, FRI

" N

6 Central Processing Unit - content

6 Central processing unit

0 Basic structure and operation of the CPU

0 ARM CPU — features summary

0 Structure of CPU — ARM case

0 Execution of instructions

00 Parallel execution of instructions

0 Pipelined CPU

0 An example of a 5-stage pipelined CPU
0O Multiple issue processors

RA -

© 2024, Skraba, Rozman, FRI

" J o

6.1 Basic structure and operation of the CPU

m CPU (Central Processing Unit or the CPU) is a unit that executes
instructions, so its performance largely determines the performance
of the whole computer.

m |n addition to the CPU, most computers have also other processors,
mainly in the input/output part of the computer.

m Basic principles of operation for all types of processors are
iIdentical.

RA -6 4 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

m CPU is a digital system (built from digital electronic circuits) specific
types.

m [Two groups of digital circuits:

Combinational digital circuits

m Status output depends only on current state of the inputs
Primer: 1-bitni seStevalnik

inputs outputs | _"‘lﬁ Enent IR
Combinational 3@ T, : o X Vi Ci| S Ciut
: i;] T -

——> dgitalcirout | ——

0

example: negator

_ 2 00 A0
- O -~ 0 -~~0-~0
2 O 0~ 00—~ =0
) A D OO0 0

RA -6 5 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

Memory (sequential) digital circuits

m The state of the outputs depends on the current state of inputs and the
previous states of the inputs

m Memories remember the states

m Previous states are usually characterized as internal states, that reflect

the previous states of inputs Example: 3-bit counter

. Qg Q, Q,
inputs outputs
= Combinational [D™ aQ D af lp™a
i> digita| circuit > flip-flop 1 > flip-flop 2 flip-flop 3
r CLR 5 |_(CLR 6 r CLR 6
CL _

Information about

internal state . Ex.ampl.e:. 3-_b|_t_ C_(_)L_l_nt_er i Loglslm

:
SN Bnaiall FEH) Biasell B B

RA -6 6 © 2024, Skraba, Rozman, FRI

Memory | o cT)
1o

Central processing unit

fat

m Memory (Sequential) circuit:

Flip-flop - one-bit memory cell
Register
Counter
Memory

inputs

Information about
internal state

Clock signal

m Memory (sequential) digital circuits can be:
Asynchronous - the state of the circuit is changed "Immediately" after the variation in

input signals.

Combinational
digital circuit

outputs

—

Memory

Synchronous - the state of the circuit as a function of the input signals can only be

changed at the edge of the clock signal.

m CPU is built from
Combinational and

Memory (sequential) synchronous digital circuits.

m T[he current state of the memory circuits presents the state of the CPU.

RA -6

© 2024, Skraba, Rozman, FRI

" J &

Central processing unit

m The operation of the CPU at any time depends on the current state
of the CPU inputs and the current internal state of the CPU.

m The number of possible internal states of the CPU depends on the
size (capacity) of CPU.

m The number of bits, which represent the internal state of the CPU
ranges from some 10 up to 10,000 or even more.

m Digital circuits that form a CPU today are usually on a single chip.

RA -6 8 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

m The basic operation of the CPU in the Von Neumann computer was
described using two steps:

1. Taking instruction from memory (instruction-fetch cycle), the address
of the instruction is in the program counter (PC)

2. Execution of the fetched instruction (execution cycle),

m Each of these two main steps can be divided on even simpler sub-
operations ("Elementary"” steps) ->

RA -6 9 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

m The operation of the CPU in the Von Neumann computer was
described using two steps:

1. Taking instruction from memory (instruction-fetch cycle), the address
of the instruction is in the program counter (PC)

2. Execution of the fetched instruction (execution cycle), which can be
divided to more sub-operations:

Analysis (decoding) the instruction

Transfer the operands in the CPU (if not already included in the CPU
registers)

Execution of the instruction‘s specific operation

PC « PC + 1 or PC « target address in branch instructions
Saving the result (if necessary)

RA -6 10 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

C RESET) Switch-on the processor

Y

The acquisition of the next
instruction

1. Instruction-fetch cycle

A
Analysis and decoding
of instruction

A

Access to operands

i — 2. Execution cycle
Execution of operation and e.g.. AL instruction ADD R1,R2,R3
PC « PC + 1

A

Saving the result

No

Request for
interrupt?

A

Yes

Jump to first instruction of PSP PC « PSP address

y

RA -6 11 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

C RESET) Switch-on the processor

Y

The acquisition of the next
instruction

1. Instruction-fetch cycle

A
Analysis and decoding
of instruction

A

v — 2. Execution cycle of branch (jump) instruction
Execution of operation is
PC « target address e.g.: B LABEL

A

No

Request for
interrupt?

A

Yes

Jump to first instruction of PSP PC « PSP address

y

RA -6 12 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

Interrupts or traps: Switch-on the processor

m extra-ordinary events %
) The acq_msmon_of the next 1. Instruction-fetch cycle
m transparency important '"Smft'on '
Analysis and decoding]

. . . of instruction
m instead of next instruction, !

branch to first instruction of ISR | Access to operands

Interr. Service Routine) is — 2. Execution cycle
(
Execution of operation and e.g.: AL instruction ADD R1,R2,R3
executed. PC PC 4+ 1
b
Saving the result

P s il N
| M No Request for \
| X interrupt? 1
|
| Yes
I F 3 I
I Jump to first instruction of PSP PC « PSP address |
I } :
I |
|
\
N e e, ——— - — -7

RA -6 13 © 2024, Skraba, Rozman, FRI

" J &

Central processing unit

m The address of the first instruction after switching on (RESET) is
determined by a certain rule.

m Upon completion of Step 2, the CPU starts again with the first step,
which is repeated, as long as the CPU operates.

m The exception is when there is an interrupt or trap request.

m On such request, instead of fetching the next instruction, the jump
instruction is executed to the address that is determined by the
mode of interrupt or trap operation.

RA -6 14 © 2024, Skraba, Rozman, FRI

Central processing unit

Each of these steps is composed of more elementary steps and
realization of CPU is basically the realization of these elementary

steps.

Each elementary step is carried out in one or more periods of
clock signal - CPU clock.

High state (1)

Low state (0)

Clock period
1:CPE

A 4

A

negative edge
positive edge

CPU

Clock signal

RA -

15

© 2024, Skraba, Rozman, FRI

" J &

Timing diagram signal

Arbitrary (non-periodic) digital electrical signal

u (t) [V]

f

T State 1

L/ e /L

0 5 10 15 20 25 30 35 40 — t[ng]

Arbitrary (non-periodic) digital electrical signal - logical presentation

Long periods without
significant changes

State 1 / \ / /
State 0 T T (, (,
— time t for
example in [ns]

positive negative
edge edge

RA-6 16 © 2024, Igor Skraba, FRI

" &

Clock signal - periodic rectangular signal

T1 | T2 | : n

A
. A
A

A 4
Ca
Y.

u (t) [V]

!

t 1
Period - Cycle

1
1
1
1
1
1
1
1
7]
Pl

w!
»

1 second (} ()

o S

In the case of f = 1.25 GHz in 1 second we have 1 250 000 000 periods:
The frequency of the periodic signal f = number of periods (cycles) in 1 second
The unit of frequency is Hertz [Hz]: 1 Hz = 1 [Period/sec] = 1 [1/s] = 1[s7]

The duration of one period T=1/f

f=125GHz| =t = L 1 1

= = 10°[s]=0,8%107°[s]= 0.8
£ 1,25%10°[1/s] 125 [5]=0,8+10s]= 0,8]ns]

RA -6 17 © 2024, Igor Skraba, FRI

" J &

Central processing unit

m The state of the CPU, such as the states of all synchronous digital
circuits, changing only at the edge of the clock signal (clock signal
transition from one state to another).

m Edge, at which the changes happen in the CPU, is called active
edge.

m CPU can also change the state at the positive and negative edges,
this means that both edges are active. In one clock cycle, two
changes of the CPU state can be performed.

Why is the clock signal needed at all? 2 points of view ->

RA -6 18 © 2024, Skraba, Rozman, FRI

" JE &
Central processing unit
m Clock signal -> synchronization of combinational circuits with various

speeds
In synchronous digital memory (sequential) system clock signal (usually edge)
provides a moment of change to the internal state of the memory digital

circuit.
When the input signals in the memory circuit becomes stable, at the active
edge the change of the internal state of the memory circuit can occur.

LR

PWM

LL

uL

Internal Combinational Internal
state 1 digitally circuit 1,2,3, ... state 2
Clock
signal

— time t
19 © 2024, Igor Skraba, FRI

RA-6

" J &

Central processing unit

m Clock signal -> synchronization of multi-speed operations in computer

For example, access to memory in one clock cycle (read operation):

CPU determines f ‘\ CPU reads

(1
buses‘ content s T

(a:g;eg,:t, acgzg)o | Memory reads the content of data bus
buses
and performs the read
operation
(provides memory content
placed on the data bus)

RA-6 20 © 2024, Igor Skraba, FRI

" J &

Central processing unit

State of CPU changes on the edges of the internal clock. Shorter
clock period (higher frequency) means faster performance of CPU.

Shortening the clock period (increasing frequency) is determined by
the speed of the digital circuits and the number of circuits (length of
links) through which the signal propagates.

The minimum duration of the elementary step in the CPU is one
clock period (or even half-period, if both edges are active, but this
requires more complex circuit).

Fetch and execution cycles’ duration is always an integer number
of periods.

Number of periods for the execution of the instruction can vary
greatly.

RA

-6 22 © 2024, Skraba, Rozman, FRI

" J &

6.2 ARM CPU - features summary Much more related details
explained on LAB sessions

m RISC architecture (some exceptions)

m 3-operand register-register (load/store) computer
Access to the memory operands is only by using the LOAD and STORE

m 32-bit computer (FRI-SMS, ARM9, architecture ARMv5)
32-bit memory address
32-bit data bus,
32-bit registers
32-bit ALE

m 16 general purpose 32-bit registers
m Length of the memory operand 8, 16 and 32 bits
m Signed numbers are represented in two's complement

m Real numbers in accordance with standard IEEE-754 (in case of FP-unit)

RA -6 23 © 2024, Skraba, Rozman, FRI

" J o

ARM - features

m Composed memory operands are stored under the rule of little
endian.

m The instructions and operands must be aligned in memory (stored
on the natural addresses).

m All of the instructions are 32 bits long (4 bytes).

m ARM uses all three general addressing modes:
Immediate ADD R1, R1, #1
Direct (register) ADD r1, r1, r2
Indirect (register) - LOAD/STORE LDR r1, [rO]

RA -6 24 © 2024, Skraba, Rozman, FRI

ARM - features

Instructions for conditional branches use PC-relative addressing.

m Example of format for ALU instruction:

b31

2019

16 15

1211

3 b0

Operation code

Rs1

Rd

Rs2

RA -

25

© 2024, Skraba, Rozman, FRI

"

fat

6.3 Structure of the CPU (example of ARM CPE LEGvV8 & [Mini]MiMo)

m 6.3.1 Data path (unit)

1 ALU

1 software accessible registers

m 6.3.2 Control unit

1 Realization

m Micro-programmed (SW) or
s Hardwired (HW)

RA -6 26

© 2024, Skraba, Rozman, FRI

" &
Central processing unit - structure

6.3.1 Data path (unit)

The simplified structure of the CPU data paths including instruction and operand
memories

A

4 —»
> +
A
N
. »| address
) Registri
—{PC »| address instruction >ALE >
s RO - R14
*—>
> operand
instruction *> operand
memory memory

All data paths are M-bit, arrows indicate the direction of transfer

"% A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2024, Skraba, Rozman, FRI

" J &

Central processing unit - structure

m MUX - multiplexer: the digital circuit, that selects one from multiple
input signals and connects it to the output.

m Selection of the input signal is determined by control signal.

