
RA - 6 © 2024, Škraba, Rozman, FRI

RAČUNALNIŠKEA

ARCHITECTURE

6 Central Processing Unit - CPU

COMPUTER

ARCHITECTURE

RA - 6 2 © 2024, Škraba, Rozman, FRI

6 Central Processing Unit – objectives and outcomes:

◼ A basic understanding of:

◼ architecture (basic electronic circuits) and the operation of the CPU

◼ synchronization of circuits with clock signal

◼ Micro-programmed (SW) or Hard-wired (HW) implementation of the

CPU

◼ Understanding of parallelism :

◼ origins of existence

◼ parallelisation on the instruction level

 pipeline

◼ Understanding the execution of instructions in CPU

6 Central Processing Unit - objectives

RA - 6 3 © 2024, Škraba, Rozman, FRI

6 Central processing unit

 Basic structure and operation of the CPU

 ARM CPU – features summary

 Structure of CPU – ARM case

 Execution of instructions

 Parallel execution of instructions

 Pipelined CPU

 An example of a 5-stage pipelined CPU

 Multiple issue processors

6 Central Processing Unit - content

RA - 6 4 © 2024, Škraba, Rozman, FRI

◼ CPU (Central Processing Unit or the CPU) is a unit that executes

instructions, so its performance largely determines the performance

of the whole computer.

◼ In addition to the CPU, most computers have also other processors,

mainly in the input/output part of the computer.

◼ Basic principles of operation for all types of processors are

identical.

6.1 Basic structure and operation of the CPU

RA - 6 5 © 2024, Škraba, Rozman, FRI

◼ CPU is a digital system (built from digital electronic circuits) specific

types.

◼ Two groups of digital circuits:

 Combinational digital circuits

◼ Status output depends only on current state of the inputs

Central processing unit

inputs outputs

Combinational

digital circuit

0 1

1 0

Eg.

example: negator

Primer: 1-bitni seštevalnik

xi yi c i s i ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

RA - 6 6 © 2024, Škraba, Rozman, FRI

 Memory (sequential) digital circuits

◼ The state of the outputs depends on the current state of inputs and the
previous states of the inputs

◼ Memories remember the states

◼ Previous states are usually characterized as internal states, that reflect
the previous states of inputs

Central processing unit

Memory

inputs outputs

Combinational

digital circuit

Information about

internal state

Example: 3-bit counter

Example: 3-bit counter - Logisim

RA - 6 7 © 2024, Škraba, Rozman, FRI

◼ Memory (Sequential) circuit:

 Flip-flop - one-bit memory cell

 Register

 Counter

 Memory

◼ Memory (sequential) digital circuits can be:

 Asynchronous - the state of the circuit is changed "Immediately" after the variation in

input signals.

 Synchronous - the state of the circuit as a function of the input signals can only be

changed at the edge of the clock signal.

◼ CPU is built from

 Combinational and

 Memory (sequential) synchronous digital circuits.

◼ The current state of the memory circuits presents the state of the CPU.

Central processing unit

Memory

inputs outputs

Combinational

digital circuit

Information about

internal state

Clock signal

RA - 6 8 © 2024, Škraba, Rozman, FRI

◼ The operation of the CPU at any time depends on the current state

of the CPU inputs and the current internal state of the CPU.

◼ The number of possible internal states of the CPU depends on the

size (capacity) of CPU.

◼ The number of bits, which represent the internal state of the CPU

ranges from some 10 up to 10,000 or even more.

◼ Digital circuits that form a CPU today are usually on a single chip.

Central processing unit

RA - 6 9 © 2024, Škraba, Rozman, FRI

◼ The basic operation of the CPU in the Von Neumann computer was

described using two steps:

 1. Taking instruction from memory (instruction-fetch cycle), the address

of the instruction is in the program counter (PC)

 2. Execution of the fetched instruction (execution cycle),

◼ Each of these two main steps can be divided on even simpler sub-

operations ("Elementary" steps) ->

Central processing unit

RA - 6 10 © 2024, Škraba, Rozman, FRI

◼ The operation of the CPU in the Von Neumann computer was

described using two steps:

 1. Taking instruction from memory (instruction-fetch cycle), the address

of the instruction is in the program counter (PC)

 2. Execution of the fetched instruction (execution cycle), which can be

divided to more sub-operations:

 Analysis (decoding) the instruction

 Transfer the operands in the CPU (if not already included in the CPU

registers)

 Execution of the instruction‘s specific operation

 PC  PC + 1 or PC  target address in branch instructions

 Saving the result (if necessary)

Central processing unit

RA - 6 11 © 2024, Škraba, Rozman, FRI

RESET

Analysis and decoding

of instruction

The acquisition of the next

instruction

Request for

interrupt?

No

Yes

Jump to first instruction of PSP

Switch-on the processor

1. Instruction-fetch cycle

2. Execution cycle

 e.g.: AL instruction ADD R1,R2,R3

PC  PSP address

Access to operands

Execution of operation and

PC  PC + 1

Saving the result

Central processing unit

RA - 6 12 © 2024, Škraba, Rozman, FRI

RESET

Analysis and decoding

of instruction

The acquisition of the next

instruction

Request for

interrupt?

No

Yes

Jump to first instruction of PSP

Switch-on the processor

1. Instruction-fetch cycle

2. Execution cycle of branch (jump) instruction

PC  PSP address

Execution of operation is

PC  target address

Central processing unit

e.g.: B LABEL

RA - 6 13 © 2024, Škraba, Rozman, FRI

Central processing unit

Interrupts or traps:

◼ extra-ordinary events

◼ transparency important

◼ instead of next instruction,

branch to first instruction of ISR

(Interr. Service Routine) is

executed.

RA - 6 14 © 2024, Škraba, Rozman, FRI

◼ The address of the first instruction after switching on (RESET) is

determined by a certain rule.

◼ Upon completion of Step 2, the CPU starts again with the first step,

which is repeated, as long as the CPU operates.

◼ The exception is when there is an interrupt or trap request.

◼ On such request, instead of fetching the next instruction, the jump

instruction is executed to the address that is determined by the

mode of interrupt or trap operation.

Central processing unit

RA - 6 15 © 2024, Škraba, Rozman, FRI

◼ Each of these steps is composed of more elementary steps and

realization of CPU is basically the realization of these elementary

steps.

◼ Each elementary step is carried out in one or more periods of

clock signal - CPU clock.

Central processing unit

Clock period

tCPE

High state (1)

Low state (0)

CPU

Clock signal

negative edge

positive edge

RA - 6 16 © 2024, Igor Škraba, FRI

0 5 10 15 20 25 30 35 40 t [ns]

u (t) [V]

State 1

State 0

State 1

State 0

positive

edge
negative

edge

Long periods without

 significant changes

time t for

example in [ns]

Timing diagram signal

Arbitrary (non-periodic) digital electrical signal

Arbitrary (non-periodic) digital electrical signal - logical presentation

RA - 6 17 © 2024, Igor Škraba, FRI

Clock signal - periodic rectangular signal

T1 T2 Tn

Clock

Period - Cycle
1 second

The frequency of the periodic signal f = number of periods (cycles) in 1 second

The unit of frequency is Hertz [Hz]: 1 Hz = 1 [Period/sec] = 1 [1/s] = 1[s-1]

The duration of one period T = 1 / f

t

In the case of f = 1.25 GHz in 1 second we have 1 250 000 000 periods

 
 

     nsss
sf

tGHzf 8,0108,010
25,1

1

/11025,1

11
25,1 99

9
===


=== −−

u (t) [V]

RA - 6 18 © 2024, Škraba, Rozman, FRI

◼ The state of the CPU, such as the states of all synchronous digital

circuits, changing only at the edge of the clock signal (clock signal

transition from one state to another).

