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PAGERANK SCORES
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THE ,,FLOW*‘‘ MODEL |

A page is important if itis
pointed to by other important
pages

Define a “rank” r; for pagej

!
=3

=] M

y/2

d; ... out-degree of node i

“Flow" equations:
r, =r,/2+r,/2

Additional constraint forces uniqueness: r, =r,/2+r,
Ty, +rg+ 1Ty =1 Iy =T, /2

: 2 2 _1
- Solutlon.‘ry =2 T, =z r, = -
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PAGERANK: MATRIX FORMULATION

Rank vector r: vector with an entry per page
= r; is the importance score of page i

= Ziri = 1
The flow equations can be written

M- r

= Flow equation in the matrix form
M-r=r
* Suppose page i links to 3 pages, including j

i
J
r;
1/3

So the rank vector r is an eigenvector of the
stochastic web matrix M

<

I
ﬁ
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y/2
"“Flow" equations:
r, =r,/2+r,/2
@/2 /2 r, =r/2+r,
m rh.=r, /2
a/’2

ry +1rg+ 1, =1

. 1
Solution: 1, =<, 1y =<, Ty =3

I—}j

M is a column stochastic matrix
= Columnssumto 1

d; ... out-degree of node i

NOTE: x is an
eigenvector with
the corresponding
eigenvalue A if:

Ax = Ax
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POWER ITERATION METHOD

y/2
"“Flow" equations: y a m
r, =r,/2+r,/2 vyl 2| % | 0
a2 o
2 r, =r/2+r, al% | 0|1
=r_ /2
a/2 - e mi 0 |% |0
= Power Iteration:
“ Setr; = UN I, 1/3 1/3 5/12  9/24 6/15
c1p =y, T r,|= 1/3 3/6 1/3 11/24 6/15
e I, /3 16 3/12 1/6 3/15
TERr=T lteration 0, 1,2, ...
" Goto 1
2 problems:
Dead end
SPfdertrap
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SPIDER TRAPS AND TELEPORTS

y a m
vyl % | % | 0
a| % 0 0
m| 0O 15 1

m is a spider trap r =r.2+r. 2
y y a
r, =l‘yf2
rm=rﬂ fz + l"m

I, 1/3 2/6 3/12 5/24
r,|= 1/3 /6 2/12 3/24
r, 1/3 3/6 712 16/24

lteration 0, 1, 2, ...

All the PageRank score gets “trapped” in node m.

With prob. S, follow a link at random
With prob. 1-f jump to some random page
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2 problems:
Dead end
SPfder trap

Surfer will teleport out of spider trap
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DEAD ENDS: ALWAYS TELEPORT!

y a m 2 problems:
y| ¥ L 0
y 0 0 Dead end
a 2
m[ 0| %] o 0—0

ry =r,/2+r,/2 ozo

r, =r,/2 Spider tay,
r,=r,/2
I, 1/3 2/6 3/12  5/24 0
r,| = 1/3 1/6 2/12  3/24 0
m 1/3 1/6 /12 2/24 0
lteration 0, 1, 2, ...
Teleports: Follow random teleport links with Y a m
probability 1.0 from dead-ends y| % 1, 1,
al| 0 Vs

Sy
E
o=
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RANDOM TELEPORTS

Dead end
Dead-ends are a problem

* The matrix is not column stochastic so our initial

assumptions are not met a a

Spf der trap

At each step, random surfer has two options:
= With probability 5 follow a link at random
= With probability -, jump to some random page

= PageRank equation [Brin-Page, 98] .
Z B T'l + (1 B) 1 di...out-fdeg;ee. g
T = — — —_— of node i

i—j

The Google Matrix A: [1/Nly...N by N matrix

1 where all entries are 1/N
A=pM+a-p]