A 4

o Controlsignal 4 Controlsignal
Input 1 \:v\ Input 1 \
v Output Output
\c > /vc >
Input 2 T Input 2

A 4
\

RA -6 28 © 2024, Skraba, Rozman, FRI

Model of
CPU:
MiMo

Model of CPU
implemented with
logic gates in
Logisim

MiMo —
Microprogrammed
Model of CPU
(course OR VSP)

RA -6

MiMo - Microprogrammed CPU Model vosevo Debug con{ o]

Reset

Quick tips:
Use ctrl+t to manually toggle global clock signal
Use Simulate->Ticks. Enabled for automatic.clock signal

0000
cycle[@-{vgere] - stop[B-{avgasr] Instruction: =)
syscIk[—cLrm] : T on: .
Address BUS e[@>{on] paaloiodoat] fre] el
ress : & . 00 0 0 0
> : — (ivmmed] : -
[zoser) L :
ciosa bl Registers coinue e
Data BUS RO 0000 = br_instr :
[resetHl r1 0000 br_addr_on
— p— — — ImmRe R2 0000 = br._addr
T) g R3' 0000 ucounter Spec. Registers
ram 1= IS = [ma o000 pec. ™2
: DOOO-lI 4 PCnIa: xgg g
v :: zzs: IMM 0000 ={immed|
s ALUOut 0000 ={ aluout]
Fy
a Flags
1 c
z
o - ~
Status
ADDR DEC. New_CMD
fiz=cn .
1

ICycles 0 Cycles 0 Cmds 0

Micro Instruction

Micro_instr | 00002000 CROM|

Microcode Control Unit
Control ROM

Address of third uinstruction is "opcode+2"

Micropc 00={MioroPC| Next_instr 0101

"‘“"""'M" A WW swrite| datasel||indexsel| cand| | regsrc| imioad||iricad|| dwrite| pcioad]| pesei adarsei datawrite lwisedlibw
HexUTl 02/00011000 00000000 00 00 0o 00 00 00 0000
04/00000000 00000000
Dec 2) 00000000)
8/00000000 00000000! Frame Buffer LED 16x16 TTY
0a | 00000000 00G0D0CO

{_lclear_screen

Decision ROM

ROM 256 x 16

Ulclear

[aata] [cL]

ucounter [lcycles
resel [Eodlcycles
Eaadcmds

CycleCounter

https://github.com/LAPSyLAB/MiMo Student Release

https://github.com/LAPSyLAB/MiMo_Student_Release

Model of
CPU:
MiMo

Model of CPU
implemented
with logic gates
in Logisim

MiMo —
Microprogramm
ed Model of
CPU

Video

@ File Edit Project Si

Design Simulate

TEEY.E

i *mimo v05 EVO
£ mimo_vos
Q InstructionReg
ﬂ Registerfile
{Jaw
{Jrc
1;} ShowHexa
[Frame_Buffer 16x16
m Address_Decoder
1;] Counters
ﬂ DebugUnit
Q ImmediateReg
™ wiring
Gates
Plexers
Arithmetic
Memory

p

Input/Output

Properties State

Q, x0,8

At %/ 1

FPGA Window Help

%2

I MiMo_v05 of mimo_v05_EVO - Logisim-evolution v3.7.2 [UNSAVED]

Debug CO,,:t

EAddress:, D%afta Busé

Control ROM

. nudness of ['hm! vmstruc!lon is” opcwecz

ddress 0015 Data 5000

A ROM.256x32.

| 00/00002000 00080800
B 00011000 [TV N

0a|00000000 00000000| - -

aluo)
op2sei

datawrite|

addrsel|

csel]
cioad|

dwrite|

irloac

imload]

regsrd
cond| .
indexsel|
datasel|

ICycles' 2~ __ycies 1696 Cmds 399 :

Frafme Buéffer i.ED 1Gx16 S TTYE

@ABCDEFGHITRIMIG
| GABCDEPGHITKLMNC

RA -6

30

© 2024, Skraba, Rozman, FRI

" A &
MiMo — Microprogrammed Model of CPU
FPGA implementation

whi@lenny: -/Vivado

r

Helcome Lo minlcom 2.7

EEEEER MR 1 1ONS ;118 :
B FL lCompiled on Jan 1 2014, 1/7:13:19.
Port fdov/LiylsBl, 10:37:40

Proas CIRL-N 2 Tor help on speciol keyn

"zurmm':_i - L « s Serial output

e display

RA -6 31 © 2024, Skraba, Rozman, FRI

B — Mini MiMo - Hardwired Simple CPU Model vsevo
Address Data Instruction: «oooo={res| usounter @ icycles
(fycles

Reset SysCIk |address| E lopcodel liriﬁlsregsllmmedl [resetp— reset EOOEycles

[Eoadcmds
0000 uuuu

ADDR DE Rd R d CycleCounter
pe)—] .=" Address BUS ® mme
'
Model of CPU: m[=EE RAW
.)

A RAM 16K x 16

Read

[|
D) [——

Model of CPU i Data BUS Frame Buffer LED 16x16
- i =3¢ | OOOp
implemented with :
logic gates in
Logisim

A =" == Al
Mini MiMo =y B i
(course RA VSP) P s

cpop
B

Flags

danawme
Z

Fetch Execute Read Write
Control srgnafs

dwn!e regsrc datawrite| adm'sel _nd'nad Pc
n u | | OIU 00 —
Mini MiMo — .
ManualControl l’ COIJH’OI Umlt | @ |0P00d'3|
] = | continue
Simple Hardwired D—u l_l\ IIJ |

AND Rd, Rd, Rs

ORR Rd, Rd, Rs

ADD Rd, Rd, Rs

SUB Rd, Rd, Rs

LDRH Rd, [Rs]

STRH Rd, [Rs]
MOV Rd, Rs 9 @
NOP

br_instr -] BEQ Rd, immed
ga br_addr_on - BNE Rd, immed
- ! - i)
M d I f C P U br_adr = BGT Rd, immed
o e o ucounter i ®] a = BLT Rd, immed 0000
e dwrit luop datawrite irload addmsel peload] Ph - LDRH Rd, [#immed]
. write regsrc aluop datawrite irloa ai Ise | cloa pcse! ase .
1 6 i n Str asse m b I e r Debug Unit 1WiteRd QR OAND 1Wiite fWiite ore Pirie DINM 0 Fetch STRH Rd, [#immed]
perl 1 Execute MOV Rd, #immed
") stop B {bged] Adar[acop{adar] 300y 248 2Rs] B immed
Breakpoint 3sus 3Rd B

: More V.N. model like design (CPU,Mem,|O,..)
Use Simulate->Ticks Enabled for automatic clock signal v05: Migration to EVO, Debug, Counters, InmReg Units

L
I n Exce I) Quick tips: Based on: https://minnie.tuhs.org/CompArch/Tutes/week03.html Cmds’ © Cycles 0
[Use ctrl+t to manually toggle global clock signal . i i

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo HW CPE Model

RA -6 32 © 2024, Skraba, Rozman, FRI

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

" J &

Mini MiMo Datapath

Central processing unit - structure

—-_— - Address Data

6.3.1 Data path (unit) 7 ResetHe=] \sva@k bl [[

datal
0000 uuuu 0000

Address BUS
LI
N O |

Control BUS

Read En'te

All thicker data paths are
more than 1-bit wide

.ﬁ [- :
aluout

l -

[|

|

[

0~ Phase] 0 =g datawrite

sregs’
dregs pi§ 0

IR

reset

irload) 0000 irre Control signals

CLK imme: / |d\-m'te|regsrc| la.bopl |d‘aﬁawrite| !.irfoadl ladﬂ'se.l'l[
i
RA - 6 [— | opcoce [r— ’ nn nn nn ’ FRI

Fetch Execute Read Write

’________________§

/
:

" N _

ALU - datapath and control signals

CONTROL
SIGNALS

32 bits
FIRST OPERAND—<

32 bits
SECOND OPERAND—#

—~~—» RESULT

» CARRY, OVERFLOW

RA -6 34 © 2024, Skraba, Rozman, FRI

ALU — datapath and control signals

Case of Mini MiMo CPU

16-bit ALU

FIRST OPERAND
5 ——
AlPooooood bin
00000101 -
| b out

MUX @Carry
BlPooooo0O
00000011 aluop
SECOND OPERAND
CONTROL aluop
SIGNALS Signed
2 000000 0Result
2 D0000010
Unsigned

CARRY

RESULT

RA -6

© 2024, Skraba, Rozman, FRI

" J o

32-bit register bay| by | by by | by
BEY D3, D2 Do
Register - . _ . _ - . _ *
Write flip-flop flip-flop flip-flop o flip-flop
Clock signaIJ D34 L b3g bog N bo
» > > — >
v v v v
Qs Qs Qyg Qo
D. Timing diagram Truth Table
il .r_: Clock RegW D;| Q;
Register Fl
Writt ™| fin. Cloc.:k : T 0 01| Q
flip-flop Register i \
Clock N By Write | ! T 0 11 Q
l D/ 1 T 00
Flip-flop switches : I T 1 11 1
on positive edge Q Q | /T
RA -6 36 © 2024, Skraba, Rozman, FRI

Register unit

Case offd#itNiR1o CPU

32773

10000000
INPUT OPERAND regvalll 000000 p==re = {0]Reset RO
'%008-'. ® 00000000
) 00000000
— ¢
R1
?PO& $ 9 ! 0000000f
en0 1 0000001
1 Register values
| valu
R2 ro-r3
-I%OOC%I--I. . OOOOOOOrz
en0 00000010
L9
R3 32773
-I8005I--II ooo00000
?DOQ I I -32763 00000101r3
CONTROL
SIGNALS Rd select
3
register selection dsel é
Rd, Rs
sselE ? 0)Zero
Rd select
Write in Rd i @_ 10000000 00000000
dwrite 0000101 00000001 Flags Z, N
clock dreg sreg
Output (ONegative
Selected registers Rd, Rs
RA -6 37 © 2024, Skraba, Rozman, FRI

" J &
Central processing unit - structure

6.3.2 Control Unit (CU)

Is digital circuit (memory + combinational), that on the basis of the
content in the instruction (register) determines control signals.

Control signals trigger elementary steps in the datapath and
consequently the execution of this instruction.

