
RA - 9 1 © 2024, Škraba, Rozman, FRI

COMPUTER

ARCHITECTURE

9 Memory hierarchy

RA - 9 2 © 2024, Škraba, Rozman, FRI

9 Memory Hierarchy - objectives:

◼ A basic understanding of:

◼ Locality of memory accesses

◼ Importance and operation of the memory hierarchy

◼ Understanding caches:

◼ Their effect on the speed of computation

◼ A subset of the content of main memory

◼ Understanding concept of virtual memory

◼ Main memora is a subset of the content of virtual memory

(SSD,HDD)

Memory hierarchy - content

RA - 9 3 © 2024, Škraba, Rozman, FRI

9 Memory hierarchy

 Locality of memory accesses

 Memory hierarchy

 Cache

◼ Example of cache operation

◼ Types of caches regarding restrictions on mapping of blocks

◼ Effect of the cache on the operating speed of the CPU

◼ Case: Effect of L2 cache on the speed of the CPU

 Virtual memory

◼ Virtual memory with paging

◼ Page fault

◼ Strategies and algorithms

◼ Speed up address translation

Memory hierarchy - content

RA - 9 4 © 2024, Škraba, Rozman, FRI

 Operation of the memory hierarchy

◼ 4-levels memory hierarchy - average access time as seen by the CPU

◼ Case: Effect of the miss-rate in main memory to the average access time in

three-level memory hierarchy

Memory hierarchy - content

RA - 9 5 © 2024, Škraba, Rozman, FRI

9.1 Locality of memory accesses

◼ The principle of locality of memory accesses is one of the most
important phenomena, which is observed in the operation of von
Neumann‘s computer.

◼ Programs more commonly use commands and operands, which
are close to the memory addresses currently used.

◼ Programs often use the same commands and operands again and
again (more than once).

RA - 9 6 © 2024, Škraba, Rozman, FRI

◼ A typical program in 90% of time executes only 10% of instructions.

Types of locality :

◼ Spatial locality

◼ Temporal locality

◼ Locality of memory accesses allows the main memory to be
replaced with a memory hierarchy

Locality of memory accesses

RA - 9 7 © 2024, Škraba, Rozman, FRI

◼ The desire of programmers:

 access as fast as possible and

 memory as big as possible

◼ Memory hierarchy, which consists of several separate memories

with different characteristics, allowing the realization of this illusion:

 Cache (can be in multiple levels)

 Main memory

 Virtual memory

◼ The successful operation of the memory hierarchy is possible due

to the already mentioned locality of memory accesses.

9.2 Memory Hierarchy

RA - 9 8 © 2024, Škraba, Rozman, FRI

◼ The memory hierarchy therefore consists of several separate

storage devices with different characteristics:

 First in the hierarchy is memory M1 (closest to the CPU), the fastest,

most expensive and the smallest.

 Last in the hierarchy is memory Mn (farthest from the CPU), the

cheapest, largest and slowest.

◼ The aim of the memory hierarchy is that the big, slow and

inexpensive memory Mn seems like fast and expensive memory

M1.

Memory hierarchy

RA - 9 9 © 2024, Škraba, Rozman, FRI

Case: three-level memory hierarchy

CPU
Cache Main

memory

Virtual

memory

M1

Static RAM

(SRAM)

M2

Dynamic RAM

(DRAM, SDRAM)

M3

Magnetic disk

drive or solid

state drive

CPU sees memory hierarchy as the Main memory defined in

Von Neumann‘s model

-fastest

-most expensive

-smallest

-slowest

-cheapest

-biggestr

RA - 9 10 © 2024, Škraba, Rozman, FRI

◼ Operation rule of the hierarchy is that the memory content at level i

is a subset of the content at the level i + 1.

◼ If the information accessed by the CPU is not in M1, it must be

transferred from M2 to M1. If it is not in M2, it is transferred first

from M3 to M2 and then from M2 to M1.

◼ Transfers from one level to the next level is carried out

automatically, without the involvement of a programmer.

Memory hierarchy

RA - 9 11 © 2024, Škraba, Rozman, FRI

◼ From CPU, a 3-level memory hierarchy is seen as the size of the
main memory M3, with a speed close to the speed of M1.

◼ The memory hierarchy would be useless without locality of memory
accesses.

Memory hierarchy

RA - 9 12 © 2024, Škraba, Rozman, FRI

Memory hierarchy

Memories in memory hierarchy [Patt]

RA - 9 13 © 2024, Škraba, Rozman, FRI

Memory hierarchy

Registers

in CPU

Caches

Main memory

Semiconductor disk (SSD)

Magnetic disk (HD)

Speed

and price Size

R
IS

IN
G

R
IS

IN
G

Distance from

CPU and

access time

R
IS

IN
G

M
e

m
o

ry
 h

ie
ra

rc
h
y

Memories in memory hierarchy

Virtual memory

RA - 9 15 © 2024, Škraba, Rozman, FRI

◼ Cache is a small, fast memory (SRAM) between the CPU and main

memory.

◼ Using cache in the memory hierarchy creates the illusion of fast

memory, which is faster than main memory.

◼ The contents of the cache is a subset of the contents of main

memory.

◼ CPU with memory address always accesses to the cache.

9.3 Cache

RA - 9 16 © 2024, Škraba, Rozman, FRI

Cache - principles

CPU
Cache Main

memory

Mp tap, Hp

Mg tag

ta

Mp cache

tap time access to the cache [ns]

Hp hit-rate in cache [%]

Mg main memory

tag access time to main memory [ns]

 (hit-rate in the main memory is 100%)

ta average time access the entire hierarchy,

 as seen by the CPU [ns]

2-level

memory

hierarchy

RA - 9 17 © 2024, Škraba, Rozman, FRI

◼ When the CPU Access to information (command, operand) cache
are two options:

 The goal (Hit) if the address (and content from this address) in the
cache access time is tap

 Zgrešitev (miss) If the address (and content) is not in the cache
access time is tap + tag

Cache - principles

CPE
pre-

memory
The main

memory

Mp tapH

Mg tag

ta
CPE

pre-

memory
The main

memory

Mp tapH

Mg tag

ta

The goal of the cache Zgrešitev cache

block

address

inC ontents (command or data)

RA - 9 18 © 2024, Škraba, Rozman, FRI

◼ Success of operation of the cache is measured:

 With hit-rate H

 N - total number of accesses to the cache (N = Ng + Np)

 Np - number of hits (the desired information is stored in the cache)

 Ng - number of misses (desired information is not in cache,

 the transfer of information from the main memory

 to the cache is needed)

 Or with the miss rate 1 - H (we want to minimize it)

◼ In cache, hit rate is H 0.9 (90%)

◼ In case of miss, access to the main memory is necessary.