NXN

5| FRI
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COMPUTING PAGERANK & REARRAGING THE EQUATION

M [1/N]nxn
1212 0 13 1/3 1/3 A =[-M + (2-B) [2/N]\.n
12 0 0] +02[1/31/31/3 v ST
0 121 1313173 A=038|% 0 0[+0.2/1/31/31/3
0 %1 1/31/31/3
y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15 ;ﬁ; zjiz }ﬁ;
A 1/15 7/15 13/15
y 1/3 033 024 026 7/33
a = 1/3 020 020 0.18 ... 5/33 ; 2 :
m 1/3 046 052 0.56 21/33 Matrix A has N< entries
We just rearranged the PageRank equation
1-p
T = ﬁM T+ |— M is a sparse matrix! (with no dead-ends)
N
N
= where [(1-B)/N] is a vector with all N entries (1-B)/N
el
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PAGERANK: THE COMPLETE ALGORITHM

= Input: Graph G and parameter 8

" Directed graph G (can have spider traps and dead ends)
= Parameter

= Qutput: PageRank vector r"¢"

1
= Set: r -ﬂld :E

new __ eld > <

= repeat until convergence: Z |r 7

a!d
TR N

mew _
r

j =0 ifin- degree of jis0
* Now re-insert the leaked PageRank:

Vj: i = 'new+— where: § = 3 ;7"

= ro[d — phew

If the graph has no dead-ends then the amount of leaked PageRank is 1-p. But since we have dead-ends
the amount of leaked PageRank may be larger. \WWe have to explicitly account for it by computing S.

| FRI
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TOPIC SPECIFIC PAGERANK

To make this work all we need is to update the
teleportation part of the PageRank formulation:

Ay = [BM;+(1—-B)/|S| ifie S
BM;+0 otherwise

= Ais a stochastic matrix!
We weighted all pages in the teleport set S equally

* Could also assign different weights to pages!

Suppose S = {1}, f=0.8

$={1,2,3,4}, B=0.8:

. r=[0.13, 0.10, 0.39, 0.36 s={1}, B=0.9:
Node | Iteration s=[{1,2,3}, B=0.8: ] r=[0.17, 0.07, 0.40, 0.36]

0 1 2 ... stable r=[0.17, 0.13, 0.38, 0.30] s={1}, p=0.8:

$={1,2}, p=0.8: =[0.29. 0.11, 0.32, 0.

1 0.25 0.4 0.28 0.294 r=[EJ.26}, o.go, 0.29, 0.23] ;i%ig ,30::,?7;0 52,0201
2 0.25 0.1 0.16 0.118 S={1}, p=0.8: r=[0.39, 0.14, 0.27, 0.19]
3 025 03 0.32  0.327 r=10.29,0.1,0.92, 0.26]
4 0.25 0.2 0.24 0.261

| FRI
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EXERCISE |

M [1/Nlyxn
112172 0 1/3 1/3 1/3
1/2 0 0] *021/31/31/3
0 172 1 1/3 1/3 1/3

y |7/15 7/15 1/15
a |7/15 1/15 1/15
m|1/15 7/15 13/15

A
y /3 033 024 0.26 7/33
a = /3 020 020 0.18 ... 5/33
m /3 0.46 052 0.56 21/33

A:ﬁM+(1—ﬁ)l%] ":ﬁM'”[%N

NXN

[1/N]ye..-N by N matrix since )iy = 1
where all entries are 1/N

5| FRI
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EXERCISE 2

0 1/2 1 0
B 1/3 0 0 1/2
M = 1/3 0 0 1/2
i 1/3 1/2 0 0 _
I 1/4 1 T 9/24 1 T 15/48 1 T 11/32 i i 3/9 i
1/4 5/24 11/48 7,/32 2/9
1/4 ’ 5/'24 ’ 11/48 ’ 7,/32 B 2/9
I 1/4 1| 5/24 1 L 11/48 11 7/32 | ! 2/9 |
1 1-8
A=pM+a-pl| r—p M+ [E
Nlyxn N
[1/N]x.-.-N by N matrix since)r; =1
where all entries are 1/N