IR register = 32-bit instruction register in which the instruction is
transferred during the instruction-fetch cycle: machine instruction is
read from the memory.

m IR ... "Instruction Register "

2 possible ways of CU implementation:
m Micro programmed (SW: simple, slower)
= Hard wired (HW: complex, faster)

RA -6 38 © 2024, Skraba, Rozman, FRI

" J &

CPU: datapath, control unit, and control signals

/— Conditional jump instruction

Jump address
50 CONDITION TRUE
k
=1
)
LSS
Type of ALE operatipn
Instruction _ Operand
memory Ly \ memory
< bl mg address
) Registers T
> PC »| address instructiojr¢—, >ALE o operand |—»
RO - R14 l
[= 2 -
TB—' > operand
™ Register Write -
Memory R/W

A 32-bit connection A~

for instruction transfer |

Control
unit

32-bit data

link

linstruction registerf
Control signal >]

(usually 1 bit)

RA -6 A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

" &

Control unit (Micro-programmed implementation — e.g. MiMo model)

Machine instruction XXX B ol-------------|-- > g
c S5
1. Micro- _ SJfF-------=-=-=-=-=--- > =
micro 1 & o
i . . I srr-""""""=""=-"=""=-=-=-- -> 2}
2. Micro- instruction = Q
3. Micro micro PROGRAM - |------- wo oo - - 7
memory
N. Micro
instruction
address
4
1
+
micro PC
CPU clock 7
/ MUX \\7
o © A A

RA -6 40 © 2024, Skraba, Rozman, FRI

fat

Control unit (Micro-programmed implementation —MiMo model)

Micro program for instruction : Primeri stan]

Machine instr. XXX kontrolnih signalov
1. Micro- JNEZ Rs,immed l

2. Micro-
, Nasl. vodilo=PC
3. Micro _ Vpis v ukazni reg.
Y " - -
Machine instr. XXX JNEZ RD’Immed'
- Mereinstr— fgtch: addrsel=pc irload=1
2. Micro instr. pcload=1 |
3. Micro instr. 40: addrsel=pc imload
aluop=sub op2sel=constO, if z then pcincr else jump
N. Micro instr. peincr; pcload=1 pcsel=pc

jump: pcload=1 pcsel=i

PC=Tak. operand

RA -6 41 © 2024, Skraba, Rozman, FRI

Control unit (Hard-wired)

Machine instruction XXX
1. Control. signals
2. Control. signals

3. Control. signals

N. Control. signals

instruction
REGISTER

Combinational
LOGIC

INPUTS

no

SindL

|
I
I
I
I
I
I
I
I
I
I
I
I
|
I
v
sjeubis |0Jju09

A

OP.CODE| Info. on operand

state register

CPU clock

[L

N

instruction

A A A

4

L

RA -6

42

© 2024, Skraba, Rozman, FRI

Control unit (Hard-wired): case Mini Mimo

Machine instruction XXX
1. FETCH - Control signals

2. EXECUTE - Control signals

{________________/

Control signals

datawrite

irload an:;‘dr‘s:-:;l pcload |pcsel| Phase
Ura CPE

ManualControl| 0. P

r’

Control Umt ; "ﬁs’e’d |£'|-£|

=
CONTROL SIGNALS

AND Rd, Rd, Rs

PC ORR Rd, Rd, Rs

0000 ADD Rd, Rd, Rs

SUB Rd, Rd, Rs

LDRH Rd, [Rs]
STRH Rd, [Rs]
MOV Rd, Rs
NOP

BEQ Rd, immed

BNE Rd, immed

MM

dwrite regsrc aluop datawrite irload addrsel
1 Write Rd ORs 0 AND 1 Write 1 Write
1 IMM
ORR
2 DBus 2 ADD 2Rs
3 SuB 3 Rd

BGT Rd, immed

BLT Rd, immed 0000
LDRH Rd, [#immed]

L] b

CTT =TT T T

PNRe Posel || Phase STRH Rd, [#immed]
1PCH | 1 Execute | MOV Rd, #immed
—— B immed

RA -6

Phase = 0..FETCH, 1. EXECUTE ~© 202 Skraba Rozman, FR

" JJ
Control unit (Hard-wired): case Mini Mimo

Phase counter

Machine instruction XXX
1. FETCH - Control signals

2. EXECUTE - Control signals Ura CPE
I_I_,_| clock

Phase = 0..FETCH,
1..EXECUTE

INPUTS === COMBINATORIAL

CURCUITS * OUTPUT

RA -6

IR Load

true
O -
| MU irload
false i

phase

CONTROL SIGNALS

" J &

CU Implementation approaches - Comparison

Control unit (Micro-programmed) Control unit (Hard-wired)

ITVNOIS INTOHLNOM

= -
StrojniukazXXX | [|eeeeeo » 21 StojniukazXxX = FEEEEEE oo
') Y -~ 3 1.Kontr.signali | fmemmmmmmmmeek-
1. Mikro UKAZ Miko UkAZA S| T Lz T ittt e S
2. Mikro UKAZ = p 2. Kontr. signali
3. Mikro UKAZ Mikro PROGRAMSKI = [=== === =="===-| - - % 3. Kontr. signali KOMBINATORIGNA T
g LOGIKA 2
Pomnilnik =
N (TR N N. Kontr. signali
Naslov VHODI
T 1 A 4 A
E+ g
UKAZN
Mikro PC REGISTER ——
Ura CPE -
| OP.KODA ‘ Info. o operandlhl | REGISTER STANJA |
ImEm MUX Ura CPE A { X 4 4 4 I

opcode
clock
reset|
Zero
Negative

UKAZ

Externally same, different in internal operation

opcode

clock
reset

o zero

- n‘e‘gatwe

phase
aluop
pesel
irload

"7 readwrite

pcload
regsel
dwrite
addrsel

ControlUnit_SW

dITTETTTH

opcode
clock
reset
Zero
Negative

opcode
clock
reset
Azero -

negative.

readwrite

: 'péload —

phase

aluop
pesel
irload

regsel fum
dwrite
addrsel

RA -6

45

© 2024, Skraba, Rozman, FRI

CPU: datapath, control unit, and control signals
CU constantly controls operations

Conditional jump instruction

Jump address ¥
x| CONDITION TRUE
k
4
e
LS
Type of ALE operatipn
Instruction _ Operand
memory > \ memory
»| © address
—{PC »| address instructiop—¢-»| | Registers I >ALE o operand [—»
RO - R14
> R
7'j_>|§ > operand
x
) Register Write _—
Memory R/W
A 32-bit connection A~
. . R | | | |] | ___ | | | | | | I | | | | | | | || | ___ | o
for instruction transfer | \
(Control

unit I
32-bit data I
link I

I Jinstruction registerf-

Control signal Y] [

(usually 1 bit)

—

— e — S

RA -6

A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

" J &

CPU: datapath, control unit, and control signals

I I I S S .y
Elements for access to instructions (Yo Conditional jump instrucfion

, - I\: Jump address I¥ I
x| CONDITION TRUE
‘Q

I apm mmm
N = = |
2 <
- . - \ I‘
T f ALE ti
r — { Instruction I ypeo_ eperatipn Operand
memory Ly memory
I I I > m—-b\ address
I | | Regist
T PCH address instructiof ¢ R%gISRe‘IE I >ALE o operand [—»
[o R
I I I 7'j_'|§ >» operand
— J I I ™ Register Write _—
‘ Memory R/W
| ".

A 32-bit connection A

for instruction transfer —_— il
Control

unit 1
|

32-bit data
link

Jinstruction registerf-

Control signal .
(usually 1 bit) |

—>| L

- ==

RA -6 A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

" J &

CPU: datapath, control unit, and control signals

Control signal
(usually 1 bit)

—>| L

Execution of ALU instructions (e.q. ADD) /" Condiional jump insiructon
I: Jump address ¥
< € CONDITION TRUE
‘Kg
4
Type of ALE operatipn
Instruction | Operand
memory B memory
Sk —->\ address
C) Registers I
ENI=} » add ; ; > > I9) operand |—»
address instructiofr RO - R14 I ALE
| +> R [
7%—» >} operand
| ¢ _'Lx |
Register Write -
\ / Memory R/W
. . Sy | __ | | || || || ’
A 32-bit connection 1/~ _ L
for instruction transfer i |
Control
unit 1
32-bit data I -
link 1
I Jinstruction registerf-
|

- ==

RA -6 A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

" J &

CPU: datapath, control unit, and control signals

Execution of LOAD / STORE instructions /] Conditonal jum instructon
I: Jump address ¥
x [« CONDITION TRUE
‘Kg
4
| | || | | ﬂ | | | | | 1 1 ! I L L Iy
e Gl »
Q: l
I Type of ALE operatipn
Instruction | _ Operand I
memory Ly memory
| © —->\ address I
C I) Registers I
> P »| add i i » o operand |—»
address instructiofr r.» RO - R14 I >ALE I
7"%* > operand
L] et l
\ Register Write -
Memory R/W /
} | __ | | | | | | | ||] | | | | | | ’
A 32-bit connection 1/~ _ L
for instruction transfer i |
Control
unit 1
32-bit data I -
link 1
I Jinstruction registerf-
Control signal Y] H

(usually 1 bit) |

- ==

RA -6 A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

" JdE &
CPU: datapath, control unit, and control signals
Execution of branch instructions

bty -

/— .a)nditional jump instruction

Jump address ¥
I < | ¢ CNDITION TRUE
‘Kg
| 4 l
r<Je
I LS |
Type of ALE operatipn
| Instruction _ I Operand
I memory L N I memory
»| O address
I > .
—{PC »| address instructiop—¢-»| | Registers I >ALE operand [—»
I I RO - R14
I $'j—>|§ > operand
\Bg Register Write -
l Memory R/W
—— || | | | __ '_ | | — I’ | __ | | | | ||)
A 32-bit connection A
. . . . -
for instruction transfer i |
Control
unit 1
32-bit data I -
link 1
I Jinstruction registerf-
Control signal Y] H

(usually 1 bit)

- ==

RA -6 A simplified version of the ARMv8 (Source: [Patt] Sec. 4) © 2% Skraba, Rozman, R

= _ i
6.4 Execution of instructions

An example of execution of a typical instruction for ALU operation:

= ADD R10, R1, R3 @ R10«+~ R1+R3

Instruction Format:

31 20 19 16 15 12 11 4 3 0
. Source |Destination Source
Operation code register 1| Register unused register 2
Machine instruction:
31 2019 16 15 12 11 4 3 0

[1110000010000001101000000000001 1

RA -6 51 © 2024, Skraba, Rozman, FRI

"

Execution of the instruction ADD: 1. elementary step (T1) = 1 Tcpe (Clock period)

—

CLOCK T1: Accessing instructions in the instruction memory
< T2 e 13 >|= T4 >l< 15 -t
P Fetching instruction |, Execution of instruction R
I{.--— &mdﬂmulm insiruction
lJ,I Jurnp address lk'*-u_
Ay COMDITICN TRUE
[N L":"--
) ‘ Twpe af ALE aparalipn
(In=truct Cperand
~ N ﬁemnﬁn I] Mmemory
I I I address
I, ™ Regi
. ol isters operand
fF’Cfb sddress Instuster 11 | Ro- Rt e
I I I I operand
— I I 1 Fegisier Wrke —
Moy RW
\ L] |
A 32-bit conneclion 4 | e ————
for instruction fransfer (]J
I IJF‘IiE =
32-pit data]
link I
RA -6 finstruction registad-i
Control signal - 1
(usually 1 bit) ']

e

ADD R10, R1, R3

Rozman, FRI

"

Execution of the instruction ADD: 2. elementary step (Tw) = n Tcpe (Clock period)

fat

CLOCK n Tw: On instruction fetch maybe wait clock cycles are needed
— — —— ADDR10, R1, R3
Lo ey, e | 1 w15 o
< Fetching instruction >l Execution of instruction >
Candifional jump instruction.
I,./‘_ £
S|
CONDITION TRUE
nstmction Twpe af ALE aparalipn Operand
memiary] MEMIory
address
;) ™ Reqisters 4
—#| P | address instructiop—4-» .EEH.EWHG_ e pperand
b
operand
™ Fegisier Wrke —
Moy RW
A 32-bit connection | I
for instruction fransfer J
R
32-bit daia
link
RA -6 finsiruction registad Rozman, FRI

Control signal af 1
(usually 1 bit)

"

Execution of the instruction ADD: 2. elementary step (T2) = 1 Tcpe (Clock period)

ADD R10, R1, R3

Rozman, FRI

CLOCK T2: Transfer of instruction from memory into the instruction register
< T, < 13 >|= T4 >l< 15 -t
P Fetching instruction |, Execution of instruction R
I{.--— &mdﬂmulm insiruction
lJ,I Jurnp address lk'*-u_
5 * COMNDITION TRUE
nstmction Twpe af ALE aparalipn Operand
memiary] MEMIory
address
—* .
— PO+ address instructiop=p-= %%H:'Eé%?_ pperand [
b
operand
™ Fegisier Wrke —
Moy RW
A 32-bit connection —
for instruction fransfer (]J
I IJF‘IiE =
32-pit data]
link I
RA -6 Jinstruction regesterd
Control signal 1. 1
(usually 1 bit) =+]