Cache - principles

pg

pp

NN

N

N

N
H

+
==

RA - 9 19 © 2024, Škraba, Rozman, FRI

◼ Average memory access time ta (AMAT) as seen by the CPU is:

Cache - principles

CPU
Cache Main

memory

Mp tap H

Mg tag

ta

agapa tHtt)1(−+=

))(1(agapapa ttHtHt +−+=

RA - 9 20 © 2024, Škraba, Rozman, FRI

◼ When calculating two cache specialties should be considered:

 Between main memory and cache there is always transfer of the

cache block (cache line), that consists of several adjacent memory

words (bytes)

 Time in the computer is usually measured in clock periods

◼ Access time tap to the information in the cache level L1 in most

computers is from one to several clock periods.

◼ In the case of miss time for the access to the main memory and

cache block transfer is denoted as miss penalty tB.

Cache - principles

RA - 9 21 © 2024, Škraba, Rozman, FRI

◼ Miss penalty tB is time that in case of miss (miss rate is 1 - H) is

added to the access time to the cache.

◼ Miss penalty is typically between 10 and 100 clock periods.

◼ If your computer has a cache level L2, then miss penalty is much

smaller because the L2 cache is faster than main memory.

Cache - principles

RA - 9 22 © 2024, Škraba, Rozman, FRI

◼ Average access time ta including miss penalty, is defined as:

 tap - access time of cache

 (1 - H) - the probability of miss in cache

 tB – miss penalty (access time to the main memory + time for

 transfer of cache block (line))

◼ If times tap and tB are expressed in clock periods, then also a

result ta is in clock periods.

◼ Average access time in seconds (tCPE is the duration of one clock

period in seconds):

 ta [s] = ta [Clock period] * tCPE [s]

Cache - principles

Bapa tHtt)1(−+=

RA - 9 23 © 2024, Škraba, Rozman, FRI

◼ The content of the cache varies

 Cache blocks are transferred from the main memory

 and addresses of these blocks (block numbers from the main memory)

◼ Therefore, each cache consists of two parts:

 Memory part, that is divided into blocks or cache lines

 Control part, consisting of control words. Each block in the memory

part corresponds to certain control word containing the address of a

block (number of block in main memory), which is contained in the

memory part.

Cache - structure

RA - 9 24 © 2024, Škraba, Rozman, FRI

Cache - structure

b
lo

c
k
 0

Control part of

block 0
Memory part

b
lo

c
k
 1

b
lo

c
k
 M

-1

word 0

word 1

word 2b -1
Control part of

block 1

Cache

Control part

word 0 word 1 word 2b -1

word 0 word 1 word 2b -1

word 0 word 1 word 2b -1

The block or a cache line = 2b the words

Memory part

block 0

block 1

block M-1

Control part of

block M-1

RA - 9 25 © 2024, Škraba, Rozman, FRI

Cache - structure

Structure and operation of cache

RA - 9 26 © 2024, Škraba, Rozman, FRI

◼ Block (or a cache line) consists of a number of consecutive

memory words (memory word is usually 1 byte in size).

◼ Block size (B = 2b) is typically 4 to 512 memory words.

◼ Remember: Between main memory and the cache, only the entire

block is transferred.

◼ When a block from main memory is transferred to the free block

frame in the cache :

 Content of the block is transferred to the memory part of the block in

cache

 Address (number) of block is transferred to the control part of the block

in cache

Cache - structure

RA - 9 27 © 2024, Škraba, Rozman, FRI

◼ An example of cache operation:

 Assume:

◼ processor accesses the memory words with the following sequence of

memory addresses:

◼ 9, 10, 11, 2, 3, 9, 10, 11, 2, ...;

◼ Cache consists of blocks of 4 bytes (B = 22 = 4) and it is initially empty;

◼ Memory address is 5 bits long.

◼ The top three bits of the memory address specify a block number,

 the lower two bits of the memory address determine the word (byte) in the

block (22 = 4)

cache - example

RA - 9 28 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .
Memory address

8 bits

Main memory

CPU

≠

≠

≠

≠

m
is

s

010

010 01

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 29 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

access

CPU 010 01

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 30 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

=

≠

≠

≠

hit

010

access

CPU 01010

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 31 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

=

≠

≠

≠

hit

010

CPU 010 11

access

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 32 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

≠

≠

≠

≠

000

CPU 000 10

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

m
is

s

RA - 9 33 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

0 0 0 $ 12

$ 31

$ CB

$ 74

CPU 000 10

access

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 34 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

0 0 0 $ 12

$ 31

$ CB

$ 74

≠

≠

≠

=hit

000

CPU 000 11

access

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 35 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

0 0 0 $ 12

$ 31

$ CB

$ 74

≠

≠

≠

=hit

010

access

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 12,. . .

CPU 010 01

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 100 00

RA - 9 36 © 2024, Škraba, Rozman, FRI

000 00

000 01

000 10

000 11

001 00

001 01

001 10

001 11

010 00

010 01

010 10

010 11

011 00

011 01

011 10

011 11

$ 12

$ 31

$ CB

$ 74

$ 67

$ 45

$ 0B

$ 23

$ A4

$ 1F

$ 36

$ 06

$ FE

$ 7A

$ CC

$ 5F

100 00

8 bits

Control part Memory part

Memory address

8 bits

Main memory

$ A4

$ 1F

$ 36

$ 06

0 1 0

0 0 0 $ 12

$ 31

$ CB

$ 74

CPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 2,. . .

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

M
-

1

00

01

10
11

00

01

10
11

00

01

10
11

b
lo

c
k
 0

b
lo

c
k
 1

b
lo

c
k
 2

b
lo

c
k
 3

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0

of missing

RA - 9 37 © 2024, Škraba, Rozman, FRI

Simple Cache model in LogisimCPU access to the memory address:

9, 10, 11, 2, 3, 9, 10, 11, 2,. . .
misses

RA - 9 38 © 2024, Škraba, Rozman, FRI

Access to an operand in memory:

◼ HIT in cache (probability H):

 CPU accesses to the operand in cache (read or write)

◼ MISS in cache (probability of 1-H) :

 Transfer of the block from main memory to cache or

 Block replacement - if the cache is full, one of the blocks stored in the

cache is saved back to main memory (is this always necessary?), on

its location a new block from main memory is transferred.

 CPU accesses to the operand in cache

Cache - principles

RA - 9 39 © 2024, Škraba, Rozman, FRI

◼ Search for the block in cache must be fast.

◼ If this is not possible, it is necessary to introduce restrictions on

mapping a block from main memory to cache.