◼ Edge, at which the changes happen in the CPU, is called active

edge.

◼ CPU can also change the state at the positive and negative edges,

this means that both edges are active. In one clock cycle, two

changes of the CPU state can be performed.

Central processing unit

Why is the clock signal needed at all? 2 points of view ->

RA - 6 19 © 2024, Igor Škraba, FRI

◼ Clock signal -> synchronization of combinational circuits with various

speeds

 In synchronous digital memory (sequential) system clock signal (usually edge)

provides a moment of change to the internal state of the memory digital

circuit.

 When the input signals in the memory circuit becomes stable, at the active

edge the change of the internal state of the memory circuit can occur.

Central processing unit

time t

Internal

state 2

Combinational

digitally circuit 1,2,3, ...

Internal

state 1

Clock

signal

RA - 6 20 © 2024, Igor Škraba, FRI

◼ Clock signal -> synchronization of multi-speed operations in computer

 For example, access to memory in one clock cycle (read operation):

Central processing unit

CPU determines

buses‘ content

(address, control

and data bus)
Memory reads the content of

buses

and performs the read

operation

(provides memory content

placed on the data bus)

CPU reads

content from

data bus

RA - 6 22 © 2024, Škraba, Rozman, FRI

◼ State of CPU changes on the edges of the internal clock. Shorter
clock period (higher frequency) means faster performance of CPU.

◼ Shortening the clock period (increasing frequency) is determined by
the speed of the digital circuits and the number of circuits (length of
links) through which the signal propagates.

◼ The minimum duration of the elementary step in the CPU is one
clock period (or even half-period, if both edges are active, but this
requires more complex circuit).

◼ Fetch and execution cycles‘ duration is always an integer number
of periods.

◼ Number of periods for the execution of the instruction can vary
greatly.

Central processing unit

RA - 6 23 © 2024, Škraba, Rozman, FRI

6.2 ARM CPU – features summary

◼ RISC architecture (some exceptions)

◼ 3-operand register-register (load/store) computer

 Access to the memory operands is only by using the LOAD and STORE

◼ 32-bit computer (FRI-SMS, ARM9, architecture ARMv5)

 32-bit memory address

 32-bit data bus,

 32-bit registers

 32-bit ALE

◼ 16 general purpose 32-bit registers

◼ Length of the memory operand 8, 16 and 32 bits

◼ Signed numbers are represented in two‘s complement

◼ Real numbers in accordance with standard IEEE-754 (in case of FP-unit)

Much more related details

explained on LAB sessions

RA - 6 24 © 2024, Škraba, Rozman, FRI

◼ Composed memory operands are stored under the rule of little

endian.

◼ The instructions and operands must be aligned in memory (stored

on the natural addresses).

◼ All of the instructions are 32 bits long (4 bytes).

◼ ARM uses all three general addressing modes:

 Immediate ADD R1, R1, #1

 Direct (register) ADD r1, r1, r2

 Indirect (register) - LOAD/STORE LDR r1, [r0]

ARM - features

RA - 6 25 © 2024, Škraba, Rozman, FRI

◼ Instructions for conditional branches use PC-relative addressing.

◼ Example of format for ALU instruction:

ARM - features

Operation code Rs1 Rd Rs2

b31 20 19 16 15 12 11 4 3 b0

RA - 6 26 © 2024, Škraba, Rozman, FRI

6.3 Structure of the CPU (example of ARM CPE LEGv8 & [Mini]MiMo)

◼ 6.3.1 Data path (unit)

 ALU

 software accessible registers

◼ 6.3.2 Control unit

 Realization

◼ Micro-programmed (SW) or

◼ Hardwired (HW)

RA - 6 27 © 2024, Škraba, Rozman, FRI

6.3.1 Data path (unit)

+
4

ALEPC address instruction
Registri

R0 - R14

instruction

memory

+

address

operand

operand

memory

All data paths are M-bit, arrows indicate the direction of transfer

Central processing unit - structure

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

The simplified structure of the CPU data paths including instruction and operand

memories

RA - 6 28 © 2024, Škraba, Rozman, FRI

◼ MUX - multiplexer: the digital circuit, that selects one from multiple

input signals and connects it to the output.

◼ Selection of the input signal is determined by control signal.

Central processing unit - structure

Control signal

Input 1

Input 2

Output

0
Control signal

Input 1

Input 2

Output

1

RA - 6 29 © 2024, Škraba, Rozman, FRI

Model of

CPU:

MiMo

Model of CPU

implemented with

logic gates in

Logisim

MiMo –
Microprogrammed

Model of CPU

(course OR VSP)

https://github.com/LAPSyLAB/MiMo_Student_Release

https://github.com/LAPSyLAB/MiMo_Student_Release

RA - 6 30 © 2024, Škraba, Rozman, FRI

Model of

CPU:

MiMo

Model of CPU

implemented

with logic gates

in Logisim

MiMo –
Microprogramm

ed Model of

CPU

Video

RA - 6 31 © 2024, Škraba, Rozman, FRI

MiMo – Microprogrammed Model of CPU

FPGA implementation

RA - 6 32 © 2024, Škraba, Rozman, FRI

Model of CPU:

Mini MiMo
(course RA VSP)

Model of CPU

implemented with

logic gates in

Logisim

Mini MiMo –
Simple Hardwired

Model of CPU

(16 instr., assembler

in Excel, …)

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

RA - 6 33 © 2024, Škraba, Rozman, FRI

6.3.1 Data path (unit)

All thicker data paths are

more than 1-bit wide

Central processing unit - structure Mini MiMo Datapath

RA - 6 34 © 2024, Škraba, Rozman, FRI

+ -

NOT

AND

OR

XOR

CONTROL

SIGNALS

FIRST OPERAND

SECOND OPERAND

RESULT

32 bits

32 bits

32 bits

MUX

CARRY, OVERFLOW

ALU – datapath and control signals

RA - 6 35 © 2024, Škraba, Rozman, FRI

CONTROL

SIGNALS

FIRST OPERAND

SECOND OPERAND

RESULT

ALU – datapath and control signals

Case of Mini MiMo CPU

CARRY

RA - 6 36 © 2024, Škraba, Rozman, FRI

32-bit register

flip-flop

b31

D31

Q31

flip-flop

b0

D0

Q0

flip-flop

b29

D29

Q29

flip-flop

b30

D30

Q30

Clock signal

Register

Write

Register

Write

flip-flop

band
Clock

Register

Write
Clock

Flip-flop switches

on positive edge

Timing diagram Truth Table

Clock Reg.W Di Q i

 0 0

 0 1

 1 0

 1 1

Q

Q

0

1

b0b1b29b30
b31

Di

Qi

Di

Qi

RA - 6 37 © 2024, Škraba, Rozman, FRI

CONTROL

SIGNALS

INPUT OPERAND

Flags Z, N

Register unit

Case of Mini MiMo CPU

Register values

r0-r3

Output

Selected registers Rd, Rs

register selection

Rd, Rs

Write in Rd

RA - 6 38 © 2024, Škraba, Rozman, FRI

6.3.2 Control Unit (CU)

 Is digital circuit (memory + combinational), that on the basis of the

content in the instruction (register) determines control signals.