" M

Execution of the instruction ADD

CLOCt
| L ADDRI10,R1,R3

[
——— T S 7SN P -t

P Fetching instruction |, Execution of instruction

>

m Execution of the instruction ADD lasts for example 5 periods (CPl, = 5)
1 T1: Read instruction from memory
1 T2: Transfer of instruction from memory into the instruction register
O T3: Decode the instruction and access to the operands in registers R1, R3
O T4: Execution of the operation (addition)

O T5: Saving the result in the register R10 (writeback)

RA -6 55 © 2024, Skraba, Rozman, FRI

"

Execution of the instruction ADD: 3. elementary step (T3) = 1 Tcpe (Clock period)

fat

cLOCK T3: Decode the instruction and access operands in reg. R1, R3

T1 .

d
L]

T2

A
A\ 4

Fetching instruction

»lg

A

ﬁl T4 >l 5 R

Execution of instruction

Y

|

—t

&mdﬂmulm insiruction

Instruction
memory

lJ,I Jurnp address
[
-

()4

COMDITION TRUE

e P #{ address instruct

uuuuuuuuuu

A 32-hit connection .4~

32-hit data
link

RA -6

Cperand
MEmory

address

operand

operand

Moy RW

—

Jinstruction regesterd
e

Control signal
(usually 1 bit)

e e

a

—— ADDR10,R1, R3

Rozman, FRI

"

Execution of the instruction ADD: 4. elementary step (T4) = 1 Tcpe (Clock period)

T4: Execution of the operation (addition)

Rozman, FRI

CLOCK
= — —— ADDR10,R1, R3
PR PR SR PR RN o | -t
P Fetching instruction |, Execution of instruction R
I{.--— &mdﬂmulm insiruction
lJ,I Jurnp address Y|
5 o+ COMDITION TRUE
Instruction L L o p— Cperand
Memory \ MEemory
address
N [
Ll PC4—] sddress instructioh—-»{ | Beqisiers ¢ pperand [
I I Y RO-R14 I
operand
) Fegisier Wrke Ir
Moy RW
A 32-bit connection 7 | e ————
for instruction fransfer (]J
I IJF‘Ii[bl
J2-bit data]
link I
RA -6 finstruction registad-i
Control signal I sl |
(usually 1 bit)) |

"

Execution of the instruction ADD: 5. elementary step (T5) = 1 Tcpe (Clock period)

fat

Rozman, FRI

CLOCK T5: Saving the result in the register R10
- e —— ADDR10,R1, R3
PR TR DRSS U S N /B -t
P Fetching instruction |, Execution of instruction R
I{.--— &mdﬂmulm insiruction
S|
CONDITION TRUE
netruction —-— .y I_}H;__uf.l"..LEcu-emliE l Operand
memary |] ey
I address
] Reqisiers 4
= i MOfT * OpErand —
P C address instrsct T TP I =
operand
) Fegisier Wrke
- ermﬂ"'."u'
A 32-bit connection 7 | e ————
for instruction fransfer (]J
I IJF‘Ii[=
32-bit daia]
link I
RA -6 finstruction registad-i
Control signal - 1
(usually 1 bit) ']

" &

Execution of the instruction ADD: Summary

ADD R10, R1, R3

CLOCK

| | — — !

)l L] L B L]

Fetching instruction Execution of instruction

& »
€ L]

»
L

m Execution of the instruction ADD lasts for example 5 periods (CPl,, = 5)
1 T1: Read instruction from memory
1 T2: Transfer of instruction from memory into the instruction register
1 T3: Decode the instruction and access to the operands in registers R1, R3
1 T4: Execution of the operation (addition)

1 T5: Saving the result in the register R10 (writeback)

RA -6 59 © 2024, Skraba, Rozman, FRI

] J https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo HW CPE Model

CPU — instr. execution: case Mini MiMo CPU

Mini MiMo - Hardwired Simple CPU Model wsevo

Address Data Instruction: (oooo ={irreq] E@.
ResetHe=] syscifm—en] [@ |u,,m| @|mgs|.md|
0000

uuuu

ucounter @ icycless m
reset [@@BAcycles m

[oodcmds

Rd Rs |mmed

Address BUS

RAM
A RAM 16K x 16

2
y y 000
— OF 0008/0000 0000 0000 0000)
Control BUS oo comto enoms]
P & 1
o TTY
Reéd M#lte _ o |l
: — 1|
- —e
| ClearScr
Data BUS Frame Buffer LED 16x16
]
LI O
g
0000 -
o aluout
Flags
s
:@ Tt~
|dregs 44 0 Fetch Execute Read Write
IR[— | H

[resen)
[irioad 1§ 0000 (irreg] Control signals

0000 aw:ne regsrc datawrite)

0 00 0o

Debug ' |
reset
anuaIControI l’ Cont | Unit IQPT |?l |0Pmde|

AND Rd, Rd, Rs
ORR Rd, Rd, Rs

ADD Rd, Rd, Rs

SUB Rd, Rd, Rs

LDRH Rd, [Rs]

STRH Rd, [Rs]
MOV Rd, Rs » &
NOP

BEQ Rd, immed

BNE Rd, immed

BGT Rd, immed
BLT Rd, immed 0000
LDRH Rd, [#mmed]

continue

p br_cycle

br_instr
br_addr_on
br_addr
ucounter

b pcreg

" dwme regsrc aluop damwnle irload addrsel pcload pcsel Phase :
Debug Unit 1Write Rd ORs . O0AND 1Wrte 1wrte O0PC 1Wre gl o Fetch STRH Rd, [#mmed]
- 1IMM - ¢ ogr 11MM TP+l 1 Execute MOV Rd, #mmed
Stop B dbgad] Addrm'. 20Bys 2 ADD 2Rs

B immed

Bres’ j
Q“'E“'psl N ____i__ _________ ____i____Q___ _'_:__:_E_:_"
se cirl+t to manuall, 1 m L. . ﬂ .o . . P . B I .
RA -6 Use Simulate->Ticks I . i R . o o . . . :] 024, Skraba, Rozman, FRI

dwrlte regsrc- aluop - datawrlte - -irload - addrsel pcload pcsel - - -Phase- ;-

Control signals for instructions execution

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo HW CPE Model

case Mini MiMo CPU: Sum of two numbers

16 bitni ukazi - format:

opl op2

Rd

Rs

immediate

Program »
e L
main: MOV RO,#0x20 €020
LDRH R1, [RO] 4400
0x0002 MOV RO,#0x21 €021
LDRH R2, [RO] 4800
ADDR2,R2,R1 2900
MOV RO,#0x22 €022
STRH R2, [R0] 5800
inf. Binf f007

Control signals for execution of :

addr
ARMS zapis
load

XX FETCH - vsi ukazi

10 ADD Rd, Rd, Rs X
00 LDRH Rd, [Rs] X
01 STRH Rd, [Rs] X
10 MOV Rd, #immed X
11 B immed o(IM)

2b

2b

0
0
0
0

o oc|-..||c:h‘u1|.l=-|w|r~.:|—x|

B., Assembler in Excel

Address Instruction
0 MOV Rd, #fimmec
LDRH Rd, [Rs]
MOV Rd, #immec
LDRH Rd, [Rs]
ADD Rd, Rd, Rs
MOV Rd, #immec
STRH Rd, [Rs]
B immed

O 00~ O UV BEWwN

RO
R1
RO
R2
R2
RO
R2
RO

Rs

Immed Machine instr.
RO 32 EQ20
RO 4400
RO 33 EO21
RO » 4800
R1 2900
RO 34 E022
RO 5800

Register

a
2

| E minimimo_vsota.ram E3J |. test17—tournament.*minimimo_sestej.ram

1

IOV)

Ll

0 1 X 3(ALU) Rd Rs

0 1 2(Rs) 2(Dbus) Rd Rs

1 0 2(Rs) X Rd Rs

0 1 X 1(M) Rd x

0 0 X
ERENEIEN LA N ——— -=
i i)
|rload addrsel pcload pcsel Phase 1.

v3.0 hex words addressed

0000: e020 4400 e021 4800 2900 e022 5800 f007
0010: 0000 0000 0000 000O0O 0000 0000 0000 0000
0020: 0010 0040 0000 0000 0000 0000 0000 0000

¥

Mini MiMo CPU
RAM memory

© 2024, Skraba, Rozman, FRI

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

Challenge (HW1 or optional extension to HW1)

Program/edit Mini
MiMo model

Mini MiMo - Hardwired Simple CPU Model vosevo
Address Data Instruction: oo ={ireq] e e e

Resel I ororl-GH o [anel (o) llelitid B

W

Address BUS

Rd Re immed

o,
[addree}—
. Control BUS
Registers [rawsa)
EX
|
I | ClearScr
Data BUS Frame Buffer LED 16x16

Flags
o o] g

Fetch Execute Read Write "

Control signals

mmmmm
00 0g Qoo

=TT

. Control Un

3 ed]
MOV Rd, #mmed
B immed

it
stop[E>{ibgna] Addr

Quick tips:
Use ctrist

2Rs.
IRd

nualy toggle lobal clock signal L ot e aes sign (CPUMen.O,)
i Enaslafor ot dock sgnal V09, Migration fo BV, bebug, Gounters. mmRed Units m

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo HW CPE Model

Challenge: Dare to create your

own CPU ?

Preprost model CPE s krmilnimi signali E_@
Mem AddrsssE 0000000 - RAM 2568 - S .
T value 0000 0000 00 0000 0000 00 [—~{(reset]
Ergrord : oo nroe
-+ E=—{>0—|0F 14/00000000000000000000|‘ o :
: S : - 1e(0000 0000 00 0000000000 -
- store [0} -1 . . 28/00000000000000000000 . |
Store_from RA@— . 32(00000000 000000000000/ .

Load_Register [0] Avtor’ Filip Brajtit [2032) ©

Example of challenge solution
from 22/23

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO vezja/Prispevki

|I'|S|I'UC"DI1 RA

RA -6

62 © 2024, Skraba, Rozman, FRI

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja/Prispevki

" J &

6.5 Parallel execution of instructions

m [ypical CPU arch. — execution of machine instructions takes at
least 3 or 4 clock periods, usually even more.

m The average number of instructions executed by the CPU in one
second (/PS - Instructions Per Second).

f
.[PS = _CFE IPS is a very large number, so we divide it by 10® and get MIPS

MIPS = Million Instructions Per Second

MJ’PS — fCPE fope = Frequency of the CPU clock

CP_[. 106 CPI = Cycles Per Instruction

(average number of clock periods
for the execution of one instruction)

RA -6 63 © 2024, Skraba, Rozman, FRI

" J &

Parallel execution of instructions

m MIPS - the number of instructions executed by the CPU in one
second, can be increased in two ways: to increase f-pg and/or
reduce the CPI:

t mips — L Lo -
v CPI 10

Using faster electronic elements (increase f,- = more periods in
one second)

With the use of a larger number of elements we can reduce the CPI
(less clock cycles per instruction) where more instructions are
executed in one clock cycle

Use of faster electronic components does not allow larger increase

in speed; it also causes other problems.
RA -6 64 © 2024, ékraba, Rozman, FRI

"

General trends in Computing Evolution

50 Years of Microprocessor Trend Data

! ! ! ! F
T R
; | P
106 I S R S X ‘-‘AAA ______________________
AL
5 i ; AiAtiA 3
10° | f i X 2e
: E A A o @®
4 % ~HE g ‘:%"-
10" - ‘Grr ot
10% | as -‘A.-Qiﬁ"
> 3 g
102 F B ° *.- v;'v“"’ "%‘* vztgot
s T AN L
101 | A ______________ .- 'V" ________ P "‘.
A = N vov | : R
i g v v v 'y vy
10° -7;770 rrrrrrrrrr ¢ o B e mmmoo R R -
! | . ! |
1970 1980 1990 2000 2010 2020
Year

| Transistors
_| (thousands)

Single-Thread
Performance

| (SpecINT x 103)
||‘l.lllul |.-.|r|.:| Frequency (MHz)

Typical Power
(Watts)

Y| Number of

*|Logical Cores

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2021 by K. Rupp

Vir: https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

RA -6

65

© 2024, Skraba, Rozman, FRI

https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

" A f
Moore's law

Increasing the number of transistors - Moore's Law

m Electronic Magazine has published an article in 1965 by Gordon E.
Moore in which he predicted that the number of transistors that
producers are able to produce on a chip doubles every year.

m In 1975, the prediction was adjusted to the period ob two years
(number of transistors doubling every two years).

m As it was then intended as experimental rule should apply the next
few years, it is still valid today and is known as Moore's Law.