◼ Depending on the severity of restrictions on the mapping, we

distinguish three types of caches:

 Associative cache
◼ (No restrictions on the mapping of blocks in the cache)

 Set-associative cache
◼ (Block can be mapped only to a specific set, but within the set without limitation)

 Direct cache
◼ (Block can be mapped only to a specific block frame)

Cache - principles

Types of caches according to restrictions on the mapping of

blocks

RA - 9 40 © 2024, Škraba, Rozman, FRI

 Fully associative cache

◼ Memory part of the cache is a static RAM (true for all three types of

caches)

◼ Control part of the cache is associative memory, which allows fast search

for a block number across whole control part of the cache

◼ Since the search is fast across whole cache, the block can be mapped to

cache anywhere in any block frame.

◼ Because of today's technology associative memory size is limited, fully

associative caches are rare and large only a few 100 blocks.

◼ If we want a large cache, the solution is another type of cache - set-

associative or direct.

Cache - principles

RA - 9 41 © 2024, Škraba, Rozman, FRI

Mapping block in fully associative cache

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Fully associative cache of size 8 blocks

Blok

Block number

0

1

2

3

4

5

6

7

Control part Memory part Block nr.

A block from the main memory can be

mapped in any cache block

without limitations, since the associative search

In control part works quickly.

02

13

05

Search

RA - 9 42 © 2024, Škraba, Rozman, FRI

 Set-associative cache

◼ The entire cache is divided into several parts - called sets.

◼ Each set has a smaller associative cache.

◼ Search for block within the set is fast (associative control part), search for

the block in different sets is much slower

◼ Therefore, a certain block of main memory can be mapped only in the

specified set (it is not necessary to search between sets), but within the set

can be mapped anywhere.

◼ The number of blocks in the set is called the associativity E.

◼ The higher the degree of associativity, the higher is hit rate.

Cache - principles

RA - 9 43 © 2024, Škraba, Rozman, FRI

Mapping block in set-associative cache

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Set-associative cache
size of 8 blocks, divided into 4 sets.

2 block in the set (= degree of associativity of E = 2)

Blok

Block number

0

Any block of main memory can be mapped

only in the specified set, but in any block in the set.

Number of sets =

(block and set nr.) mod (number of sets in the cache)

1

2

3

02

13

05

Search

00 of 10

01 01

11 of 01

Control part Memory part Set nr.

RA - 9 44 © 2024, Škraba, Rozman, FRI

 Direct cache

◼ The entire control part of the cache is usual addressable memory - static

RAM

◼ Therefore, it is impossible to do a fast block search (it would be too slow).

◼ Certain block of main memory can therefore be mapped only in the specific

block frame in cache (so search is not necessary anymore)

◼ If the block frame, into which a new block from memory must be mapped,

is full, it is necessary to replace the block.

◼ Hit rate is therefore in direct cache compared with the set-associative

cache of same size, much smaller ..

Cache - principles

RA - 9 45 © 2024, Škraba, Rozman, FRI

Mapping block in direct cache

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Direct cache with size of 8 blocks

Control part is a normal

addressable memory

Block

block

0

1

2

3

4

5

6

7

Control part Memory part Block nr.

Fixed block of main memory can be mapped

only in the specified block frame in cache (always the same)

Position in cache =

(Block nr.) mod (Number of block frames in the cache)

02

13

Search

0010

0101

1101

RA - 9 46 © 2024, Škraba, Rozman, FRI

Mapping block in direct cache

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Direct cache with size of 8 blocks

Control part is a normal

addressable memory

Block

block

0

1

2

3

4

5

6

7

Fixed block of main memory can be mapped

only in the specified block frame in cache (always the same)

Position in cache =

(Block nr.) mod (Number of block frames in the cache)

02

05

Search

Block replacement

0010

0101

1101

Control part Memory part Block nr.

RA - 9 47 © 2024, Škraba, Rozman, FRI

Cache - mapping block in the cache for different types of caches

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Block

0

1

2

3

0

1

3

4

2

6

5

7

Block number

Set number

block 0

1

3

4

2

6

5

7

Associative

cache

Set-associative

cache

associativity E = 2

Direct

cache

Cache with 8 blocks Block

block

RA - 9 48 © 2024, Škraba, Rozman, FRI

Cache - mapping block in the cache for different types of caches

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Block

0

1

2

3

0

1

3

4

2

6

5

7

Block number

Set number

block 0

1

3

4

2

6

5

7

Associative

cache

Set-associative

cache

associativity E = 2

Direct

cache

Cache with 8 blocks Block

block

11 01

Block can be

mapped anywhere

RA - 9 49 © 2024, Škraba, Rozman, FRI

Cache - mapping block in the cache for different types of caches

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Block

0

1

2

3

0

1

3

4

2

6

5

7

Block number

Set number

block 0

1

3

4

2

6

5

7

Associative

cache

Set-associative

cache

associativity E = 2

Direct

cache

Cache with 8 blocks Block

block

13 mod 4 = 1

11 01

Block can be

mapped to exactly

determined set

RA - 9 50 © 2024, Škraba, Rozman, FRI

Cache - mapping block in the cache for different types of caches

Main memory

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Block

0

1

2

3

0

1

3

4

2

6

5

7

Block number

Set number

block 0

1

3

4

2

6

5

7

Associative

cache

Set-associative

cache

associativity E = 2

Direct

cache

Cache with 8 blocks Block

block

13 mod 8 = 5

1101

Block can be

mapped to exactly

determined frame

RA - 9 51 © 2024, Škraba, Rozman, FRI

cache - restrictions on the mapping block in the cache

00

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Blok Blok

0

1

2

3

0

1

3

4

2

6

5

7

Block number (set)

number of sets

block 0

1

3

4

2

6

5

7

Net associative

cache

Set-associative

cache

rate assoc. E = 2

direct

cache

main memoryCache 8 blocks

block

Block can be

mapped anywhere

Block can be

mapped to exactly

determined set

Block can be

mapped to exactly

determined frame

11 01

RA - 9 52 © 2024, Škraba, Rozman, FRI

◼ Access to the cache:

 HIT:

◼ read - usually 1 clock period,

◼ write - read block,

 - change the content,

 - write block back - typically a clock period more.

Impact of cache to the speed of CPU

CPU
Cache Main

memory

Mp tapH

Mg tag

ta

RA - 9 53 © 2024, Škraba, Rozman, FRI

 Zgrešitev:

◼ access to the main memory,

◼ transfer of block to the cache,

◼ write block in the cache,

◼ followed by reading or writing as in case of hit,

◼ if the cache is full, it is necessary to replace the block.

For all these operations in case of miss, it takes from 10 to 100 clock

periods (miss penalty).

Cache - Cache impact on CPU speed

CPU
Cache Main

memory

Mp tapH

Mg tag

ta block

RA - 9 54 © 2024, Škraba, Rozman, FRI

◼ Misses in cache reduce the operating speed of the CPU, i.e. they
increase the CPI.