 Control signals trigger elementary steps in the datapath and

consequently the execution of this instruction.

 IR register = 32-bit instruction register in which the instruction is

transferred during the instruction-fetch cycle: machine instruction is

read from the memory.

◼ IR ... "Instruction Register "

 2 possible ways of CU implementation:

◼ Micro programmed (SW: simple, slower)

◼ Hard wired (HW: complex, faster)

Central processing unit - structure

RA - 6 39 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

RA - 6 40 © 2024, Škraba, Rozman, FRI

Control unit (Micro-programmed implementation – e.g. MiMo model)

micro PC

c
o

n
tro

l s
ig

n
a

ls

micro PROGRAM

memory

address
O

U
T

P
U

T
S

CPU clock

+
1

micro

instruction

1. Micro-

instruction
2. Micro-

instruction
3. Micro

instruction

...

N. Micro

instruction

Machine instruction XXX

...

MUX

RA - 6 41 © 2024, Škraba, Rozman, FRI

Control unit (Micro-programmed implementation –MiMo model)

Micro program for instruction :

JNEZ Rs,immed1. Micro-

instruction
2. Micro-

instruction
3. Micro

instruction

N. Micro

instruction

Machine instr. XXX

...

1. Micro instr.

2. Micro instr.

3. Micro instr.

N. Micro instr.

Machine instr. XXX

…

Nasl. vodilo=PC

Vpis v PC

PC=Tak. operand

Primeri stanj

kontrolnih signalov

Vpis v ukazni reg.

RA - 6 42 © 2024, Škraba, Rozman, FRI

Control unit (Hard-wired)

instruction

state registerOP.CODE

c
o

n
tro

l s
ig

n
a

ls

Combinational

 LOGIC

Info. on operand

instruction

REGISTER

INPUTS
O

U
T

P
U

T
S

CPU clock

1. Control. signals

2. Control. signals

signals
3. Control. signals

signals

N. Control. signals

Machine instruction XXX

...

RA - 6 43 © 2024, Škraba, Rozman, FRI

Control unit (Hard-wired): case Mini Mimo

CONTROL SIGNALS

1. FETCH - Control signals

Machine instruction XXX

2. EXECUTE - Control signals

Phase = 0..FETCH, 1..EXECUTE

RA - 6 44 © 2024, Škraba, Rozman, FRI

Control unit (Hard-wired): case Mini Mimo

CONTROL SIGNALSCOMBINATORIAL

CURCUITS
INPUTS OUTPUTS

1. FETCH - Control signals

Machine instruction XXX

2. EXECUTE - Control signals

Phase = 0..FETCH,

 1..EXECUTE

RA - 6 45 © 2024, Škraba, Rozman, FRI

Control unit (Hard-wired)

UKAZ

REGISTER STANJAOP.KODA

K
O

N
T

R
O

L
N

I
S

IG
N

A
L

I

KOMBINATORIČNA

LOGIKA

Info. o operandih

UKAZNI

REGISTER

VHODI

IZ
H

O
D

I

Ura CPE

1. Kontr. signali

2. Kontr. signali

3. Kontr. signali

N. Kontr. signali

Strojni ukaz XXX

…

Mikro PC

K
O

N
T

R
O

L
N

I
S

IG
N

A
L

I

Mikro PROGRAMSKI

Pomnilnik

Naslov

IZ
H

O
D

I

Ura CPE

+
1

Mikro UKAZ
1. Mikro UKAZ

2. Mikro UKAZ

3. Mikro UKAZ
…

N. Mikro UKAZ

Strojni ukaz XXX

…

MUX

Control unit (Micro-programmed)

CU Implementation approaches - Comparison

Externally same, different in internal operation

RA - 6 46 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

CU constantly controls operations

RA - 6 47 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

Elements for access to instructions

RA - 6 48 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

Execution of ALU instructions (e.g. ADD)

RA - 6 49 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

Execution of LOAD / STORE instructions

RA - 6 50 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

CPU: datapath, control unit, and control signals

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

A simplified version of the ARMv8 (Source: [Patt] Sec. 4)

Execution of branch instructions

RA - 6 51 © 2024, Škraba, Rozman, FRI

6.4 Execution of instructions

An example of execution of a typical instruction for ALU operation:

◼ ADD R10, R1, R3 @ R10  R1 + R3

 Instruction Format:

1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

Machine instruction:

Operation code
Source

register 1

Source

register 2
Destination

Register
unused

31 20 19 16 15 12 11 4 3 0

31 20 19 16 15 12 11 4 3 0

RA - 6 52 © 2024, Škraba, Rozman, FRI

Execution of the instruction ADD: 1. elementary step (T1) = 1 Tcpe (Clock period)

T1: Accessing instructions in the instruction memory

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

CLOCK

ADD R10, R1, R3

RA - 6 53 © 2024, Škraba, Rozman, FRI

Fetching instruction

T1

Execution of instruction

tw T2 T3 T4 →tT5

n Tw: On instruction fetch maybe wait clock cycles are needed

Execution of the instruction ADD: 2. elementary step (Tw) = n Tcpe (Clock period)

ADD R10, R1, R3

CLOCK

RA - 6 54 © 2024, Škraba, Rozman, FRI

Execution of the instruction ADD: 2. elementary step (T2) = 1 Tcpe (Clock period)

T2: Transfer of instruction from memory into the instruction register

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

ADD R10, R1, R3

CLOCK

RA - 6 55 © 2024, Škraba, Rozman, FRI

Execution of the instruction ADD

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

◼ Execution of the instruction ADD lasts for example 5 periods (CPIALU= 5)

 T1: Read instruction from memory

 T2: Transfer of instruction from memory into the instruction register

 T3: Decode the instruction and access to the operands in registers R1, R3

 T4: Execution of the operation (addition)

 T5: Saving the result in the register R10 (writeback)

ADD R10, R1, R3

CLOCK

RA - 6 56 © 2024, Škraba, Rozman, FRI

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

T3: Decode the instruction and access operands in reg. R1, R3

Execution of the instruction ADD: 3. elementary step (T3) = 1 Tcpe (Clock period)

R1

R3

ADD R10, R1, R3

CLOCK

RA - 6 57 © 2024, Škraba, Rozman, FRI

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

T4: Execution of the operation (addition)

Execution of the instruction ADD: 4. elementary step (T4) = 1 Tcpe (Clock period)

+

ADD R10, R1, R3

CLOCK

RA - 6 58 © 2024, Škraba, Rozman, FRI

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5 →t

T5: Saving the result in the register R10

Execution of the instruction ADD: 5. elementary step (T5) = 1 Tcpe (Clock period)

R10

ADD R10, R1, R3

CLOCK

RA - 6 59 © 2024, Škraba, Rozman, FRI

Fetching instruction

T1

Execution of instruction

T2 T3 T4 T5
→t

Execution of the instruction ADD: Summary

ADD R10, R1, R3

CLOCK

◼ Execution of the instruction ADD lasts for example 5 periods (CPIALU= 5)

 T1: Read instruction from memory

 T2: Transfer of instruction from memory into the instruction register

 T3: Decode the instruction and access to the operands in registers R1, R3

 T4: Execution of the operation (addition)

 T5: Saving the result in the register R10 (writeback)

RA - 6 60 © 2024, Škraba, Rozman, FRI

CPU – instr. execution: case Mini MiMo CPU

Control signals for instructions execution

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

RA - 6 61 © 2024, Škraba, Rozman, FRI

case Mini MiMo CPU: Sum of two numbers

Program Assembler in Excel

Control signals for execution of :

Control Unit

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

Mini MiMo CPU

RAM memory

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model

RA - 6 62 © 2024, Škraba, Rozman, FRI

Challenge (HW1 or optional extension to HW1)

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja/Prispevki

Program/edit Mini

MiMo model

Challenge: Dare to create your

own CPU ?