RA -6 66 © 2024, Skraba, Rozman, FRI

Moore's Law - increasing the number of transistors

intgl. Moore’s Law

i
S

CF o Gong
e
éé

.'-'-ﬁ:‘:‘?' . } _
&
T

%
T
T
)
S

1 i - .1 L L o
o (i et s

Tasf g pin by et
L I

i i

relative Manufacturing cost per Component

In 1965, Gordo NUMber of components per IC . |, .o of

silicon technology. Decades later, Moore's Law remains true,
driven largely by Intel’s unparalleled silicon expertise.

According to Moore’s Law, the number of transistors on a chip roughly doubles
every two years. As a result the scale gets smaller and smaller. For decades,
Intel has met this formidable challenge through investments in technology and
manufacturing resulting in the unparalleled silicon expertise that has made
Moore’s Law a reality.

RA -6 67 © 2024, Skraba, Rozman, FRI

" J &

Moore's law

m Gordon E. Moore is now honorary president of Intel, in 1968 he
was co-founder and executive vice president of Intel.

m With the same technology in the period of 20 years some time ago,
the maximum speed of logic elements increased by about 10 times.

m At the same time, the maximum number of elements on a single
chip increased by about 500 to as much as 5000-times in the
memory chips.

RA -6 68 © 2024, Skraba, Rozman, FRI

{ -1 B ¥
. GLs -H:\i_ ""-“‘“ } I (e Rome
= . R - 3 AN
'2-core Xeon Phj Lentnq é\':[---' ? & AWS Graviton2
™ -y % —
5'1'*' -*E:l._ A \x\\‘\\ lo 12 e "",lr-__.‘[y k Y
rage Controller . ™S CApple A12X Bioni

Haswell-k

' 5o N P 8Hih““” Kirin 990 5(
: i 3 ."'.L'-[|-- 513 (iPhone 11 Pro)
) O B pple AlS ne 1 (
Moore’s Law: The number of transistors on microchips doubles « main “oc D N ©AMD Ryzen 7 3700X
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approxit "-':':'E.:',’_','l '“’__s 8 o ™ HiSiticon }: fn 710
This advancement is important for other aspects of technological progress in computing - such as processing speed " OWER 'g 3 ’ ST L g
o

; 0-core Core i7 Broadwell-f
Transistor count Qualcomm Snapdragon B3:
50,000,000,000

Jual-core + GPU Iris Core i7 Broadwell-U
luad-core + GPU GT2 Core 17 Skylake K

10,000,000,000 core + GPU Core i7 Haswe

5,000,000,000

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

1,000,000
500,000

100,000
50,000

10,000 1,46 100
5000

1,000 Intel 4004

ST L G S U i -

AR A IO

Data source: Wikipedia (wikipedia.org/wiki/Transistor_count)
QurworldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the authors Hannah Ritchie and Max Roser,

A o do & Vv o D O 0 W oW B D
L= - - o NI A Y
CUCIIC Ut it g g

Year in which the microchip was first introduced

RA -6 69 © 2024, Skraba, Rozman, FRI

Moore's law — Transistor count through time

Transistor

Process
Processor = Transistor count = Year = Designer = = Area (mm?) = density
(nm) (tr./mm?2)
: 3 . 74,442 (5,360 excl. 42)
MP944 (20-bit, 6-chip, 28 chips total) 3 1970l12la] | Garrett AiResearch | ? 7 7
ROM & RAM)[141[15]
Intel 4004 (4-bit, 16-pin) 2,250 1971 Intel 10,000 Nnm 12 mm?2 188
TMX 1795 (8-bit, 24-pin) 3,078["6] 1971 Texas Instruments | 7 30.64 mm? 100.5
Intel 8008 (8-bit, 18-pin) 3,500 1972 Intel 10,000 nm 14 mm?2 250
NEC uCOM-4 (4-bit, 42-pin) 2,5000171018] 1973 NEC 7,500 nml19] ? ?
Toshiba TLCS-12 (12-bit) 11,000+[2°1 1973 Toshiba 6,000 nm 32.45 mm?2 340+
Intel 4040 (4-bit, 16-pin) 3,000 1974 Intel 10,000 Nnm 12 mm? 250
Motorola 6800 (8-bit, 40-pin) 4,100 1974 Motorola 6,000 nm 16 mm?= 256
Intel 8080 (8-bit, 40-pin) 6,000 1974 Intel 6,000 nm 20 mm? 300
TMS 1000 (4-bit, 28-pin) 8,000!P] 1974127] Texas Instruments 8,000 nm 11 mm?=2 730
MOS Technology 6502 (8-bit, 40-pin) 4,528!<122] 1975 MOS Technology 8,000 nm 21 mm=2 216
Intersil IM&100 (12-bit, 40-pin; clone of PDP-8) | 4,000 1975 Intersil 7 ? 7
CDP 1801 (8-bit, 2-chip, 40-pin) 5,000 1975 RCA 7 i 7
RCA 1802 (8-bit, 40-pin) 5,000 1976 RCA 5,000 nm 27 mm? 185
Zilog Z80 (8-bit, 4-bit ALU, 40-pin) 8,500!] 1976 Zilog 4,000 nm 18 mm? 470
Intel 8085 (8-bit, 40-pin) 6,500 1976 Intel 3,000 nm 20 mm? 325
L B B
19,000,000,000
Apple A17 187] 2023 Apple 3nm 103.8 mm? 183,044,315
Sapphire Rapids quad-chip module (up to 44,000,000,000— 10 nm ESF (Intel 2 27,500,000—
188] [189] 2023 Intel 1,600 mm
B0 cores and 112.5 MB of cache)[48,000,000,000 7) 30,000,000
Apple M2 Pro (12-core 64-bit ARM64 SoC,
PP ¢ 40,000,000,00001] 2023 Apple 5nm ? ?
SIMD, caches)
Apple M2 Max (12-core 64-bit ARM64 SoC, 190
67,000,000,000119°! 2023 Apple 5nm ? ?
SIMD, caches)
Apple M2 Ultra (two M2 Max dies) 134,000,000,000!€] 2023 Apple 5nm ? ?
AMD Epyc Bergamo (4th gen/97 X4 series)
i 191] 5 nm (CCD)
9-chip module (up to 128 cores and 256 MB 82,000,000,000! 2023 AMD 6 (10D) rd 7
nm
(L3) + 128 MB (L2) cache)
AMD Instinct MI3B00OA (multi-chip module, 24 5 nm (CCD,
cores, 128 GB GPU memory + 256 MB 146,000,000,000!19211193]1 | 2023 AMD GCD) 1,017 mm? 144,000,000
(LLC/L3) cache) 6 nm (I0OD)
Transistor
Process 2
Processor Transistor count Year Designer () Area (mm*) density
nm
(tr./mm?)
RA -6 70 © 2024, Skraba, Rozman, FRI

" N

Moore's law — Transistor count regarding the type of device

Number of
Year Component Name MOSFETs Remarks
(in trillions)
Micron's V- . i
2022 | Flash memory 553 stacked package of sixteen 232-layer 3D NAND dies
NAND module
Wafer Scale) i .
2020 | any processor) 2.6 wafer-scale design of 84 exposed fields (dies)
Engine 2
o Uses two reticle limit dies, with 104 billion transistors each, joined
2024 GPU Nvidia B100 0.208)) o .
[Brez nasloval together and acting as a single large monolithic piece of silicon
microprocessor) L)) .
2023 . M2 Ultra 0.134 SoC using two dies joined together with a high-speed bridge
(commercial)
Colossus Mk2 I
2020 DLP 0.059 An |pylciarification needed] i contrast to CPU and GPU
GC200
DLP... ,Deep learning processor*

RA -6

71 © 2024, Skraba, Rozman, FRI

Parallel execution of instructions

How to effectively utilize multiple items?

m Efficient increase in speed of CPU:

CPU performs parallel more operations, which means an increase in the
number of needed logic elements.

Parallelism can be exploited on several levels:
m Parallelism at the level of instructions:

Some instructions in the program can be carried out simultaneously — in
parallel

CPU in the form of pipeline:
m Exploitation of parallelism at the level of instructions

m An important advantage: the programs stay the same !!!
m Limited, so we are looking for other options

RA -6

72 © 2024, Skraba, Rozman, FRI

" &

Parallel execution of instructions

m The first higher-level parallelism is called parallelism at the level
of threads.

1 Multithreading
1 Multi-core processors

m Parallelism at the level of CPU (MIMD - multiprocessors,
multicomputers)

m Data-level Parallelism (GPU, SIMD, Vector units)

RA -6 73 © 2024, Skraba, Rozman, FRI

" J &

Example parallelism level instructions, threads and cores Intel 80x86

m Intel Core i7 Haswell

Feature size 22 nm (= 22 * 109 m)

The number of transistors 1.6 billion (= 1600000000)
The size of the chip 160 mm? (From 10x to 26x mm?2)
The clock frequency from 2.0 GHz to 4.4 GHz

The number of cores (CPU) 4

graphics processor

Socket LGA 1150

TDP (Thermal design Power) from 11.5 W to 84 W
Price ~ 300-400 $

RA -6 74 © 2024, Skraba, Rozman, FRI

" EE———— _

Intel 80x86

Structure of 4-core processor Intel Core i7 (Haswell)

DDR3 memory controller

2x8B @ 16GT/s=256GB/s 4x20b @6,4GT /s

RA -6 75 © 2024, Skraba, Rozman, FRI

" &

Example parallelism level instructions, threads and cores Intel 80x86

Simultaneous Multi Threading
(SMT) Thread 1 T

,2Hyperthreading“ on Core i7 Thresd 4 ‘M
1 core supports 2 threads Thread 7
(two ,virtual® cores) Thiead 8

T ~—PC

=
=

VY

l-cache and Fetch Allocate/ Reorder Scheduler Registers Execution D-cache Register Hetirement
micro-op cache queue renaming buffer write queue

RA -6 76 © 2024, Skraba, Rozman, FRI

" N M

Intel 80x86

CPU chip|on the socket with the contacts (LGA775)

Contacts to connect
chip to the motherboard

The upper side Lower side with the contacts and the capacitors

RA -6 77 © 2024, Skraba, Rozman, FRI

Intel 80x86

Core (dig) Tim Thermally conductive interface
Integrated cooler |Hs
g —_—

Subsfrate CPU chip with the base
T and the housing

. _ — cross section

e alnlelele Qﬂﬂﬂﬂﬂﬂml}ﬂﬂﬂﬂﬂﬂﬁl}uﬂﬂ

Qg
EDDDDDDEEDDDDDDEGGDDDDDEEGDDDDDUE
[eininlnlnlalalalatainlnlalalslat=tatalelelnlelalataietnlalnlalsl
EDDDDDDEEDﬂDDDDEGﬂDDDDﬂEEGDﬂDDDﬂE
[etatnlnlnlulelelats nlnlelelsletetatainlnlnlelalatatatnlenlelel
annnnnnﬂcﬁnnnnnn nnnnnnaaﬁﬁnnnna
SDDDDOO0000D 2DDDQCD00000
ggnnunuaﬂﬁnnunnﬂ¢ﬂnnnnnﬂﬂﬂauuung¢
QDD @ CGDUUUUUS