◼ Ideal CPI (CPII) – disregarding misses in cache

◼ Real CPI (CPIR) – including misses in cache

Cache - Cache impact on CPU speed

RA - 9 55 © 2024, Škraba, Rozman, FRI

◼ Real CPI with respect zgrešitev in the cache:

 CPIR - real CPI

 CPII - ideal CPI (excluding misses
 in cache)

 MI - average number of

 memory accesses per
 instruction

◼ Real time of execution of the program with N instructions is:

penaltyMissHMCPICPI IIR _)1(−+=

CPERtime tCPINCPU =

Cache - Cache impact on CPU speed

RA - 9 56 © 2024, Škraba, Rozman, FRI

◼ Processor has ideal CPII = 1, there are no misses in instruction cache L1

◼ Clock frequency of the processor fCPE = 4 GHz

◼ Probability of miss in the L1 cache is 2%

◼ Miss penalty is 100 ns (time to transfer the block from the main memory)

◼ If we add L2 cache to a hierarchy with miss penalty of 5 ns (time for the
transfer of the block tB2), a global probability of miss in L2 is 0.5%
(general probability of the access to the main memory)

◼ How faster is the operation of CPU, if we add L2 cache to the memory
hierarchy?

Effect of cache to CPU speed - an example

Example: Effect of L2 cache to the CPU speed

RA - 9 57 © 2024, Škraba, Rozman, FRI

2-level memory hierarchy (no L2)

CPU

Cache

L1
Main

memory

1-H1 = 0.02

miss penalty tB2 (time of transfer

a block from the main memory

to the cache)

tB2= 100 ns = 400 [cp]

[cp] - clock periods

CPII = 1

][25,0][1025,0][
104

11 9

9
nsss

f
t

CPE

CPE ==

== −

][400

][25,0

][100
cp

cp

ns
ns

t B ==

][9][40002,0][1)1()1(21 cpcpcptHCPILCPI BIR =+=−+=

The duration of one clock period

Due to the misses in the cache, the CPI increases from 1 to 9 clock periods

H2= 1; tB2

RA - 9 58 © 2024, Škraba, Rozman, FRI

3-level memory hierarchy

CPU

Cache

L1
Main

memory

Cache

L2

CPII = 1 1-H1 = 0.02

1-H2G = 0.005

 t B2 = 5 ns

][4,324,01][400005,0][2002,0][1

)1()1()2,1(3221

cpcpcpcp

tHtHCPILLCPI BGBIR

=++=++=

=−+−+=

][20

][25,0

][5
2 cp

cp

ns

ns
t B ==

6,2
4,3

9

)2,1(

)1(
===

LLCPI

LCPI
Speedup

R

R If we add L2 cache, the speed increase

Is 2.6-fold

Time to transfer a

block from L2 to L1

H3= 1; tB3

1-H2G represents a global

probability of miss in relation

to all memory accesses and

includes local probabilities of

miss in L1 and L2

(Main memory is accessed

only when both misses

happen)

miss penalty tB2 (time of transfer

a block from the main memory

to the cache)

tB2= 100 ns = 400 [cp]

[cp] - clock periods

RA - 9 59 © 2024, Škraba, Rozman, FRI

3-level memory hierarchy

CPU

Cache

L1
Main

memory

Cache

L2

CPII = 1 1-H1 = 0.02

1-H2G = 0.005

 t B2 = 5 ns

H3= 1; tB3

1-H2G represents a global

probability of miss in relation

to all memory accesses and

includes local probabilities of

miss in L1 and L2

(Main memory is accessed

only when both misses

happen)

miss penalty tB2 (time of transfer

a block from the main memory

to the cache)

tB2= 100 ns = 400 [cp]

[cp] - clock periods

Comparing calculations using local or global probabilities:

][4,324,01][400005,0][2002,0][1

)1()1(

)1)(1()1(

))1(()1()2,1(

3221

32121

3221

cpcpcpcp

tHtHCPI

tHHtHCPI

tHtHCPILLCPI

BGBI

BLBI

BLBIR

=++=++=

−+−+=

−−+−+=

=−+−+=

In L1 cache local and global

probabilities of miss are the

same, because all memory

accesses come in L1 cache.

In L2 cache a local probability of

miss is 1-H2L expressed in

relation to local accesses only (in

L2), while global probability is

related to all memory accesses .

In multilevel hierarchies, global

probabilities tend to be more useful, as

they include also the impact of

previous levels (local ones refer only to

a certain level)

RA - 9 60 © 2024, Škraba, Rozman, FRI

Effect of cache to CPU speed - an example

Example: Effect of L2 cache to the CPU speed:

local and global probabilities

Global :

 CPIR = CPII + (1 – H1) * tBL2+ (1 – H2G) * tBG

 CPIR = 1 + 0.02*20 + 0.005*400 = 3.4 tCPE

Local :

 H1L = H1 ;

 (1-H2L)=(1-H2G)/(1-H1)=0.005/0.02 = 0.25

 CPIR = CPII +(1 – H1) * (tBL2+ (1 – H2L) * tBG)

 CPIR = 1 + 0.02* (20 + 0.25*400) = 3.4 tCPE

RA - 9 63 © 2024, Škraba, Rozman, FRI

Structure of 4-core processor Intel Core i7 (Haswell)

CPU 1 CPU 2 CPU 3 CPU 4

8MB L3 Cache

cache

L2 256KB

Instruction.

32KB L1
Operands

32KB L1

cache

L2 256KB
cache

L2 256KB

cache

L2 256KB

DDR3 memory controller QuickPath Interconnect

4 x 20b @ 6,4GT / s2 x 8 B @ 1.6 GT / s = 25.6 GB / s

Cache Memory - Intel

Instruction.

32KB L1
Operands

32KB L1

Instruction.

32KB L1
Operands

32KB L1

Instruction.

32KB L1
Operands

32KB L1

RA - 9 64 © 2024, Škraba, Rozman, FRI

Structure 4-core processor AMD Opteron (Barcelona)

CPU 1 CPU 2 CPU 3 CPU 4

2MB L3 cache

cache

L2 512KB

Command

64KB L1
Operands

64KB L1

cache

L2 512KB
cache

L2 512KB

cache

L2 512KB

Cache - AMD processor

DDR2 memory controller Hyper Transport 2.0

2 x 8B @ 667MT / s 6 x 2B @ 2GT / s

Command

64KB L1
Operands

64KB L1

Command

64KB L1
Operands

64KB L1

Command

64KB L1
Operands

64KB L1

RA - 9 65 © 2024, Škraba, Rozman, FRI

Caches – Effect of a program on execution speed in memory hierarchy

RA - 9 66 © 2024, Škraba, Rozman, FRI

Caches – Effect of a program on execution speed in memory hierarchy

RA - 9 67 © 2024, Škraba, Rozman, FRI

◼ Virtual memory (virtual memory) space in secondary memory

(SSD or magnetic disk), which is from the user viewpoint seen as

the main memory.