Example of challenge solution

from 22/23

https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/MiniMiMo_HW_CPE_Model
https://github.com/LAPSyLAB/RALab-STM32H7/tree/main/LogisimEVO_vezja/Prispevki

RA - 6 63 © 2024, Škraba, Rozman, FRI

6.5 Parallel execution of instructions

◼ Typical CPU arch. – execution of machine instructions takes at

least 3 or 4 clock periods, usually even more.

◼ The average number of instructions executed by the CPU in one

second (IPS - Instructions Per Second):

610
=
CPI

f
MIPS CPE

MIPS = Million Instructions Per Second

fCPE = Frequency of the CPU clock

CPI = Cycles Per Instruction

 (average number of clock periods

 for the execution of one instruction)

CPI

f
IPS CPE= IPS is a very large number, so we divide it by 106 and get MIPS

RA - 6 64 © 2024, Škraba, Rozman, FRI

◼ MIPS - the number of instructions executed by the CPU in one

second, can be increased in two ways: to increase fCPE and/or

reduce the CPI:

 Using faster electronic elements (increase fCPE = more periods in

one second)

 With the use of a larger number of elements we can reduce the CPI

(less clock cycles per instruction) where more instructions are

executed in one clock cycle

 Use of faster electronic components does not allow larger increase

in speed; it also causes other problems.

Parallel execution of instructions

610


=
CPI

f
MIPS CPE

RA - 6 65 © 2024, Škraba, Rozman, FRI

General trends in Computing Evolution

Vir: https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

RA - 6 66 © 2024, Škraba, Rozman, FRI

◼ Electronic Magazine has published an article in 1965 by Gordon E.

Moore in which he predicted that the number of transistors that

producers are able to produce on a chip doubles every year.

◼ In 1975, the prediction was adjusted to the period ob two years

(number of transistors doubling every two years).

◼ As it was then intended as experimental rule should apply the next

few years, it is still valid today and is known as Moore's Law.

Moore's law

Increasing the number of transistors - Moore's Law

RA - 6 67 © 2024, Škraba, Rozman, FRI

Moore's Law - increasing the number of transistors

Number of components per IC

re
la

ti
v
e
 M

a
n
u
fa

c
tu

ri
n

g
 c

o
s
t
p
e
r

C
o
m

p
o
n
e
n
t

RA - 6 68 © 2024, Škraba, Rozman, FRI

◼ Gordon E. Moore is now honorary president of Intel, in 1968 he

was co-founder and executive vice president of Intel.

◼ With the same technology in the period of 20 years some time ago,

the maximum speed of logic elements increased by about 10 times.

◼ At the same time, the maximum number of elements on a single

chip increased by about 500 to as much as 5000-times in the

memory chips.

Moore's law

RA - 6 69 © 2024, Škraba, Rozman, FRI

RA - 6 70 © 2024, Škraba, Rozman, FRI

Moore's law – Transistor count through time

...

RA - 6 71 © 2024, Škraba, Rozman, FRI

Moore's law – Transistor count regarding the type of device

DLP… „Deep learning processor“

RA - 6 72 © 2024, Škraba, Rozman, FRI

◼ Efficient increase in speed of CPU:

 CPU performs parallel more operations, which means an increase in the

number of needed logic elements.

Parallelism can be exploited on several levels:

◼ Parallelism at the level of instructions:

 Some instructions in the program can be carried out simultaneously – in

parallel

 CPU in the form of pipeline:

◼ Exploitation of parallelism at the level of instructions

◼ An important advantage: the programs stay the same !!!

◼ Limited, so we are looking for other options

Parallel execution of instructions

How to effectively utilize multiple items?

RA - 6 73 © 2024, Škraba, Rozman, FRI

◼ The first higher-level parallelism is called parallelism at the level

of threads.

 Multithreading

 Multi-core processors

◼ Parallelism at the level of CPU (MIMD - multiprocessors,

multicomputers)

◼ Data-level Parallelism (GPU, SIMD, Vector units)

Parallel execution of instructions

RA - 6 74 © 2024, Škraba, Rozman, FRI

◼ Intel Core i7 Haswell

 Feature size 22 nm (= 22 * ​​10-9 m)

 The number of transistors 1.6 billion (= 1600000000)

 The size of the chip 160 mm2 (From 10x to 26x mm2)

 The clock frequency from 2.0 GHz to 4.4 GHz

 The number of cores (CPU) 4

 graphics processor

 Socket LGA 1150

 TDP (Thermal design Power) from 11.5 W to 84 W

 Price  300-400 $

Example parallelism level instructions, threads and cores Intel 80x86

RA - 6 75 © 2024, Škraba, Rozman, FRI

Structure of 4-core processor Intel Core i7 (Haswell)

Intel 80x86

CPU 1 CPU 2 CPU 3 CPU 4

8MB L3 Cache

Cache

L2 256KB

Instruction

32KB L1
Operand

32KB L1

Cache

L2 256KB

Instruction

32KB L1
Operand

32KB L1

Cache

L2 256KB

Instruction

32KB L1
Operand

32KB L1

Cache

L2 256KB

Instruction

32KB L1
Operand

32KB L1

DDR3 memory controller QuickPath Interconnect

4 x 20b @ 6,4GT / s2 x 8 B @ 1.6 GT / s = 25.6 GB / s

RA - 6 76 © 2024, Škraba, Rozman, FRI

Example parallelism level instructions, threads and cores Intel 80x86

Simultaneous Multi Threading

(SMT)

„Hyperthreading“ on Core i7

1 core supports 2 threads

(two „virtual“ cores)

RA - 6 77 © 2024, Škraba, Rozman, FRI

Contacts to connect

chip to the motherboard

Intel 80x86

The upper side

CPU chip on the socket with the contacts (LGA775)

Lower side with the contacts and the capacitors

RA - 6 78 © 2024, Škraba, Rozman, FRI

Thermally conductive interface
Integrated cooler

CPU chip with the base

and the housing

– cross section

Socket LGA775 -

view from below

Intel 80x86

RA - 6 79 © 2024, Škraba, Rozman, FRI

Intel chip Core i7 (Haswell)

Core 1 Core 2 Core 3 Core 4

Intel 80x86

RA - 6 80 © 2024, Škraba, Rozman, FRI

Intel Core i7

(Ice Lake l.2019) Chip

Core 1 Core 2

Core 3 Core 4

System Agent

Example parallelism level instructions, threads and cores Intel 80x86

RA - 6 81 © 2024, Škraba, Rozman, FRI

Case: CPU-level parallelism: MIMD Computers

Examples: MIMD (Multiple Instruction multiple Data)

 Multiprocessor Multicomputers

 (closely connected) (loosely connected)

CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik V/I sistem

Skupne

spremenljivke

CPE

Predpomnilnik

CPE

Predpomnilnik

CPE

Predpomnilnik

Povezovalna struktura

Pomnilnik Pomnilnik Pomnilnik

CPU CPU CPU

Cache Cache Cache

Interconnection

Memory I/O System

Common

variables
Interconnection

Cache Cache Cache

CPU CPU CPU

Memory Memory Memory

RA - 6 82 © 2024, Škraba, Rozman, FRI

◼ Parallel processing of data

Case: CPU-level parallelism: GPU, SIMD, Vector units

https://doc.sling.si/workshops/programming-gpu/GPE/teslak40/

https://doc.sling.si/workshops/programming-gpu/GPE/teslak40/

RA - 6 83 © 2024, Škraba, Rozman, FRI

◼ It is the realization of the CPU, where several instructions are

executed simultaneously, so that the elementary steps of the

instructions overlap.