i | FRI
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EXERCISE 3

e
1/4
1/4 |

| 1/4

3/24
5/24

5/24 |’
5/24

a=pu+a-pl

[1/N]yxn---N by N matrix
where all entries are 1/N

NXN
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1/3 0
1/3 0
| 1/3 1/2

[ 5/48 ]
7/48
7/48 |-

| 7/48 |

1/2
1/2

oo o o

21/288 |
31/288

31/288 |
31/288 |

oo o o

r:BM-r+[%N

since )r; =1
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EXERCISE 4

0 1/2 0 0
13 0 0 1/2
M= 1/3 0 1 1/2
| 1/3 1/2 0 0 |
| 1/4 1T 3/24 1 T 5/48 1T 21/288 ] 0 ]
1/4 5/24 7/48 31/288 0
1/4 |° 11/24 |~ 29/48 | 205/288 [T 1
1/4 | | 5/24 | | 7/48 | | 31/288 0 |
1 1-B
A=pM+a-pl| r—p M+ [E
Nlyxn N
[1/N]ye..-N by N matrix since )iy = 1
where all entries are 1/N

i | FRI
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EXERCISE 5

0 1/2 0
M=|1/2 0 1
1/2 1/2 0
1/3 1/6 3/12 5/24 2/9
1/3 1,1 3/6 |, 5/12 |, 11/24 |,....| 4/9
1/3 2/6 4/12 8/24 3/9
1 1-B
A=pM+a-pl| r—p M+ [E
Nlyxn N
[1/N]ye..-N by N matrix since )iy = 1
where all entries are 1/N
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EXERCISE 6

0 2/5 4/5 0

4/15 0 0 2/5
M = 4/15 0 0 2/5
4/15 2/5 0 0 |
0 2/5 4/5 0 | 0]
o 4/15 0 0 2/5 va 1/10
| 4/15 0 0 2/5 0
| 4/15 2/5 0 0 | | 1/10 |
[ 0/2 ] [2/10 ] [ 42/150 ] [ 62/250 ° [ 54/210
1/2 3/10 41/150 71/250 59/210
0/2 2/10 26/150 | | 46/250 ] 38/210
| 1/2 - 3/10 41/150 | | 71/250 | 59/210
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TOPIC-SPECIFIC PAGE RANK I

Suppose S = {1}, =0.8
Node | Iteration
0 1 2 ... stable
1 0.25 0.4 0.28 0.294
2 0.25 0.1 0.16 0.118
3 0.25 0.3 0.32 0.327
4 0.25 0.2 0.24 0.261
$={1,2,3,4}, B=0.8:
beta=0.8 0.9 0.7 r=[0.13, 0.10, 0.39, 0.36]
S={1}, p=0.9: $={1,2,3}, B=0.8:
e et A r=[0.17,0.07, 0.40, 0.36] r=[0.17, 0.13, 0.38, 0.30]
0.13 0.17 0.26 0.29 0.17 0.39 S={1}, B=0.8: S=(1,2}, B=0.8:
0.1 0.13 0.2 0.11 0.07 0.14 r=[0.29, 0.11, 0.32, 0.26] r=[0.26, 0.20, 0.29, 0.23]
0.39 0.38 0.29 0.32 0.4 0.27 S={1}, B=0.7: S={1}, B=0.8:
0.36 0.3 0.23 0.26 0.36 0.19 r=[0.39, 0.14,0.27, 0.19] r=[0.29, 0.11, 0.32, 0.26]
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HuUBS AND AUTHORITIES: VOZLISCA IN AVTORITETE

Avtoritete

* ugledne spletne strani (npr. spletne strani univerz in vladnih organov)

* vsebujejo koristne informacije

\> \ /@ s.".*:nmy
ViV

Vozlisca
* spletne strani s povezavami do avtoritet

oz. spletnih strani s koristnimi informacijami

| FRI
e
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Figure 5.18: Sample data used for HI'TS examples

t~

|
cCo oo
O OO
OO O
OO O
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HITS ALGORITHM

Repeat until convergence (or use fixed number of iterations):

1. Computea=L"h.

2 5cale so the largest component is 1.