◼ Access to the auxiliary (secondary) memory is implemented with

the I/O commands or I/O programs.

◼ Transfers between the main and virtual memories are invisible to

the user (virtual memory)

◼ The additional logic in the CPU and software is needed

9.4 Virtual Memory

RA - 9 68 © 2024, Škraba, Rozman, FRI

◼ Virtual memory is in most today computers, the reason is not

only size of the main memory as was years ago, but also:

 Much lower cost of secondary memory.

 Simple solution for positional independence of programs.

 Memory protection.

◼ Space in secondary memory (e.g. HDD):

 Space for virtual memory.

 Storage for files (typically much larger part).

Virtual memory

RA - 9 69 © 2024, Škraba, Rozman, FRI

◼ The access time and the transfer of the information (= miss

penalty) from the auxiliary memory to the main memory is very

long.

◼ Solutions to reduce the impact of very large miss penalties for

virtual memory:

 The blocks must be large (4KB, 8KB, up to 64KB or more)

 Each block can be mapped to an arbitrary block of main memory (no

restrictions)

 Blocks replacements are done by the software and not the hardware

as in the case of cache

Virtual memory

RA - 9 70 © 2024, Škraba, Rozman, FRI

◼ Memory address from CPU = virtual address (as it relates to

virtual memory).

◼ In conjunction with the virtual memory, we denote main memory

as physical memory.

◼ Address that refers to the main memory = physical address

Virtual memory

RA - 9 71 © 2024, Škraba, Rozman, FRI

◼ For each memory access:

 virtual address → mapping → physical address

◼ Physical address exists, if there is a hit in main (physical)
memory.

◼ For most computers, the physical address (not virtual) is used to
access the caches.

Virtual memory

RA - 9 72 © 2024, Škraba, Rozman, FRI

Mapping of virtual addresses

CPU
Physical

memory
Virtual

memory
Mapper

Virtual

address
Physical

address
Mg, tagH Mn, tBn

(Main memory) (Auxiliary memory)

Addressed information is in physical memory - hit

Probability of hit H

RA - 9 73 © 2024, Škraba, Rozman, FRI

Mapping of virtual addresses

(Main memory) (Auxiliary memory)

Addressed information is not in physical memory - miss

Probability of miss 1-H

Virtual

address

Physical

address

1

2

3

4

mg, tagH Mn, tBn

CPU
Physical

memory
Virtual

memory
Mapper

Virtual

address
Physical

address

RA - 9 74 © 2024, Škraba, Rozman, FRI

Mapping of virtual addresses

CPU
Cache

L1
Physical

memory
Virtual

memory

Cache

L2
Mapper

M1, ta1 M2, tB2 M3, tB3 M4, tB4

(Main memory) (Auxiliary memory)

Entire hierarchy

Addressed Information is in physical memory - hit

Virtual

address
Physical

address

RA - 9 75 © 2024, Škraba, Rozman, FRI

Mapping of virtual addresses

Notice of miss in the

physical memory

Virtual

address

Entire hierarchy

Addressed information is not in physical memory - miss

M1, ta1 M2, tB2 M3, tB3 M4, tB4

Virtual

address

CPU
Cache

L1
Physical

memory
Virtual

memory

Cache

L2
Mapper

(Main memory) (Auxiliary memory)

RA - 9 76 © 2024, Škraba, Rozman, FRI

Mapping of virtual addresses

Physical

address

M1, ta1 M2, tB2 M3, tB3 M4, tB4

Virtual

address
Physical

address

Entire hierarchy

Addressed information is not in physical memory - miss

CPU
Cache

L1
Physical

memory
Virtual

memory

Cache

L2
Mapper

(Main memory) (Auxiliary memory)

RA - 9 77 © 2024, Škraba, Rozman, FRI

◼ mapping function is established in software (operating system)

◼ When you turn on your computer, the mapping of virtual

addresses into physical must be switched off (because it does not

yet work).

◼ Mapping can be switched off at any time, in this case :

 virtual address = physical address

Mapping of virtual addresses

RA - 9 78 © 2024, Škraba, Rozman, FRI

◼ Auxiliary memory divided into pages:

 pages blocks of equal size.

◼ Main memory divided into page frames:

 page frames slots of the same size as in the secondary

(auixiliary) memory.

◼ Number of pages in the virtual memory is usually much larger as the

number of frames in the main memory:

 illusion of practically unlimited large memory.

Virtual memory by paging

RA - 9 79 © 2024, Škraba, Rozman, FRI

◼ Each page from the virtual memory can be downloaded in any

frame in physical memory.

◼ to the user, the division of the memory space to pages is invisible.

◼ Mapping of virtual addresses (page address) to a physical

addresses (frames) is through the page table ->

Virtual memory - paging

RA - 9 80 © 2024, Škraba, Rozman, FRI

Virtual memory - paging

Case: Mapping of virtual addresses into physical in case of paging:

Page size (and frame) 4 KB (212 B)

Virtual address of 36 bits (Virtual memory max 236 B = 64 GB)

Physical address of 32 bits (Physical memory max 232 B = 4 GB)

35… . 12 11…0

36-bit virtual address

31…12

32-bit physical address

Page number

12-bit address

of words within

page

11.0

Frame number

Page tableMapping

RA - 9 81 © 2024, Škraba, Rozman, FRI

Descriptor page 0

Descriptor page 1

descriptor page 2n-p-1

Frame numberV P RWX C

building tables page

The size of the virtual memory 2n Bytes (where n = 36 virtual memory = 64 GB)

Size page 2p Bytes (at p = 12 page size = 4K)

Number of pages in virtual memory = 2n-p (236 – 12 = 224 = 16 M pages (M = 220))

Number of descriptors in Page table = Number of pages = 16 M

V - valid bit (Valid)

P – presence bit (Present)

RWX - protection key (Read, Write, eXecute)

C - dirty bit (Change)

.

.

.

.

.

.

P
a
g
e
 e

s
c
ri
p
to

r

Virtual memory - paging

RA - 9 82 © 2024, Škraba, Rozman, FRI

◼ Page descriptor field in the page table, that describes a

particular page.

◼ Number of descriptors in the page table is equal to the number of

pages in the virtual memory.

◼ Table page is usually located in the main memory.