◼ In a pipelined CPU, instructions are executed similar to industrial

assembly line production (eg. cars) or laundry processing facilities:

◼ Execution of the instruction can be divided into smaller elementary

steps, sub-operations. Each sub-operation takes only fraction of

the total time required to execute a instruction.

6.6 Pipelined CPU (data unit)

RA - 6 84 © 2024, Škraba, Rozman, FRI

◼ CPU is divided into stages or pipeline segments, that
correspond to sub-operations of instruction.

◼ each sub-operation is executed by a certain stage or segment of
the pipeline.

◼ The stages are interconnected, on the one side instructions enter,
then they travel through the stages, where sub-operations are
executed, and they exit on on the other side of the pipeline.

◼ At the same time, there are as many instructions executed in
parallel as many stages is there in the pipeline.

Pipelined CPU

RA - 6 85 © 2024, Škraba, Rozman, FRI

At the start of 1. clock period

1. instruction enters the pipeline

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

RA - 6 86 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

1. instr.

1. clock period

RA - 6 87 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

2. instr.

2. clock period

1. instr.

RA - 6 88 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

3. instr.

3. clock period

2. instr. 1. instr.

RA - 6 89 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

4. instr.

4. clock period

3. instr. 2. instr. 1. instr.

RA - 6 90 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

5. instr.

5. clock period

4. instr. 3. instr. 2. instr. 1. instr.

RA - 6 91 © 2024, Škraba, Rozman, FRI

Pipelined CPU

Case: operation of 5-stage pipelined CPU

IF ID EX MA WR

6. instr.

6. clock period

5. instr. 4. instr. 3. instr. 2. instr.

After the end of the 5th clock

period, the first instruction

Completes execution (leaves

the pipeline)

RA - 6 92 © 2024, Škraba, Rozman, FRI

Comparison of non-pipelined and 5-stage pipelined CPU

+
4

ALU

PC

address

instruction

cache

PC

instruction

IR

registers

R0 - Rxx

address

operand

cache

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

intermediate registers

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

offset

Rd

RS1

Rs2

+
4

ALEPC address instruction
Registri

R0 - R14

instruction

memory

+

address

operand

operand

memory

RA - 6 93 © 2024, Škraba, Rozman, FRI

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

+
4

ALEPC address instruction
Registers

R0 - R14

Instruction

memory

+

address

operand

Operand

memory

M
U

X

M
U

X

M
U

X

A

C

B

Control

unit

instruction register

Conditional jump instruction

CONDITION TRUE

Memory R/W

Type of ALE operation

32-bit data

link

Control signal

(usually 1 bit)

A 32-bit connection

for instruction transfer

Jump address

operand

Register Write

+
4

ALU

PC

address

instruction

cache

PC

instruction

IR

registers

R0 - Rxx

address

operand

cache

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

intermediate registers

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

offset

Rd

RS1

Rs2

Comparison of operation of non-pipelined and pipelined CPU
T1: Read instruction from memory

T2: Transfer of instruction from memory into the
instruction register

T3: Decode the instruction and access to the operands in R1 and R3

R

1
R

3 T4: Execute operation (addition)

+

T5: Save the result in the register R10

ADD R10, R1, R3

RA - 6 94 © 2024, Škraba, Rozman, FRI

◼ The execution of the instructions can be divided into for example to 5

general elementary steps (5-stage pipeline):

 Reading instruction (IF - Instruction Fetch)

 Decoding instruction and access to registers (ID - Instruction decode)

 Execution of instruction (EX – Execute)

 Memory access (MA - Memory Access)

◼ (Only for the LOAD instruction and STORE)

 Saving the result in the register (WR - Write Register)

◼ If we can unify all the instructions to these common elementary steps,we

can also speed up the execution of the instructions:

 more instructions can be executed at the same time (each in its own

elementary step) -> pipeline

Central processing unit - execute instructions

RA - 6 95 © 2024, Škraba, Rozman, FRI

◼ Performance of the pipelined CPU is determined by the rate of exit
from the instruction pipeline.

◼ Since stages are linked together, the shifts of instructions from one
stage to another has to be excecuted at the same time.

◼ The shifts typically occur each clock cycle.

◼ Duration of one clock period tCPE can not be shorter than the time
required to execute the slowest sub-operation in the pipeline.

Pipelined CPU

RA - 6 96 © 2024, Škraba, Rozman, FRI

Case: 5-stage pipelined CPU

Reading instruction

IF = Instruction Fetch

1. Clock period

Pipelined CPU

RA - 6 97 © 2024, Škraba, Rozman, FRI

Case: 5-stage pipelined CPU

Decode instruction and

access operands in

the registers

ID = Instruction Decode

2. Clock period

Pipelined CPU

RA - 6 98 © 2024, Škraba, Rozman, FRI

Case: 5-stage pipelined CPU

Execution of operation

EX = Execute

3. Clock period

Pipelined CPU

RA - 6 99 © 2024, Škraba, Rozman, FRI

Case: 5-stage pipelined CPU

Access to operands in

memory (LOAD / STORE)

MA = Memory Access

4. Clock period

Pipelined CPU

RA - 6 100 © 2024, Škraba, Rozman, FRI

Case: 5-stage pipelined CPU

Saving result to

register

WR = Write Register

5. Clock period

Pipelined CPU

RA - 6 101 © 2024, Škraba, Rozman, FRI

T1

tCPE

T2 T3 T4 T5 T6 T7 T8 T9

time

T10

step 1: step 2 step 3 step 4 step 5

step 1: step 2 step 3 step 4 step 5

Non-pipelined CPE

1.instr.

T1

tCPE

T2 T3 T4 T5 T6 T7 T8 T9

time

T10

step 1: step 2 step 3 step 4 step 5

step 1: step 2 step 3 step 4 step 5

Pipelined CPU

Execution of instructions in non-pipelined and pipelined CPU

2.instr.

1.instr.

2.instr.

RA - 6 102 © 2024, Škraba, Rozman, FRI

◼ Today, all more powerful processors are designed as a pipelined

processors.

◼ In developing the pipelined CPU, it is important that executions of

all sub-operations take about the same time - balanced pipeline.

◼ With an ideally balanced CPU with N stages or segments, the

performance is N times greater than non-pipelined CPU.

◼ Each individual instruction is not executed any faster, but there are

N instructions in the pipeline executed at the same time.

Pipelined CPU

RA - 6 103 © 2024, Škraba, Rozman, FRI

◼ At the output of the pipeline, we get N times more executed

instructions than in non-pipelined CPU.

◼ The average number of clock cycles for the instruction (CPI) Is

ideally N times lower than at the non-pipelined CPU.

◼ The duration of the execution of each instruction (latency) is equal

to N x tCPE, that is, at the same clock period, the same in the non-

pipelined CPU.