- SO0 00D Eﬂﬂﬂﬂﬂﬂﬂg

-ﬂ facatululm e et D00

N o e T o D ﬂ&ﬁﬂﬂﬂﬂﬂg]
fetatnlnlalnle el [atatetulnlniele] H ES

ocket LGA775 -

— {—-—i—-—-GERRade]

SR CICICT I ACI] 1

OOO000000 SOOo0000 view from below

featnlele lmle e le [etaeinle minle)

SOOOOO GO0 SO O0O000

QDD0DOOo00 g - : D00 000
=] | ocotaacs SOOODOO0E

[eyeialslulaleiatate tulnlatnlale e s teielululnlaless et ulsiele)
petecalnlplalaletaseielnlnolalotestotel alnlaloteti st wlnle)
SoDOOOQOODDO00000 OoOQOOOODD0000

[esece Jwlnmlebalasatelele lnlele DD 00000 Fq
annnnnnﬂcnnnnnnﬂa&nnnnnncaﬁnnnnn s
Qoo DD0 SoDDO0OO00 jmlals] *
BEEBb0GES E0000a0SE000000a00E00004E
-1 aaRFEOO0a 000 a0 — S0
i1l

[F —-—

=

RA -6 78 © 2024, Skraba, Rozman, FRI

" M

Intel 80x86

Intel chip Core i7 (Haswell)

System | °
Agent &/ -
Memory

= Controllef

including
DMI,

Display | °

N 'and Misc.
/0

RA -6 79 © 2024, Skraba, Rozman, FRI

" EEE—— =

Example parallelism level instructions, threads and cores Intel 80x86

System Agent G S

Intel Core i7

(Ice Lake 1.2019) Chip

Sunny sSunny
Cove Cove
Core Core

LPDDR4x

RA -6 80 © 2024, Skraba, Rozman, FRI

" J &

Case: CPU-level parallelism: MIMD Computers
Examples: MIMD (Multiple Instruction multiple Data)

Multiprocessor Multicomputers
(closely"connected) (loosely connected)
CPU CPU P CPU CPU CPU e CPU
Cache Cache oo Cache Cache Cache oo Cache
‘ Interco‘r'mection ’ Memory Memc;;y <o Memo;;
Cor_‘nmon v v I v v
veriablos Memory IO System Interconnection

“-“
| BN |-
=&

i u.:rr.ﬂ‘..;

Case: CPU-level parallelism: GPU, SIMD, Vector units

m Parallel processing of data
Tesla K40 ima vsega skupaj 1920 procesnih elementov (15 CU * 128 PE v CU). ! -! -! _j -] -j |

Processing Procassing Processing Processing Processing Processing
Caore Core Core Core Core Core

Warp Schoduler
[s— P—— \
g +
Register File (65,536 x 32-bit)
+ a4 £ s ks
Core Core

Core Core
Core Core
Core Core
Core Core
Core Care
Core Core
Core Core
Core Cora
Core Core
Core Core
Core Core
Core Core

Core Care

o
H
E

Core Core

Core Cors Core

o
g
H

Interconnect Network
64 KB Shared Mamory / L1 Cache

48 KB Read-Only Cache

https://doc.sling.si/workshops/programming-gpu/GPE/teslak40/

RA -6 82 © 2024, Skraba, Rozman, FRI

https://doc.sling.si/workshops/programming-gpu/GPE/teslak40/

" _
6.6 Pipelined CPU (data unit)

m [tis the realization of the CPU, where several instructions are
executed simultaneously, so that the elementary steps of the
instructions overlap.

m |n a pipelined CPU, instructions are executed similar to industrial

Time

Task

order —
CEEE
§5=0 m) - B3=
ez - @5=l
. . . c .%.

=

o O W

B5=l

B0

m Execution of the instruction can be divided into smaller elementary
steps, sub-operations. Each sub-operation takes only fraction of

the total time required to execute a instruction.
RA -6 83 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m CPU is divided into stages or pipeline segments, that
correspond to sub-operations of instruction.

m each sub-operation is executed by a certain stage or segment of
the pipeline.

m The stages are interconnected, on the one side instructions enter,
then they travel through the stages, where sub-operations are
executed, and they exit on on the other side of the pipeline.

m At the same time, there are as many instructions executed in
parallel as many stages is there in the pipeline.

RA -6 84 © 2024, Skraba, Rozman, FRI

" &

Pipelined CPU

Case: operation of 5-stage pipelined CPU

At the start of 1. clock period
1. instruction enters the pipeline

RA -6 85 © 2024, Skraba, Rozman, FRI

" #
Pipelined CPU
Case: operation of 5-stage pipelined CPU
1. clock period
IF ID EX MA WR
—!{ 1. instr. > > — > —

RA -6 86

© 2024, Skraba, Rozman, FRI

" -
Pipelined CPU
Case: operation of 5-stage pipelined CPU
2. clock period
IF ID EX MA WR
—! 2. instr. » 1. instr. > — > >

RA -6 87

© 2024, Skraba, Rozman, FRI

Pipelined CPU

IF

ID

3. clock period

EX

Case: operation of 5-stage pipelined CPU

WR

3. instr.

2. instr.

v

\ 4

1. instr.

\ 4

RA -

88

© 2024, Skraba, Rozman, FRI

" &

Pipelined CPU
Case: operation of 5-stage pipelined CPU
4. clock period
IF ID EX MA WR

l

2.instr. —| 1. instr.

\ 4

' 3. inStr.

RA -6 89 © 2024, Skraba, Rozman, FRI

" &

Pipelined CPU
Case: operation of 5-stage pipelined CPU
5. clock period
IF ID EX MA WR

\4

3. instr. —| 2. instr. 1. instr. —

RA -6 90 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU
Case: operation of 5-stage pipelined CPU
6. clock period
IF ID EX MA WR

\ 4

2.instr. —

After the end of the 5th clock
period, the first instruction
Completes execution (leaves
the pipeline)

RA -6 91 © 2024, Skraba, Rozman, FRI

"

Comparison of non-pipelined and 5-stage pipelined CPU

<
<

PC

Jro |

address instructiol

instruction
memory

Registri
RO - R14

A 4

address

operand
operand
memory

=

RA -6

address

instruction
cache

instruction

intermediate registers

address

operand
cache

operand

offset

=

\ 4

stage IF stage ID

stage EX

stage MA

stage WR

T1: Read instruction from memory
T2: Transfer of instruction from memory into the

instruction register

Conditional jump instruction

Jump address

Registers
RO - R14

A 32-bit ct
for instructionftransfer

32-bit data
link

CONDITION TRUE

El)

Type of ALE operatipn

Operand
memory

address

Pe

operand

Memory RW

Control signal
(usually 1 bit)

=

address

instruction
cache

instruction

T3: Decode the instruction and access to the operands in R1 and R3

Instruction
memory

ddi

Type of ALE operatipn

RO IR14
==

ReguBrwiric

A 32-bit connection
for instruction transfer

32-bit data

-

T4: Execute operation (addition)

CONDITION TRUE

address

operand
cache

operand

MUX

Type of ALE operati
IImemory Ly
l ers
) L2 Ro-R14
™ gister Write

_— Operand

memory

address

operand

4—& operand
Memory RIW

A 32-bit connection =
for instruction transfer

32-bit data

I

link

Control signal

(usually 1 bit)

T5: Save the result in the register R10

(=

stage IF

e/

Rd

stage ID

stage EX

stage MA

stage WR

FRI

Landmanal instruchon
CONDITION TRUE
L4
|
Tyme of ALE aperaibn —
memory
L address
ALE] operand
i+ H = operand
Memony R
A 32-bit connection —
for instruction fransfer { -IJ
i Control
ont
32-bit data I
link 1 ']
insiruction reg
Control signal i
{usually 1 bil —l;

" J &

Central processing unit - execute instructions

m The execution of the instructions can be divided into for example to 5
general elementary steps (5-stage pipeline):

Reading instruction (IF - Instruction Fetch

N

Decoding instruction and access to registers (ID - Instruction decode

N

Execution of instruction (EX — Execute)

Memory access (MA - Memory Access
m (Only for the LOAD instruction and STORE)

N

Saving the result in the register (WR - Write Register)

m If we can unify all the instructions to these common elementary steps,we
can also speed up the execution of the instructions:

more instructions can be executed at the same time (each in its own
elementary step) -> pipeline

RA -6 94 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Performance of the pipelined CPU is determined by the rate of exit
from the instruction pipeline.

m Since stages are linked together, the shifts of instructions from one
stage to another has to be excecuted at the same time.

m The shifts typically occur each clock cycle.

m Duration of one clock period {5z can not be shorter than the time
required to execute the slowest sub-operation in the pipeline.

RA -6 95 © 2024, Skraba, Rozman, FRI

"
Case: 5-stage pipelined CPU

Pipelined CPU

vmesni registri

-
C »PC »PC | C »|C
—»
naslov
04
RSZ, Ll A > *p g »| naslov
repomnin Rocre |] SAED T | e,
Rs1 N > % -
. ’—: > = operand
_|’__ F Y F 3 | | F |
odmik
IR » IR » IR »| IR 2
stopnja ID stopnja EX stopnja MA stopnja WR
Reading instruction
IF = Instruction Fetch
1. Clock period
RA -6 96 © 2024, Skraba, Rozman, FRI

" &
Case: 5-stage pipelined CPU

Pipelined CPU
4 vmesni registri
—
C »PC »PC | C »|C
—»
—»| naslov o
RSZ_ L Sl A > | < »| naslov
> =
ukazni registri | > | operandni
predpomnilnik RO — Rxx ALE predpomnilnik
Rsi > or
—*|B . a > operand
ukaz =
i Y S 3 | | N
odmik
IR » R IR IR Re

stopnja IF é stopnja EX stopnja MA stopnja WR

Decode instruction and
access operands in

the registers

ID = Instruction Decode

RA -6 2. Clock period 97 © 2024, Skraba, Rozman, FRI

" A &
Pipelined CPU Case: 5-stage pipelined CPU
vmesni registri
—
C »PC »PC | C »|C
—»
naslov
Rs2 o
> [< »| naslov
— A —> < I
ukazni registri - _— operandni
predpomnilnik o RO — Rxx >ALE predpepom:ilnik
s > o
- 1B g > operand
UuKaz
_|’__ y Y [| | F [|
odmik
IR » IR » R »| IR a
- A _ __‘
y/a
stopnja IF stopnja ID é stopnja MA stopnja WR

Execution of operation
EX = Execute

3. Clock period

RA -6

98

© 2024, Skraba, Rozman, FRI

" &
Case: 5-stage pipelined CPU

Pipelined CPU
4 vmesni registri
—
C »PC »PC | C »|C
—>
—»| naslov
o
RSZ. - A > - g »| naslov
ukazni istri ;
predpomniinik RO Rex | >ALE | T
Rs1 N > %
> d
Jkaz = operan
_|’__ y Y | | [|
odmik
IR » IR » R »{ IR a
/
stopnja IF stopnja ID stopnja EX stopnja WR

Access to operands in
memory (LOAD / STORE)
MA = Memory Access

4. Clock period
RA -6 99 © 2024, Skraba, Rozman, FRI

Case: 5-stage pipelined CPU

Pipelined CPU

vmesni registri

-
C »PC »PC | C »|C
—»
naslov
04
RSZ, Ll A > *p g »| naslov
o more |] OMEE H | e
Rs1 N > % -
. ‘ ’—: > = operand
_|’__ F Y F 3 | | F |
odmik
IR » IR » IR »| IR 2
stopnja IF stopnja ID stopnja EX stopnja MA
Saving result to
register
WR = Write Register
5. Clock period
RA -6 100 © 2024, Skraba, Rozman, FRI

" N =

Execution of instructions in non-pipelined and pipelined CPU

Non-pipelined CPE

1:CPE

time ’4—>‘

1.instr.
2.instr.