Virtual memory - paging

RA - 9 83 © 2024, Škraba, Rozman, FRI

Mapping virtual addresses into physical with paging

an-1. ap ap-1. a0

Page table register n-bit virtual address

Descriptor page 0

Descriptor page 1

Descriptor page 2n-p-1

frame number

af-1. ap ap-1. a0f-bit physical address

Page number p-bit address

of words within

page

Page table

Start address

of page table

Virtual memory - paging

RA - 9 84 © 2024, Škraba, Rozman, FRI

Mapping virtual addresses into physical with paging

ap-1. a0

n-bit virtual address

Descriptor page 0

Descriptor page 1

Descriptor page 2n-p-1

Frame number

+

f-bit physical address

PV

Virtual memory - paging

an-1. ap

af-1. ap ap-1. a0

Page table register

p-bit address

of words within

page

Start address

of page table

Page table

Page number

RA - 9 85 © 2024, Škraba, Rozman, FRI

Case of a program:

Page 1: 1,1,111,0, 5 (Fr. Number)

Page 2: 1,1,111,0, 3 (Fr. Number)

Page Descriptor 2n-p-1

p-bit offset address

Page Table

Page 3: 1,1,111,0, 2 (Fr. Number)

Page 4: 0,0,000,0, 0 (Fr. Number)

Page 0: 1,1,111,0, 0 (Fr. Number)

Program occupies 4 pages (0,1,2,3), transferred to MM in page frames 0,5,3,2

Page 5: 0,0,000,0, 0 (Fr. Number)

6-bit physical address (3+3) 8-bit virtual address (5+3)

MM: 8 page frames

with 8 words-bytes,

64 locations

VM: 32 pages with 8

words-bytes,

256 locatopms

Page number

(PN)

Virtual memory - paging

RA - 9 86 © 2024, Škraba, Rozman, FRI

Case of a program:
Program occupies 4 pages (0,1,2,3), transferred to MM in page frames 0,5,3,2

Virtual memory - paging

RA - 9 87 © 2024, Škraba, Rozman, FRI

◼ Linear mapping - a virtual address space is linear. Mapping the

virtual addresses has no restrictions, as if we did not have virtual

memory.

◼ Division of storage space ton pages is invisible to the user -

normal programmers do not need to know of the existence of the

pages.

◼ A single Page table One-level mapping

Virtual memory - paging

RA - 9 88 © 2024, Škraba, Rozman, FRI

◼ Operating system for each program establishes its page table. When you switch

to another program to replace the contents of the register, which points to the

page table

◼ Program state is defined by the page table, program counter, and registers (=

process).

◼ Page table determines the address space, that can be used by the process

(program).

Virtual memory - paging

RA - 9 89 © 2024, Škraba, Rozman, FRI

◼ Page tables obviously take up a lot of space in memory

◼ Page table can be divided into multiple levels multi-level

mapping

◼ Advantage: reduces the space occupied by a page tables in main

memory.

◼ Mostly, two or three-level mapping over two or three levels of

page table is used.

Virtual memory - paging

RA - 9 90 © 2024, Škraba, Rozman, FRI

◼ The operating system allocates main (physical) memory to

processes and is responsible for updating the page table.

◼ Virtual memory allows the use of main memory to multiple

processes so that:

 a memory space of one process is protected from other processes.

Virtual memory - paging

RA - 9 91 © 2024, Škraba, Rozman, FRI

Page faults

◼ Page fault: if the virtual page is not in any of the frames in the

main memory (P-bit of page descriptor = 0), it triggers an

exception for the page fault.

◼ Page fault exception starts a service program that:

 finds a page in the virtual memory (on disk);

 determines the frame in main memory, where a page will be mapped

and transferred,

 updates descriptor of this page in page table.

Virtual memory - paging

RA - 9 92 © 2024, Škraba, Rozman, FRI

◼ When the operating system creates a process, usually creates

space for all process‘ pages (swap space).

◼ At the same time, it creates a data structure that for each page

contains information, where it is stored on disk.

Virtual memory - paging

RA - 9 93 © 2024, Škraba, Rozman, FRI

Comparison of virtual memory realizations

Virtual memory - paging

Intel Core i7

(Nehalem)

ARM Cortex-A8

(32-bit)

ARM Cortex-A53

(64-bit)

Virtual address 48 bits 32 bits 48 bits

Physical address 44 bits 32 bits 44 bits

Page size 4 KB, 2 MB, 4 MB
4, 16, 64 KB;

1,16 MB

4, 16, 64 KB;

1, 2 MB; 1 GB

RA - 9 94 © 2024, Škraba, Rozman, FRI

◼ Operation of virtual memory is controlled by operating system, with

the aim of achieving maximum utilization of the computer.

◼ As a large utilization, it is generally considered that the given set

of programs is executed in the shortest possible time.

Strategies and algorithms

RA - 9 95 © 2024, Škraba, Rozman, FRI

◼ The utilization of computer is influenced by the choice of rules that

determine:

 How many page frames in the main memory are assigned to a program.

 When, where and how many pages should be transferred from the

auxiliary (secondary) to the main memory.

 Which pages should be transferred from the main memory back to the

auxiliary memory.

Virtual memory - strategies and algorithms

RA - 9 96 © 2024, Škraba, Rozman, FRI

◼ These rules are called assignment, filling and replacement

strategies.

◼ When virtual memory strategies are realized in a program, on the

other hand in caches it is realized by hardware.

◼ All three strategies are implemented with algorithms collectively

denoted as memory management.

Virtual memory - strategies and algorithms

RA - 9 97 © 2024, Škraba, Rozman, FRI

◼ When mapping a virtual address into a physical address

 it requires access to the page table

 tables are stored in main memory or even in virtual memory

◼ Any access to the memory therefore requires two accesses to the
main memory (if the mapping is single-level):

 1. access to the page descriptor in the page table in main memory

 2. access to the desired word in the physical address in main
memory

Speed up of mapping

RA - 9 98 © 2024, Škraba, Rozman, FRI

◼ In multi-level mapping, number of accesses is increased upto 3 to

4 accesses to the main memory.

◼ Too slow!

◼ Solution: Special cache in the CPU, that contains some of recently

used page descriptors (never operands or instructions).

Virtual memory - Cache mappings

RA - 9 99 © 2024, Škraba, Rozman, FRI

Mapping cache (translation cache)

◼ TLB (Translation Lookaside Buffer)

◼ The length of the block in the cache is the same as the length of the page

descriptor. In the control part of the cache we have the page number, to which

descriptor belongs.

◼ A high probability of hit (99% to 99.9%) can be achieved with just a few

descriptors, therefore TLB cache may be small and fully associative.

Virtual memory - Cache mappings

RA - 9 100 © 2024, Škraba, Rozman, FRI

◼ With the hit in mapping cache (TLB), access to the page table in

main memory is not necessary.

◼ Harvard architecture (separate instruction and operand cache),

requires two mappings caches (instruction and operand - ITLB and

DTLB).