Pipelined CPU

RA - 6 104 © 2024, Škraba, Rozman, FRI

◼ Can we at a sufficiently large number of stages N make CPU

much faster (N times faster)?

 No. Instructions, that are in the pipeline at the same time (each in its

stage), can depend on each other in some way dependent and

therefore a certain instruction can not be always executed in next clock

period.

◼ These events are called pipeline hazards.

Pipelined CPU

RA - 6 105 © 2024, Škraba, Rozman, FRI

◼ There are three types of pipeline hazards:

 structural hazards – when several stages of the pipeline in the same

clock period requires the same unit,

 data hazards - where some instruction needs the result of the

previous instruction, but is not yet available

 control hazards – at the instructions that change the value of the PC

(control instructions: jumps, branches, calls, ...)

Pipelined CPU

RA - 6 106 © 2024, Škraba, Rozman, FRI

3. instr. 2. instr. 1. instr.

◼ structural hazards

 access to the same unit

(eg. cache)

◼ data hazards

 operand dependence

between instructions

◼ hazard control

 branch instructions

(filling the pipeline)

Pipelined CPU - types of pipeline hazards:

ADD r1, r2, r3

ADD r5, r3, r1

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

memory memory

instructions operands

cache

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

LOOP:

…

BNE LOOP (1.)

ADD (2.)

MOV (3.)

LDR/STRADD

BNE LOOPADDMOV

RA - 6 107 © 2024, Škraba, Rozman, FRI

◼ structural hazards

 Solution -> separation

of caches (instructions,

operands - Harvard

Arch.

◼ data hazards

 Instruction reordering

can also help

(programmer, compiler)

 Solutions -> stall,

operand forwarding

between the stages

◼ control hazards

 Solution -> predict the

condition and branch

address

Pipelined CPU - pipeline hazards: common solutions

ADD r1, r2, r3

ADD r5, r3, r1

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

3. instr. 2. instr. 1. instr.

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

LOOP:

LDR (2.)

STR (3.)

BNE LOOP (1.)

ADD

MOV

BNE LOOPLDRSTR

RA - 6 108 © 2024, Škraba, Rozman, FRI

◼ Due to the risk of pipeline hazards, part of the pipeline at least has

to stop until hazard is resolved (the pipeline at that time does not

accept new instructions).

◼ The increase in speed, therefore, is not N - times.

◼ By increasing the number of stages N, the pipeline hazards occur

more frequently and the pipeline is no longer as effective as with

lower number of stages.

Pipelined CPU

N number of stages

P
e
rf

o
rm

a
n
c
e

RA - 6 109 © 2024, Škraba, Rozman, FRI

◼ General 5-stage pipeline

◼ FRI SMS Atmel 9260 ARMv5

6.7 Cases of 5-stage pipelined CPU

RA - 6 110 © 2024, Škraba, Rozman, FRI

◼ The base should be the execution of instructions in five steps, as

we described in the previous section.

◼ Execution of the instruction is divided into 5 sub-operations in

accordance with the steps from the previous section, and CPU

divided in five stages or segments:

 Stage IF (Instruction Fetch) - read instruction

 Stage ID (Instruction decode) – decode the instruction and access to

registers

 Stage EX (Execute) - the execution of the operation

 Stage MA (Memory Access) - access memory

 Stage WR (Write Register) - save the result

General 5-stage pipeline

RA - 6 111 © 2024, Škraba, Rozman, FRI

◼ Each stage of the pipeline must execute its sub-oepration in single

clock cycle (period).

◼ The IF and MA stages can simultaneously access memory (in

same clock period) - a structural hazard happens.

◼ To eliminate this kind of structural hazards, we must divide the

cache into separate instruction and operand caches (Harvard

architecture principle).

Pipelined CPU

RA - 6 112 © 2024, Igor Škraba, FRI

Pipelined CPU

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

memory memory

instructions operands

cache

For the simultaneous access to instruction (stage IF) and operand in cache

(stage MA), the structural hazard occurs in the pipeline

RA - 6 113 © 2024, Igor Škraba, FRI

Pipelined CPU

instructions operands

instruction

cache

operand

cache

Structural hazard, that would occur due to simultaneous access of stages IF and MA

to memory, is eliminated by using Harvard architecture on caches

IF
instruction

fetch

ID
instruction

decode

EX
execute

MA
memory access

WR
write register

RA - 6 114 © 2024, Škraba, Rozman, FRI

◼ In the IF stage of pipelined CPU, the access to the instruction

cache happens each clock period, however, in the non-pipelined

CPU access happens only every five clock periods (in case of 5

clock periods instructions).

◼ The speed of information transfer between the cache and the CPU

must be in case of pipelined CPU, five times higher than in non-

pipelined CPU.

◼ When designing the pipelined CPU, it is important to ensure that

CPU units (registers, ALU, ...) are not required to do two different

operations.

Pipelined CPU

RA - 6 115 © 2024, Škraba, Rozman, FRI

+
4

ALE

PC

naslov

ukazni

predpomnilnik

PC

ukaz

IR

registri

R0 – Rxx

naslov

operandni

predpomnilnik

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

vmesni registri

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

odmik

Rd

Rs1

Rs2

Case: structure of 5-stage pipelined CPU

(ALU instruction: e.g. ADD R1,R2,R3)

ADD R1,R2,R3

RA - 6 116 © 2024, Škraba, Rozman, FRI

+
4

ALE

PC

naslov

ukazni

predpomnilnik

PC

ukaz

IR

registri

R0 – Rxx

naslov

operandni

predpomnilnik

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

vmesni registri

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

odmik

Rd

Rs1

Rs2

Case: structure of 5-stage pipelined CPU

(LOAD/STORE instruction: Calculation of address in EX, access in MA)

LDR R1,[R0]

LDR R1,[R0,#OFF]

RA - 6 117 © 2024, Škraba, Rozman, FRI

+
4

ALE

PC

naslov

ukazni

predpomnilnik

PC

ukaz

IR

registri

R0 – Rxx

naslov

operandni

predpomnilnik

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

vmesni registri

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

odmik

Rd

Rs1

Rs2

Case: structure of 5-stage pipelined CPU

(LOAD/STORE instruction: Calculation of address in EX, access in MA)

LDR R1,STEV1 (pseudo instr.)

LDR R1,[PC,#OFF] (real instr.)

RA - 6 118 © 2024, Škraba, Rozman, FRI

+
4

ALE

PC

naslov

ukazni

predpomnilnik

PC

ukaz

IR

registri

R0 – Rxx

naslov

operandni

predpomnilnik

operand

C

IR

C

IR

stage IF stage ID stage EX stage MA stage WR

vmesni registri

C

IR

C

IR

PC

IR

A

B

M
A

R
M

D
R

odmik

Rd

Rs1

Rs2

Case: structure of 5-stage pipelined CPU

(BRANCH instructions: e.g. B, BNE LABEL in ALU in stage EX)

BNE LOOP (compiles as :)

BNE [PC,#OFF] (LOOP addr.)

RA - 6 120 © 2024, Škraba, Rozman, FRI

https://github.com/LAPSyLAB/MiMo_Student_Release/tree/main/MiMo_v2_Pipelined_versions

MiMo v2 - 5. st. pipeline in Logisim

Comparison of stall and

forwarding:

37 (stall) and 27 (forwarding)

clock periods for program

execution

https://github.com/LAPSyLAB/MiMo_Student_Release/tree/main/MiMo_v2_Pipelined_versions

RA - 6 121 © 2024, Škraba, Rozman, FRI

◼ The pipeline has 5 stages; between them there are intermediate

registers in which the results of sub-operations in each level are

stored and all data that is needed in following stages.