Pipelined CPU
t
time ’4%
T, T, T, T, T, Ts T, Te T, T

1.instr.

2.instr.

RA -6 101 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

Today, all more powerful processors are designed as a pipelined
Processors.

In developing the pipelined CPU, it is important that executions of
all sub-operations take about the same time - balanced pipeline.

With an ideally balanced CPU with N stages or segments, the
performance is N times greater than non-pipelined CPU.

Each individual instruction is not executed any faster, but there are
N instructions in the pipeline executed at the same time.

RA

-6 102 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m At the output of the pipeline, we get N times more executed
instructions than in non-pipelined CPU.

m The average number of clock cycles for the instruction (CPI) Is
ideally N times lower than at the non-pipelined CPU.

m The duration of the execution of each instruction (latency) is equal
to N x tpg thatis, at the same clock period, the same in the non-
pipelined CPU.

RA -6 103 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Can we at a sufficiently large number of stages N make CPU
much faster (N times faster)?

No. Instructions, that are in the pipeline at the same time (each in its
stage), can depend on each other in some way dependent and
therefore a certain instruction can not be always executed in next clock

period.

m These events are called pipeline hazards.

RA -6 104 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m There are three types of pipeline hazards:

structural hazards — when several stages of the pipeline in the same
clock period requires the same unit,

data hazards - where some instruction needs the result of the
previous instruction, but is not yet available

control hazards — at the instructions that change the value of the PC
(control instructions: jumps, branches, calls, ...)

RA -6 105 © 2024, Skraba, Rozman, FRI

" N

Pipelined CPU - types of pipeline hazards: ADD LDR/STR

m structural hazards

1 access to the same unit
(eg. cache)

operands

m data hazards

ADD r1,r2, r3
1 operand dependence ADD 15. 3. 11
between instructions T
m hazard control LOOP:
71 branch instructions r B =
(filling the pipeline) ~ BNE LOOP (1.) 3 istr. —| 1. instr.
AE)D:,’::———(Z.) L
MOV T3) 7 mov ADD BNE LOOP

RA -6 106 © 2024, Skraba, Rozman, FRI

" EEE——

Pipelined CPU - pipeline hazards: common solutions

m structural hazards

1 Solution -> separation
of caches (instructions,
operands - Harvard
Arch.

m data hazards

1 Instruction reordering
can also help
(programmer, compiler)

1 Solutions -> stall,
operand forwarding
between the stages

m control hazards

1 Solution -> predict the
condition and branch
address

RA -6

operands

ADD r1,r2, r3
ADD r5,y?5‘, r1
LOOP:
LDR (2.)
STR (3.) 3. instr. —| 2. instr. —> 1. instr.
BNE LOOP (1.)
ADD STR LDR BNE LOOP

MOV

© 2024, Skraba, Rozman, FRI

" J o

Pipelined CPU

Due to the risk of pipeline hazards, part of the pipeline at least has
to stop until hazard is resolved (the pipeline at that time does not
accept new instructions).

The increase in speed, therefore, is not N - times.

By increasing the number of stages N, the pipeline hazards occur
more frequently and the pipeline is no longer as effective as with
lower number of stages.

Performance

RA

.6 N number of stages © 2024, Skraba, Rozman, FRI

" N

6.7 Cases of 5-stage pipelined CPU

m General 5-stage pipeline

m FRISMS Atmel 9260 ARMvS

RA -6 109

© 2024, Skraba, Rozman, FRI

" J &

General 5-stage pipeline

m The base should be the execution of instructions in five steps, as
we described in the previous section.

m Execution of the instruction is divided into 5 sub-operations in
accordance with the steps from the previous section, and CPU
divided in five stages or segments:

Stage IF (Instruction Fetch) - read instruction

Stage ID (Instruction decode) — decode the instruction and access to
registers

Stage EX (Execute) - the execution of the operation
Stage MA (Memory Access) - access memory

Stage WR (Write Register) - save the result

RA -6 110 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m Each stage of the pipeline must execute its sub-oepration in single
clock cycle (period).

m The IF and MA stages can simultaneously access memory (in
same clock period) - a structural hazard happens.

m To eliminate this kind of structural hazards, we must divide the
cache into separate instruction and operand caches (Harvard
architecture principle).

RA -6 111 © 2024, Skraba, Rozman, FRI

* SEE———— =

Pipelined CPU

instructions operands

For the simultaneous access to instruction (stage IF) and operand in cache
(stage MA), the structural hazard occurs in the pipeline

RA -6 112 © 2024, Igor Skraba, FRI

" #

Pipelined CPU

instructions operands

Structural hazard, that would occur due to simultaneous access of stages IF and MA
to memory, is eliminated by using Harvard architecture on caches

RA -6 113 © 2024, Igor Skraba, FRI

" J &

Pipelined CPU

m In the IF stage of pipelined CPU, the access to the instruction
cache happens each clock period, however, in the non-pipelined
CPU access happens only every five clock periods (in case of 5
clock periods instructions).

m The speed of information transfer between the cache and the CPU
must be in case of pipelined CPU, five times higher than in non-
pipelined CPU.

m When designing the pipelined CPU, it is important to ensure that
CPU units (registers, ALU, ...) are not required to do two different
operations.

RA -6 114 © 2024, Skraba, Rozman, FRI

Case: structure of 5-stage pipelined CPU

(ALU instruction: e.g. ADD R1,R2,R3)

ADD R1,R2,R3
4 — vmesni registri
> +
—>
—] L] \
—»(naslov
Rs naslov
ukazni .
A operandni
predpomnilnik I ALE predpomnilnik
Rs1 I
operand
ukaz |_' 2 -F’
| ‘ —_— —_— _—
A A
odmik
stage IF stage ID stage EX stage MA stage WR
RA -6 115 © 2024, Skraba, Rozman, FRI

" J &
Case: structure of 5-stage pipelined CPU
(LOAD/STORE instruction: Calculation of address in EX, access in MA)

LDR R1,[R0]

—| naslov A

LDR R1,[RO,#OFF]
4 _’> vmesni registri
+
(TIBTI -~ " 7 e T v RO L—\
I _tPc: PC »PC : ([,l »C
__—__.__--.'———m—— HI

naslov

"\ MAR
—] ﬁ—

g |

operandni
predpomnilnik

I
ukazni registri > ALE
predpomnilnik RO — Rxx
Rs1 >
s B > _l
ukaz |_' J.
0

o
% > operand
. N 4
s s s s Ll — j — _‘“_
|—:\; A A K F I
IR » IR » IR » IR .
‘— —_ S S s s (s e e e () s - e - e - -
stage IF stage ID stage EX stage MA stage WR

RA -6 116 © 2024, Skraba, Rozman, FRI

Case: structure of 5-stage pipelined CPU

(LOAD/STORE instruction: Calculation of address in EX, access in MA)

LDR R1,STEV1 (pseudo instr.)
4 —» vmesni registri LDR R1,[PC,#OFF] (real instr.)
> +
(| | | ____| I . S S .. I | S S - ... --/
| 4 I
I PCH PC »PC : |
\ —_— s] e . . . - e e e s e e | I l/(I
—»[naslov I
Rszr »A| 7 '>—r érlf > naslov
ukazni registri] ; I I ; I
ey ALE R |
Rs1 -~ > 14
. "B |—> —l % i ‘# operand '
e gt mmm) e s e Lo -_— - l F;.—_—_— _—“_ /
B "1 odmik T I
IR » IR >R » IR .
‘ N S S S e e (e e e e (e s s e e e .. -
stage IF stage ID stage EX stage MA stage WR
RA -6 117 © 2024, Skraba, Rozman, FRI

"
Case: structure of 5-stage pipelined CPU
(BRANCH instructions: e.g. B, BNE LABEL in ALU in stage EX)

________________ \
\ .
I BNE LOOP (compiles as :)
14— smesniregisti kes—— BNE [PC,#OFF] (LOOP addr.)
> + [
/I/
| | | ____| I . S S .. I | S S S - -/
_p! ||
PC- PG C »{C

- s . - S Eaa . | . |

n&Stov e x

> »| naslov
e registri operandni
predpomnilnik RO — Rxx pregpomgilnik
Rs1 [h'e
. % > operand
ukaz
r‘—*_ 11 r
IR { IR "R <

stage IF stage ID stage EX stage MA stage WR

RA -6 118 © 2024, Skraba, Rozman, FRI

H) mimo_32bit v2.1 - Zaklenitev.circ

MiMO V2 - 5. St_ pipeline in Logisim mimo_32bit_v2.3 - Predikcije.circ

E_N mimo_32bit v2.circ

MM - Mcesproprammes CPU Model 1 meet

wrzuren

=t ean AP
pAAsAAMAS

WB
SHEERREH
%E,'Llfﬂﬂ,—'

add rl, rl, #1 @ 10, 27 8, 20 (here

forwarding:

loop: @ stall | forwarding

mov r3, #3 @ 5, 22 | 5, 17

1dr r1, [r2] @ 6, 23 | 6, 18 Comparison of stall and B test1-nops_needed.txt
| = _Needed.tx
|

add r7, r7, #1 e 11, 28 9, 21 . B test2-zaklenitev with no nops.txt
str r2, rl @ 14 (written to operand memory on cycle 13, but left pip 37 (Sta”) and 27 (forwardlng) . B - __

subs r4, r3, rl @ 15, 32 | 11, 23 clock periods for program @ test3-operand_forwarding.txt
add r5, r5, #1 @ 17, 34 | 12, 24 . . L .
add r7, 7, #1 e 18, 35 | 13, 25 execution ﬁ testd-jumps_in_op_forwarding.txt
add r6, rl, r4 € 19, 36 | 14, 26 14 test5-stall_vs_forwarding.txt

jne loop @ 20, 37 | 15, 27

https://qgithub.com/LAPSyLAB/MiMo Student Release/tree/main/MiMo v2 Pipelined versions

RA -6 120 © 2024, Skraba, Rozman, FRI

https://github.com/LAPSyLAB/MiMo_Student_Release/tree/main/MiMo_v2_Pipelined_versions

" &
Case: structure of 5-stage pipelined CPU

m The pipeline has 5 stages; between them there are intermediate
registers in which the results of sub-operations in each level are
stored and all data that is needed in following stages.

m In stage IF, the instruction is read and transferred to the instruction
register, and the content of the program counter PC is increased
by 4 (instructions are 4 bytes long).

m Program Counter is necessary to be increased in stage IF because
usually in each clock period, one instruction is fetched from
instruction cache.

RA -6 121 © 2024, Skraba, Rozman, FRI

" J &

Pipelined CPU

m The instruction currently executed (pointed by PC content) is stored
in the intermediate registers (IR) because it is needed for branch
instructions in the EX stage.

m Branch instructions usually write new address into PC (branch or
target address), which is calculated by ALU in stage EX.

m Address for operands in instructions LOAD/STORE (indirect
addressing) is also calculated by ALU in stage EX.

m Each stage executes its own instructions, therefore the
intermediate registers IR in all stages always store the instructions
that are read from instruction cache every clock period.

RA -6 122 © 2024, Skraba, Rozman, FRI

" J
Case: Structure of
5-stage pipelined

CPU:
FRI SMS - Atmel 9260,
ARMVS5 architecture e

instruction
decode

register read
Immediate
fields

reg
shift
Execute
forwarding
paths

stage MA Toad / store
Address

stage WR

write register write-back

RA -6

" J &

6.8 Multiple issue processors

With pipelined CPU and solving the pipeline hazards, we can
achieve CPI values close to 1.