Virtual memory - Cache mappings

RA - 9 102 © 2024, Škraba, Rozman, FRI

◼ The memory hierarchy from the CPU looks like a single memory:

 With a speed that is close to the speed of cache (memory that is

closest to the CPU).

 The size of the virtual memory on auxiliary memory (last in the

memory hierarchy).

Memory hierarchy

9.5 Operation of the memory hierarchy

RA - 9 103 © 2024, Škraba, Rozman, FRI

◼ The memory hierarchy differs from single-level memory in

following characteristics:

 The access time is not the same for all memory addresses, it

depends on the level of a memory in which currently searched

memory word is located.

 For certain memory access we can not predict its duration, we can

only calculate statistically determined average value of the access

time.

Memory hierarchy

RA - 9 104 © 2024, Škraba, Rozman, FRI

◼ CPU sends to the memory hierarchy always address that refers

to memory Mn (last in the hierarchy), but this does not mean

that access is in fact carried out to Mn.

 if the information wanted by the CPU, is in M1 (hit), then access

to M1 is executed.

 if the information is not in M1 (miss), it is transferred from the M2

to M1

 if the information is not even in M2it is transferred from the M3 to M2

 . . .

 For any access requested, information is always in the memory Mn

on the last level

Memory hierarchy

RA - 9 105 © 2024, Škraba, Rozman, FRI

Comparison of cache and virtual

memory with paging

Cache Virtual memory

Access Cache line (block) Page (page frame)

Block 16B to 128B 4KB to 16KB (also a few MB)

Miss probability (1-H) 0.1% to 10% of L1 <0.0001% (for main memory.)

Hit few clock periods ~ 10 to 100 clock periods

Miss penalty ~ 10 to 100 clock periods ~ 10M clock periods

Block replacement hardware Software

RA - 9 106 © 2024, Škraba, Rozman, FRI

4-level memory hierarchy

CPU

Cache

L1
Main

memory
Virtual

memory

Cache

L2

L1 and L2 caches (SRAM) are

usually on the same chip as the CPU

Dynamic RAM

SDRAM

Auxiliary memory

 - magnetic disk

or SSD

CPU chip

M1

c1, ta1, s1 M2

c2, tB2, s2

M3

c3, tB3, s3

M4

c4, tB4, s4

Relations:

ci > ci+1

tai < tai+1

si < si+1

ci – cost / bit level i

ta1 – access time cache L1

tBi - time to access and transfer the block

 from level i to level i-1

si – size of the memory level i

RA - 9 107 © 2024, Škraba, Rozman, FRI

4-level memory hierarchy

Main memory as defined in the von Neumann model

CPU sees hierarchy

as a single memory

 with an average time

access ta and

size M4

ta

s
iz

e
 M

4

CPU

Cache

L1
Main

memory
Virtual

memory

Cache

L2

L1 and L2 caches (SRAM) are

usually on the same chip as the CPU

Dynamic RAM

SDRAM

Auxiliary memory

 - magnetic disk

or SSD

M1

c1, ta1, s1 M2

c2, tB2, s2

M3

c3, tB3, s3

M4

c4, tB4, s4

Relations:

ci > ci+1

tai < tai+1

si < si+1

ci – cost / bit level i

ta1 – access time cache L1

tBi - time to access and transfer the block

 from level i to level i-1

si – size of the memory level i

RA - 9 108 © 2024, Škraba, Rozman, FRI

Memory hierarchy

Rule: If the content is in level i , it is certainly also in level (i + 1).

◼ Hi (global) probability that for any access to the memory

hierarchy, the content is in the layer i.

◼ (1 – Hi) (global) probability that for any access to the memory

hierarchy, the content is not in the layer i.

◼ average access time ta to n-level memory hierarchy, as seen by

the CPU is:

BnnBiiBaa tHtHtHtt)1(...)1(...)1(11211 −− −++−++−+=

RA - 9 109 © 2024, Škraba, Rozman, FRI

Memory hierarchy

◼ 4-level memory hierarchy :

H1 ta1

H2, tB2

H3, tB3

H4= 1, tB4

ta

4332211)1()1()1(BBBaa tHtHtHtt −+−+−+=

CPU
Cache

L1

Main

memory

Virtual

memory
Cache

L2

RA - 9 110 © 2024, Škraba, Rozman, FRI

Case: Impact of the miss probability in the main memory to the average

access time in 3-level hierarchy

ta

t ap - access time of L1 cache

Hp - probability of cache hit in L1 (1-Hp - probability of miss in L1)

t Bg – access time to the main memory and the transfer of a block from main memory into L1

Hg - probability of hit in main memory (1-Hg - probability of miss in the main memory)

t Bn – access time to virtual memory and transfer of block from virtual memory to main memory

t a - average access time of the entire hierarchy as seen by the CPU

CPU
Cache

L1

Main

memory

Virtual

memory

t ap = 2 ns

1-Hp = 0,05 t Bg = 40 ns

1. 1-Hg = 0,5*10 - 5

2. 1-Hg = 0,1*10 - 5
t Bn = 10 ms

RA - 9 111 © 2024, Škraba, Rozman, FRI

1. Let the probability of hit in main memory be Hg = 0.999995 = 99.9995%,

 probability of miss in the main memory is 1-Hg = 1 - 0.999995 =

 = 0.000005 = 0.0005% or 1-Hg = 0.5 * 10 - 5

 t ap = 2 ns; 1-Hp = 0.05; t Bg = 40 ns; tBn = 10 ms

Memory hierarchy – case: 3-level memory hierarchy

 nsnssss

sss

sss

tHtHtt BngBgpapa

5410541050102102

105102102

1010105,0104005,0102

)1()1(

9999

899

3599

==++=

=++=

=++=

=−+−+=

−−−−

−−−

−−−−

RA - 9 112 © 2024, Škraba, Rozman, FRI

 nsnssss

sss

sss

tHtHtt BngBgpapa

5410541050102102

105102102

1010105,0104005,0102

)1()1(

9999

899

3599

==++=

=++=

=++=

=−+−+=

−−−−

−−−

−−−−

The average access time of the entire hierarchy in this case is 54 ns, which is

worse than the access time of main memory (40 ns). Such a memory hierarchy

is solving the problem of its storage capacity, but it deteriorates the access time

and therefore completely useless. The solution is to increase the probability of a

hit in main memory.