◼ In stage IF, the instruction is read and transferred to the instruction

register, and the content of the program counter PC is increased

by 4 (instructions are 4 bytes long).

◼ Program Counter is necessary to be increased in stage IF because

usually in each clock period, one instruction is fetched from

instruction cache.

Case: structure of 5-stage pipelined CPU

RA - 6 122 © 2024, Škraba, Rozman, FRI

◼ The instruction currently executed (pointed by PC content) is stored

in the intermediate registers (IR) because it is needed for branch

instructions in the EX stage.

◼ Branch instructions usually write new address into PC (branch or

target address), which is calculated by ALU in stage EX.

◼ Address for operands in instructions LOAD/STORE (indirect

addressing) is also calculated by ALU in stage EX.

◼ Each stage executes its own instructions, therefore the

intermediate registers IR in all stages always store the instructions

that are read from instruction cache every clock period.

Pipelined CPU

RA - 6 123 © 2024, Škraba, Rozman, FRI

Case: Structure of

5-stage pipelined

CPU:

FRI SMS - Atmel 9260,

ARMv5 architecture

stage IF

stage ID

stage EX

stage MA

stage WR

I-cache

rot / SGN ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

Execute

buffer /
data

write-back

forwarding
paths

Immediate

fields

next
pc

reg
shift

Load / store
Address

LDR pc

SUBS pc

post-
Index

pre-index

LDM /
STM

write register

r15

pc + 8

PC + 4

+4

Mux

shift

mules

B, BL

MOV pc

RA - 6 125 © 2024, Škraba, Rozman, FRI

◼ With pipelined CPU and solving the pipeline hazards, we can

achieve CPI values close to 1.

◼ If we want to reduce the CPI below 1, we must fetch and issue

several instructions in in each clock period (and also executed

them).

◼ Such processors are denoted as multiple-issue processors and can

be divided into two groups:

 superscalar processors – instructions, that are executed in parallel, are

determined by a logic in a processor – dynamic decision

 VLIW processors - instructions, that are executed in parallel, are

determined by a program (compiler) – static decision

6.8 Multiple issue processors

RA - 6 126 © 2024, Škraba, Rozman, FRI

Superscalar processor is a pipelined processor which is capable of

simultaneous fetching, decoding and executing several instructions.

◼ The number of fetched and issued instructions in one clock period

is dinamically adjusted during the program execution and

determined by processor‘s logic.

◼ Processor, that can issue a maximum of n instructions is denoted

as n-issue superscalar processor.

◼ Parallel (superscalar) performance requires additional interfaces

and additional stages for determining interdependencies,

validation and eventual retrieval of results ->

Superscalar processor

RA - 6 127 © 2024, Škraba, Rozman, FRI

Superscalar processor

EX

EX

EX

EX

EX

IF

ID

re
n

a
m

in
g

re
g
is

te
rs

in
s
tr

u
c
ti
o
n

 w
in

d
o

w

is
s
u

e
 i
n

s
tr

u
c
ti
o

n
s

v
a

lid
a

ti
o

n
 a

n
d

 r
e

tr
ie

v
a

l

re
o

rd
e

r

b
u

ff
e
r

WB

◼ One of the functional units in the EX stage is also stage MA

(combined functional unit LOAD/STORE or separate functional

units for LOAD and STORE).

simplified scheme of superscalar processor

based on 5-stage pipeline

LOAD …

ADD …

FPADD …

LOAD …

ADD …

FPADD …

LOAD …

ADD …

ADD …

FPADD …

LOAD …

STORE …

RA - 6 128 © 2024, Škraba, Rozman, FRI

Simplified case of

Superscalar CPU:

Intel Core i7

E
X

E
X

E
X

E
X

E
X

IF

IDPreimenovanje

registrov

Ukazno okno

Izstavitev ukazov

Potrjevanje in

umikanje

Razvrščevalni

vmesnik

W
R

1.Instruction Fetch (16bytes)

2.Predecode Stage

 (bytes->x86 instr.)

3.µ-op decode (x86 isntr. -> µ-op)

4.Loop Stream Detection

5.Issue µ-op -> ROB in RP

6.Execute µ-op

7.Retire (finalize)

RA - 6 129 © 2024, Škraba, Rozman, FRI

1.Instruction Fetch (16bytes)

2.Predecode Stage

 (bytes->x86 instr.)

3.µ-op decode (x86 instr. -> µ-op)

4.Loop Stream Detection

5.Issue of µ-op -> ROB and RP

6.Execute µ-op

7.Retire (finalize

Intel Core i7

Detailed case of

Superscalar CPU

E
X

E
X

E
X

E
X

E
X

IF

IDPreimenovanje

registrov

Ukazno okno

Izstavitev ukazov

Potrjevanje in

umikanje

Razvrščevalni

vmesnik

W
R

E
X

E
X

E
X

E
X

E
X

IF

IDrenaming

registers

instruction window

issue instructions

validation and

retrieval

reorder

buffer

W
B

RA - 6 130 © 2024, Škraba, Rozman, FRI

AMD Zen 2

Detailed case of

superscalar CPU

E
X

E
X

E
X

E
X

E
X

IF

IDrenaming

registers

instruction window

issue instructions

validation and

retrieval

reorder

buffer

W
B

RA - 6 131 © 2024, Škraba, Rozman, FRI

ARM Cortex M7

Case of dual-issue

simpler pipeline

RA - 6 132 © 2024, Škraba, Rozman, FRI

VLIW (Very Long Instruction Word) Processors are executing long

instructions, which consist of several ordinary machine instructions

that are executed in parallel by a processor using variety of functional

units.

◼ In the long instruction, each unit executes its own instruction.

VLIW processor

Instruction for 1.

functional unit

VLIW instruction consists of instructions for each functional unit

Instruction for 2.

functional unit
Instruction for 3.

functional unit

Instruction for n-th.

functional unit

ALU FPU STORELOADALU

Case of VLIW instruction composition:

RA - 6 133 © 2024, Škraba, Rozman, FRI

◼ Compiler is looking in program for mutually independent

instructions, that can be executed in parallel in functional units, and

merges them in long instructions.

◼ Number of instructions, which are fetched and issued in one clock

period is determined by the compiler and is not changed during the

execution (static decision).

◼ If the compiler can not find enough instructions for all functional

units in long instruction, missing instructions are replaced by the

instruction NOP (No OPeration).

VLIW processor

RA - 6 134 © 2024, Škraba, Rozman, FRI

VLIW processor

LOAD

STORE

IF ID

is
s
u

e

v
a

lid
a

ti
o

n

re
tr

ie
v
a

l

ALU

ALU

FPU

W
B

A - FL -- - - L - A - FL - AAFLS - A - L -

VLIW

instruction

- NOP instruction

Example sequence of

long VLIW instructions

A = ALU instruction

F = FPU instruction

L = LOAD instruction

S = STORE instruction

LOAD …

ADD …

FPADD …

LOAD …

ADD …

FPADD …

LOAD …

ADD …

ADD …

FPADD …

LOAD …

STORE …

Program

Compiler finds independent instructions coresponding to functional units and creates „long instructions

words“.

If coresponding and independent instruction is not found,

NOP is inserted

(„-“ in VLIW instructions below).