If we want to reduce the CPI below 1, we must fetch and issue
several instructions in in each clock period (and also executed
them).

Such processors are denoted as multiple-issue processors and can
be divided into two groups:

superscalar processors — instructions, that are executed in parallel, are
determined by a logic in a processor — dynamic decision

VLIW processors - instructions, that are executed in parallel, are
determined by a program (compiler) — static decision

RA

-6 125 © 2024, Skraba, Rozman, FRI

" J &

Superscalar processor

Superscalar processor is a pipelined processor which is capable of
simultaneous fetching, decoding and executing several instructions.

m [he number of fetched and issued instructions in one clock period
Is dinamically adjusted during the program execution and
determined by processor's logic.

m Processor, that can issue a maximum of n instructions is denoted
as n-issue superscalar processor.

m Parallel (superscalar) performance requires additional interfaces
and additional stages for determining interdependencies,
validation and eventual retrieval of results ->

RA -6 126 © 2024, Skraba, Rozman, FRI

" N

Superscalar processor

LOAD _ ...
ADD _. >

simplified scheme of superscalar processor
based on 5-stage pipeline

m One of the functional units in the EX stage is also stage MA
(combined functional unit LOAD/STORE or separate functional
units for LOAD and STORE).

RA -6 127 © 2024, Skraba, Rozman, FRI

4
ront End

Z
hY

4-6 pops

~

Reorder Buffer

Hops

Exejution Engine,

Simplified case of
Superscalar CPU:
Intel Core i7

1.Instruction Fetch (16bytes)
2.Predecode Stage

(bytes->x86 instr.)
3.u-op decode (x86 isntr. -> y-op)
4.Loop Stream Detection

5.Issue p-op -> ROB in RP

6.Execute p-op

7.Retire (finalize)

© 2024, Skraba, Rozman, FRI

1.Instruction Fetch (16byt

2.Predecode Stage
(bytes->x86 instr.)

3.u-op decode (x86 instr. -> y-op)

4.Loop Stream Detection

5.Issue of y-op -> ROB and RP

6.Execute p-op

7.Retire (finalize

Intel Core i7

Detailed case of
Superscalar CPU

B ——————————————————— Braﬂ':h F’I"Edh:th:‘lﬂ

|

Op Cache

HOp Queue
6 uOps dispatched
INTEGER FLOATING POINT

Integer Rename Floating Point Rename

Scheduler Scheduler Scheduler Scheduler Scheduler SChemme Bahadule E.,:heduler

Integer Phy

¥ + \4

. ALL - ALU ALU S ALU AGU AGU AGU MUL

AMD Zen 2

Detailed case of
superscalar CPU

130 © 2024, Skraba, Rozman, FRI

" EEE—— =

ARM Cortex-M7 — Dual-issue

' ---------------------------------- \
Wl PREFETCH e i LoADisTorRe JH
! UNIT (+ FPU) UNIT 1
| T O EE— B ARM Cortex M7
Execute
D R s (Case of dual-issue
Load/Store 1 . . .
e) =% simpler pipeline

(2x 32b)
Load/Store 2

Decode

Prefetch

v

. ALU 1 (Main)
ALU 2
#1 DECODE || #2 DECODE
J\
MAC

from NVIC
(32b x 32b +64b)

11 =

RA -6 131 © 2024, Skraba, Rozman, FRI

" J &

VLIW processor

VLIW (Very Long Instruction Word) Processors are executing long
instructions, which consist of several ordinary machine instructions

that are executed in parallel by a processor using variety of functional
units.

m |n the long instruction, each unit executes its own instruction.

VLIW instruction consists of instructions for each functional unit

functional unit functional unit functional unit functional unit

Instruction for 1. Instruction for 2. Instruction for 3. e e Instruction for n-th

Case of VLIW instruction composition:

ALU ALU FPU LOAD STORE

RA -6 132 © 2024, Skraba, Rozman, FRI

" J &

VLIW processor

m Compiler is looking in program for mutually independent
instructions, that can be executed in parallel in functional units, and
merges them in long instructions.

m Number of instructions, which are fetched and issued in one clock
period is determined by the compiler and is not changed during the
execution (static decision).

m If the compiler can not find enough instructions for all functional
units in long instruction, missing instructions are replaced by the
instruction NOP (No OPeration).

RA -6 133 © 2024, Skraba, Rozman, FRI

" EEE—— =

VLIW processor Compiler finds independent instructions coresponding to functional units and creates ,long instructions
WUITUS .
Program If coresponding and independent instruction is not found,
NOP is inserted
'I&([))'E‘)D ------ —— (,-“ in VLIW instructions below).
T Dependent: Independent:
FPADD ... ADD R1,R2,R3 ADD R1,R2,R3
LOAD SUB R7,R8,R1 SUB R7,R5,R9
-- ;A_\bD “““““““““ (can‘t exec. in parallel (can exec. in parallel)
FPADD
_LOAD ...
ADD
ADD
FPADD
LOAD
STORE

Example sequence of
long VLIW instructions

---L- A;FL- A-FL - AAFLS -A-L- 2
H—j \ A =ALU instruction
VLIW - NOP instruction F = FPU instruction
instruction L = LOAD instruction

S = STORE instruction

RA -6 134 © 2024, Skraba, Rozman, FRI

" N

Comparison: Superscalar vs. VLIW processor

Superscalar processor

m Dynamic acquisition of several instructions (CPU decides during the execution)

m Complex realization

LOAD _ ...
more ADD _. >
;] FPADD—.
instructions LOAD —.
ADD \\‘
at once FPADD .
LOAD ...
ADD
ADD
FPADD ...
LOAD

VLIW processor swore . CPU — dynamical decisions
m Static schedule in long instructions (compiler decides before the execution)

m Simpler realization

w)
Ukaz LOAD | Ukaz STORE
Ukaz LOAD | Ukaz STORE

VLong Instr. Word APD
(several shorter Egﬁ%D

instr.) ADD

Ukaz FPE
Ukaz FPE

Ukaz ALE
Ukaz ALE

Ukaz ALE
Ukaz ALE

-

RA -6 : : 135
Compiler decides

© 2024, Skraba, Rozman, FRI

	Diapozitiv 1: RAČUNALNIŠKEA ARCHITECTURE
	Diapozitiv 2
	Diapozitiv 3
	Diapozitiv 4: 6.1 Basic structure and operation of the CPU
	Diapozitiv 5
	Diapozitiv 6
	Diapozitiv 7
	Diapozitiv 8
	Diapozitiv 9
	Diapozitiv 10
	Diapozitiv 11
	Diapozitiv 12
	Diapozitiv 13
	Diapozitiv 14
	Diapozitiv 15
	Diapozitiv 16
	Diapozitiv 17: Clock signal - periodic rectangular signal
	Diapozitiv 18
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 22
	Diapozitiv 23: 6.2 ARM CPU – features summary
	Diapozitiv 24
	Diapozitiv 25
	Diapozitiv 26: 6.3 Structure of the CPU (example of ARM CPE LEGv8 & [Mini]MiMo)
	Diapozitiv 27: 6.3.1 Data path (unit)
	Diapozitiv 28
	Diapozitiv 29: Model of CPU: MiMo Model of CPU implemented with logic gates in Logisim MiMo – Microprogrammed Model of CPU (course OR VSP)
	Diapozitiv 30
	Diapozitiv 31: MiMo – Microprogrammed Model of CPU FPGA implementation
	Diapozitiv 32: Model of CPU: Mini MiMo (course RA VSP) Model of CPU implemented with logic gates in Logisim Mini MiMo – Simple Hardwired Model of CPU (16 instr., assembler in Excel, …)
	Diapozitiv 33: 6.3.1 Data path (unit)
	Diapozitiv 34
	Diapozitiv 35
	Diapozitiv 36
	Diapozitiv 37
	Diapozitiv 38
	Diapozitiv 39: CPU: datapath, control unit, and control signals
	Diapozitiv 40: Control unit (Micro-programmed implementation – e.g. MiMo model)
	Diapozitiv 41: Control unit (Micro-programmed implementation –MiMo model)
	Diapozitiv 42: Control unit (Hard-wired)
	Diapozitiv 43: Control unit (Hard-wired): case Mini Mimo
	Diapozitiv 44: Control unit (Hard-wired): case Mini Mimo
	Diapozitiv 45: Control unit (Hard-wired)
	Diapozitiv 46: CPU: datapath, control unit, and control signals
	Diapozitiv 47: CPU: datapath, control unit, and control signals
	Diapozitiv 48: CPU: datapath, control unit, and control signals
	Diapozitiv 49: CPU: datapath, control unit, and control signals
	Diapozitiv 50: CPU: datapath, control unit, and control signals
	Diapozitiv 51: 6.4 Execution of instructions
	Diapozitiv 52
	Diapozitiv 53
	Diapozitiv 54
	Diapozitiv 55
	Diapozitiv 56
	Diapozitiv 57
	Diapozitiv 58
	Diapozitiv 59
	Diapozitiv 60
	Diapozitiv 61
	Diapozitiv 62
	Diapozitiv 63: 6.5 Parallel execution of instructions
	Diapozitiv 64
	Diapozitiv 65
	Diapozitiv 66
	Diapozitiv 67
	Diapozitiv 68
	Diapozitiv 69
	Diapozitiv 70
	Diapozitiv 71
	Diapozitiv 72: How to effectively utilize multiple items?
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75: Structure of 4-core processor Intel Core i7 (Haswell)
	Diapozitiv 76
	Diapozitiv 77
	Diapozitiv 78
	Diapozitiv 79
	Diapozitiv 80
	Diapozitiv 81
	Diapozitiv 82
	Diapozitiv 83: 6.6 Pipelined CPU (data unit)
	Diapozitiv 84
	Diapozitiv 85
	Diapozitiv 86
	Diapozitiv 87
	Diapozitiv 88
	Diapozitiv 89
	Diapozitiv 90
	Diapozitiv 91
	Diapozitiv 92: Comparison of non-pipelined and 5-stage pipelined CPU
	Diapozitiv 93: Comparison of operation of non-pipelined and pipelined CPU
	Diapozitiv 94
	Diapozitiv 95
	Diapozitiv 96
	Diapozitiv 97
	Diapozitiv 98
	Diapozitiv 99
	Diapozitiv 100
	Diapozitiv 101: Execution of instructions in non-pipelined and pipelined CPU
	Diapozitiv 102
	Diapozitiv 103
	Diapozitiv 104
	Diapozitiv 105
	Diapozitiv 106
	Diapozitiv 107
	Diapozitiv 108
	Diapozitiv 109: 6.7 Cases of 5-stage pipelined CPU
	Diapozitiv 110: General 5-stage pipeline
	Diapozitiv 111
	Diapozitiv 112
	Diapozitiv 113
	Diapozitiv 114
	Diapozitiv 115
	Diapozitiv 116
	Diapozitiv 117
	Diapozitiv 118
	Diapozitiv 120: MiMo v2 - 5. st. pipeline in Logisim
	Diapozitiv 121: Case: structure of 5-stage pipelined CPU
	Diapozitiv 122
	Diapozitiv 123: Case: Structure of 5-stage pipelined CPU: FRI SMS - Atmel 9260, ARMv5 architecture
	Diapozitiv 125: 6.8 Multiple issue processors
	Diapozitiv 126
	Diapozitiv 127
	Diapozitiv 128
	Diapozitiv 129
	Diapozitiv 130
	Diapozitiv 131
	Diapozitiv 132
	Diapozitiv 133
	Diapozitiv 134
	Diapozitiv 135