1. Let the probability of hit in main memory be Hg = 0.999995 = 99.9995%,

 probability of miss in the main memory is 1-Hg = 1 - 0.999995 =

 = 0.000005 = 0.0005% or 1-Hg = 0.5 * 10 - 5

 t ap = 2 ns; 1-Hp = 0.05; t Bg = 40 ns; tBn = 10 ms

Memory hierarchy – case: 3-level memory hierarchy

RA - 9 113 © 2024, Škraba, Rozman, FRI

2. If the probability of hit in the main memory increases from 99.9995%

 to 99.9999% Hg = 0.999999 = 99.9999%

 So the probability of miss in the main memory is 1-Hg = 0.000001 = 0.0001%

 or 1-Hg = 0.1 * 10 - 5 (in previous example 1-Hg = 0.5 * 10 - 5)

 while other data remain unchanged:

 t ap = 2 ns; 1-Hp = 0.05; tBg = 40 ns; tBn = 10 ms

 nsnssss

sss

sss

tHtHtt BngBgpapa

1410141010102102

101102102

1010101,0104005,0102

)1()1(

9999

899

3599

==++=

=++=

=++=

=−+−+=

−−−−

−−−

−−−−

Memory hierarchy – case: 3-level memory hierarchy

RA - 9 114 © 2024, Škraba, Rozman, FRI

 nsnssss

sss

sss

tHtHtt BngBgpapa

1410141010102102

101102102

1010101,0104005,0102

)1()1(

9999

899

3599

==++=

=++=

=++=

=−+−+=

−−−−

−−−

−−−−

If the probability of miss in the main memory is reduced from 0.5 * 10 - 5

to 0.1 * 10 - 5 (probability of hit is increased), the average access time

is reduced from 54 ns to 14 ns.

2. If the probability of hit in the main memory increases from 99.9995%

 to 99.9999% Hg = 0.999999 = 99.9999%

 So the probability of miss in the main memory is 1-Hg = 0.000001 = 0.0001%

 or 1-Hg = 0.1 * 10 - 5 (in previous example 1-Hg = 0.5 * 10 - 5)

 while other data remain unchanged:

 t ap = 2 ns; 1-Hp = 0.05; tBg = 40 ns; tBn = 10 ms

Memory hierarchy – case: 3-level memory hierarchy

RA - 9 115 © 2024, Škraba, Rozman, FRI

Case: Virtual memory in Win10 (SLO)

RA - 9 116 © 2024, Škraba, Rozman, FRI

◼ Thanks for attention and best wishes for the exams !

◼ Web pages: http://ucilnica.fri.uni-lj.si

http://www.fri.uni-lj.si/

◼ Email: rozman@fri.uni-lj.si

◼ Literature:

 Dušan Kodek: ARHITEKTURA IN ORGANIZACIJA RAČUNALNIŠKIH
 SISTEMOV, Bi-TIM, 2008

 David A. Patterson, John L. Hennesy: COMPUTER ORGANIZATION AND
 DESIGN, ARM Edition, Morgan Kaufmann, Elsevier, 2017

 Andrew S. Tanenbaum: STRUCTURED COMPUTER ORGANIZATION,

 Sixth Edition, Pearson Prentice Hall, 2013

 Slides on http://ucilnica.fri.uni-lj.si

http://ucilnica.fri.uni-lj.si/
http://www.fri.uni-lj.si/
mailto:rozman@fri.uni-lj.si
http://ucilnica.fri.uni-lj.si/

	Diapozitiv 1: COMPUTER ARCHITECTURE
	Diapozitiv 2
	Diapozitiv 3
	Diapozitiv 4
	Diapozitiv 5: 9.1 Locality of memory accesses
	Diapozitiv 6
	Diapozitiv 7: 9.2 Memory Hierarchy
	Diapozitiv 8
	Diapozitiv 9: Case: three-level memory hierarchy
	Diapozitiv 10
	Diapozitiv 11
	Diapozitiv 12
	Diapozitiv 13
	Diapozitiv 15: 9.3 Cache
	Diapozitiv 16
	Diapozitiv 17
	Diapozitiv 18
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 21
	Diapozitiv 22
	Diapozitiv 23
	Diapozitiv 24
	Diapozitiv 25
	Diapozitiv 26
	Diapozitiv 27
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32
	Diapozitiv 33
	Diapozitiv 34
	Diapozitiv 35
	Diapozitiv 36
	Diapozitiv 37
	Diapozitiv 38
	Diapozitiv 39: Types of caches according to restrictions on the mapping of blocks
	Diapozitiv 40
	Diapozitiv 41
	Diapozitiv 42
	Diapozitiv 43
	Diapozitiv 44
	Diapozitiv 45
	Diapozitiv 46
	Diapozitiv 47
	Diapozitiv 48
	Diapozitiv 49
	Diapozitiv 50
	Diapozitiv 51
	Diapozitiv 52: Impact of cache to the speed of CPU
	Diapozitiv 53
	Diapozitiv 54
	Diapozitiv 55
	Diapozitiv 56: Example: Effect of L2 cache to the CPU speed
	Diapozitiv 57: 2-level memory hierarchy (no L2)
	Diapozitiv 58: 3-level memory hierarchy
	Diapozitiv 59: 3-level memory hierarchy
	Diapozitiv 60: Example: Effect of L2 cache to the CPU speed: local and global probabilities
	Diapozitiv 63: Structure of 4-core processor Intel Core i7 (Haswell)
	Diapozitiv 64: Structure 4-core processor AMD Opteron (Barcelona)
	Diapozitiv 65
	Diapozitiv 66
	Diapozitiv 67: 9.4 Virtual Memory
	Diapozitiv 68
	Diapozitiv 69
	Diapozitiv 70
	Diapozitiv 71
	Diapozitiv 72
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75
	Diapozitiv 76
	Diapozitiv 77
	Diapozitiv 78: Virtual memory by paging
	Diapozitiv 79
	Diapozitiv 80
	Diapozitiv 81
	Diapozitiv 82
	Diapozitiv 83
	Diapozitiv 84
	Diapozitiv 85
	Diapozitiv 86
	Diapozitiv 87
	Diapozitiv 88
	Diapozitiv 89
	Diapozitiv 90
	Diapozitiv 91
	Diapozitiv 92
	Diapozitiv 93: Comparison of virtual memory realizations
	Diapozitiv 94: Strategies and algorithms
	Diapozitiv 95
	Diapozitiv 96
	Diapozitiv 97: Speed up of mapping
	Diapozitiv 98
	Diapozitiv 99
	Diapozitiv 100
	Diapozitiv 102: 9.5 Operation of the memory hierarchy
	Diapozitiv 103
	Diapozitiv 104
	Diapozitiv 105
	Diapozitiv 106: 4-level memory hierarchy
	Diapozitiv 107: 4-level memory hierarchy
	Diapozitiv 108
	Diapozitiv 109
	Diapozitiv 110: Case: Impact of the miss probability in the main memory to the average access time in 3-level hierarchy
	Diapozitiv 111
	Diapozitiv 112
	Diapozitiv 113
	Diapozitiv 114
	Diapozitiv 115: Case: Virtual memory in Win10 (SLO)
	Diapozitiv 116