Independent:
ADD R1,R2,R3

SUB R7,R5,R9

(can exec. in parallel)

Dependent:
ADD R1,R2,R3

SUB R7,R8,R1

(can‘t exec. in parallel

RA - 6 135 © 2024, Škraba, Rozman, FRI

Comparison: Superscalar vs. VLIW processor

VLIW processor

Superscalar processor

◼ Dynamic acquisition of several instructions (CPU decides during the execution)

◼ Complex realization

LOAD

STORE

IF ID

is
s
u
e

va
lid

a
ti
o

n

re
tr

ie
va

l

ALU

ALU

FPU

W
B

EX

EX

EX

EX

EX

IF

ID

re
n
a

m
in

g

re
g

is
te

rs

in
s
tr

u
c
ti
o

n
w

in
d

o
w

is
s
u
e

in
s
tr

u
c
ti
o

n
s

v
a
lid

a
ti
o

n
a
n
d

re
tr

ie
v
a
l

re
o

rd
e

r

b
u
ff
e

r

WB

LOAD …

ADD …

FPADD …

LOAD …

ADD …

FPADD …

LOAD …

ADD …

ADD …

FPADD …

LOAD …

STORE …

more

instructions

at once

CPU – dynamical decisions

LOAD …

ADD …

FPADD …

LOAD …

ADD …

FPADD …

LOAD …

ADD …

ADD …

FPADD …

LOAD …

STORE …

Uk
az

 A
LE

Uk
az

 F
PE

Uk
az

 S
TO

RE
Uk

az
 L

O
AD

Uk
az

 A
LE

VLong Instr. Word

(several shorter

instr.)

Uk
az

 A
LE

Uk
az

 F
PE

Uk
az

 S
TO

RE
Uk

az
 L

O
AD

Uk
az

 A
LE

◼ Static schedule in long instructions (compiler decides before the execution)

◼ Simpler realization

Compiler decides

	Diapozitiv 1: RAČUNALNIŠKEA ARCHITECTURE
	Diapozitiv 2
	Diapozitiv 3
	Diapozitiv 4: 6.1 Basic structure and operation of the CPU
	Diapozitiv 5
	Diapozitiv 6
	Diapozitiv 7
	Diapozitiv 8
	Diapozitiv 9
	Diapozitiv 10
	Diapozitiv 11
	Diapozitiv 12
	Diapozitiv 13
	Diapozitiv 14
	Diapozitiv 15
	Diapozitiv 16
	Diapozitiv 17: Clock signal - periodic rectangular signal
	Diapozitiv 18
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 22
	Diapozitiv 23: 6.2 ARM CPU – features summary
	Diapozitiv 24
	Diapozitiv 25
	Diapozitiv 26: 6.3 Structure of the CPU (example of ARM CPE LEGv8 & [Mini]MiMo)
	Diapozitiv 27: 6.3.1 Data path (unit)
	Diapozitiv 28
	Diapozitiv 29: Model of CPU: MiMo Model of CPU implemented with logic gates in Logisim MiMo – Microprogrammed Model of CPU (course OR VSP)
	Diapozitiv 30
	Diapozitiv 31: MiMo – Microprogrammed Model of CPU FPGA implementation
	Diapozitiv 32: Model of CPU: Mini MiMo (course RA VSP) Model of CPU implemented with logic gates in Logisim Mini MiMo – Simple Hardwired Model of CPU (16 instr., assembler in Excel, …)
	Diapozitiv 33: 6.3.1 Data path (unit)
	Diapozitiv 34
	Diapozitiv 35
	Diapozitiv 36
	Diapozitiv 37
	Diapozitiv 38
	Diapozitiv 39: CPU: datapath, control unit, and control signals
	Diapozitiv 40: Control unit (Micro-programmed implementation – e.g. MiMo model)
	Diapozitiv 41: Control unit (Micro-programmed implementation –MiMo model)
	Diapozitiv 42: Control unit (Hard-wired)
	Diapozitiv 43: Control unit (Hard-wired): case Mini Mimo
	Diapozitiv 44: Control unit (Hard-wired): case Mini Mimo
	Diapozitiv 45: Control unit (Hard-wired)
	Diapozitiv 46: CPU: datapath, control unit, and control signals
	Diapozitiv 47: CPU: datapath, control unit, and control signals
	Diapozitiv 48: CPU: datapath, control unit, and control signals
	Diapozitiv 49: CPU: datapath, control unit, and control signals
	Diapozitiv 50: CPU: datapath, control unit, and control signals
	Diapozitiv 51: 6.4 Execution of instructions
	Diapozitiv 52
	Diapozitiv 53
	Diapozitiv 54
	Diapozitiv 55
	Diapozitiv 56
	Diapozitiv 57
	Diapozitiv 58
	Diapozitiv 59
	Diapozitiv 60
	Diapozitiv 61
	Diapozitiv 62
	Diapozitiv 63: 6.5 Parallel execution of instructions
	Diapozitiv 64
	Diapozitiv 65
	Diapozitiv 66
	Diapozitiv 67
	Diapozitiv 68
	Diapozitiv 69
	Diapozitiv 70
	Diapozitiv 71
	Diapozitiv 72: How to effectively utilize multiple items?
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75: Structure of 4-core processor Intel Core i7 (Haswell)
	Diapozitiv 76
	Diapozitiv 77
	Diapozitiv 78
	Diapozitiv 79
	Diapozitiv 80
	Diapozitiv 81
	Diapozitiv 82
	Diapozitiv 83: 6.6 Pipelined CPU (data unit)
	Diapozitiv 84
	Diapozitiv 85
	Diapozitiv 86
	Diapozitiv 87
	Diapozitiv 88
	Diapozitiv 89
	Diapozitiv 90
	Diapozitiv 91
	Diapozitiv 92: Comparison of non-pipelined and 5-stage pipelined CPU
	Diapozitiv 93: Comparison of operation of non-pipelined and pipelined CPU
	Diapozitiv 94
	Diapozitiv 95
	Diapozitiv 96
	Diapozitiv 97
	Diapozitiv 98
	Diapozitiv 99
	Diapozitiv 100
	Diapozitiv 101: Execution of instructions in non-pipelined and pipelined CPU
	Diapozitiv 102
	Diapozitiv 103
	Diapozitiv 104
	Diapozitiv 105
	Diapozitiv 106
	Diapozitiv 107
	Diapozitiv 108
	Diapozitiv 109: 6.7 Cases of 5-stage pipelined CPU
	Diapozitiv 110: General 5-stage pipeline
	Diapozitiv 111
	Diapozitiv 112
	Diapozitiv 113
	Diapozitiv 114
	Diapozitiv 115
	Diapozitiv 116
	Diapozitiv 117
	Diapozitiv 118
	Diapozitiv 120: MiMo v2 - 5. st. pipeline in Logisim
	Diapozitiv 121: Case: structure of 5-stage pipelined CPU
	Diapozitiv 122
	Diapozitiv 123: Case: Structure of 5-stage pipelined CPU: FRI SMS - Atmel 9260, ARMv5 architecture
	Diapozitiv 125: 6.8 Multiple issue processors
	Diapozitiv 126
	Diapozitiv 127
	Diapozitiv 128
	Diapozitiv 129
	Diapozitiv 130
	Diapozitiv 131
	Diapozitiv 132
	Diapozitiv 133
	Diapozitiv 134
	Diapozitiv 135