3. Compute h = La.

4. Scale again so the largest component is 1.

Figure 5.18: Sample data used for HITS examples

01110 01000
10010 10010
! 1 1/2 3 1 L=[0 00 01 LT=|100 10
1 2 1 3/2 1/2 01100 11000
1 9 1 1/2 1/6 00000 00100
1 2 1 2 2/3
1 1 1/2 0 0
h LTh a La h
1/2 3/10 29/10 1 o 1)\ 2
5/3 1 6/5 12/29 E (hf ) _ hE )) <&
5/3 1 1/10 1/29 :
3/2 9/10 2 20/29 5
1/6 1/10 0 0 E t t—1
/ / ((IE ) _ {IE )) <E&
LTh a La h i

k| FRI
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HITS SIMULATION

SUM - v fr | =SH2TAS38122AS1048127AS1 145K 2%AS1 2451274513

A B C D E F G H I J K L M M Q P Q
1 L -
2 0 1 1 1 1] 0 1 0 0 0
3 1 1] 1] 1 0 1 0 1] 1 1]
4 0 0 0 0 1 1 0 0 1 0
3 0 1 1 1] 1] 1 1 0 0 0
5] 1] 1] 1] 0 0 0 0 1 1] 1]
7
8 h LTh a La h LTh a La h LTh a La h LTh a La h
9 1.000 %HZ*AS}‘}I 0.500 i 3.000 1.000 0.500 0.300 2.900 1.000 0.414 0.245 2.837 1.000 0.381 0.224 2.810 1.000 i
10 1.000 2.000 1.000 i 1.500 0.500 1.667 1.000 1.200 0.414 1.690 1.000 1.082 0.381 1.705 1.000 1.034 0.368 i
11 1.000 2.000 1.000 i 0.500 0.167 1.667 1.000 0.100 0.034 1.690 1.000 0.020 0.007 1.705 1.000 0.004 0.002 i
12 1.000 2.000 1.000 i 2.000 0.667 1.500 0.900 2.000 0.690 1.414 0.837 2.000 0.705 1.381 0.810 2.000 0.712 i
13 1.000 1.000 0.500 i 0.000 0.000 0.167 0.100 0.000 0.000 0.034 0.020 0.000 0.000 0.007 0.004 0.000 0.000 i
14
15 0.00000 0.20000 0.00000 0.05510 0.00000 0.02127 0.00000
16 0.50000 0.00000 0.08621 0.00000 0.03250 0.00000 0.01343
17 0.83333 0.00000 0.13218 0.00000 0.02729 0.00000 0.00569
18 0.33333 0.10000 -0.02299 0.06327 -0.01538 0.02661 -0.00668
19 1.00000 0.40000 0.00000 0.07959 0.00000 0.01619 0.00000

d
3

© Fakulteta za racunalnistvo in informatiko, Univerza v Ljubljani, 2026

i | FRI

uNIvERZA
viuBgAN

Fakuies s ratunsinBtvo.
inlntormatico



MAPREDUCE ‘

The Overall MapReduce Word Count Process

Input Splitting Mapping Shuffling Reducing Final Result

List(K2,V2) K2,List(V2)
Bear, (1,1)

K1, V1

Bear River |

Bear, 2

List(K3,V3)

Bear, 2
Car, 3
Deer, 2
River, 2

Dear Bear River U .
Car Car River Car Car River
Deer Car Bear

Deer Car Bear

River, (1,1)

source: https://wikis.nyu.edu/display/NYUHPC/Tutorials
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HITS & MAPREDUCE |

TIMTOWTDI - There Is More Than One Way To Do It
STEP 1: obtain key-value pairs for L and LT

L = # key-value pairs for L-matrix
LT = # key-value pairs for transpose of L-matrix

STEP 2: start with h (hubbiness) vector of all 1's

h = # initial hubbiness vector

STEP 3: compute vectors h (hubbiness) and a (authority) iteratively in mutual recursion

for _ in range(NUM_ITERATIONS):

a = # compute a = LTh

a max = # obtoin maximum value in a

a = # scale o so the largest component is 1
h = # compute h = La

h max = # obtain maximum value in h

h = # scale h so the largest component is 1

STEP 4: List the nodes with the highest/lowest hubbiness/authority score

| FRI
[ P ———
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