Collective behaviour

sheep

King et al. 2012 doi: 10.1016/j.cub.2012.05.008

$$\dot{x} = \begin{cases} 0 & d \ge d_0 \\ -s \left(\frac{2}{1 + \exp[-(x - x_0)/\lambda]} - 1 \right) & d < d_0 \end{cases}$$

x... distance of sheep to centre of group d... distance of shepherd to centre of group d_0, x_0, s, λ ... parameters ($x_0 = 4.2, d_0 = 73.7, s = 34.5, and \lambda = 0.41$)

Strömbom et al. 2014 doi: 10.1098/rsif.2014.0719

Universe: $L \times L$ field, N sheep ($\mathbf{A}_i, i = 1, ..., N$) and 1 shepherd (\mathbf{S}) Initial state: sheep placed randomly at the right-hand quadrant of the field Shepherd task: herd sheep to target location in lower-left quadrant

$$\begin{split} \mathbf{A}_i &= \mathbf{A}_i + \delta \hat{\mathbf{H}}_i \\ \mathbf{H}'_i &= h \hat{\mathbf{H}}_i + c \hat{\mathbf{C}}_i + \rho_a \hat{\mathbf{R}}^a_i + \rho_s \hat{\mathbf{R}}^s_i + e \hat{\mathbf{e}}_i \end{split}$$ $\rho_a > c > \rho_s > h$

Sheep behaviour

- Sheep behaviour Keep at safe distance from nearest neighbours ($\mathbf{R}_i^n = \sum_{A_j \in \mathbf{S}} \frac{\mathbf{A}_i \mathbf{A}_j}{|\mathbf{A}_i \mathbf{A}_j|}$, $N = \{\mathbf{A}_j : \|\mathbf{A}_j \mathbf{A}_j\| < r_a\}$ if shepherd not visible ($\|\mathbf{S} \mathbf{A}_i\| > r_i$) remain stationary, but exhibit small random movements (if $\xi < p, \epsilon = (\cos \xi, \sin t), \text{ if } \xi > p, \epsilon = (0, 0), \xi = random(0, 1), \zeta = random(0, 1))$ If shepherd visible ($\|\mathbf{S} \mathbf{A}_i\| < r_j$) try to move away from the shepherd ($\mathbf{R}_i^t = \mathbf{A}_i \mathbf{S}$) and toward the centre of mass of n nearest neighbours ($\mathbf{C}_i = \mathsf{LCM}_i \mathbf{A}_i, \mathsf{LCM}_i = \frac{1}{n} \sum_{j=1}^{n} \mathbf{A}_j$)

$\mathbf{S} = \mathbf{S} + \delta_s \hat{\mathbf{H}}$

- Shepherd behaviour If centre of mass of sheep is within a certain distance of the origin the task is completed If co close to a sheep stop $(3r): |\mathbf{A}_i \mathbf{S}|| < 3r_n \Rightarrow \delta_n = 0$ If sheep are collected $(||\mathbf{GCM} \mathbf{A}_i|| < r_n N^{2/3}, \mathbf{GCM} = \frac{1}{2}\sum_{i=1}^{N-1} \mathbf{A}_i, \forall i = 1, ..., N$) drive the them towards the goal ($\mathbf{H} = \mathbf{P}_a \mathbf{S}_a = \mathbf{GCM} + r_a \sqrt{N} \mathbf{V}_i, \mathbf{V}_i = \mathbf{GCM} \mathbf{G}$) If sheep not collected $(3r): ||\mathbf{GCM} \mathbf{A}_i|| \geq r_a N^{2/3}$. Collect the wandering sheep ($\mathbf{H} = \mathbf{P}_c \mathbf{S}, \mathbf{P}_c = \mathbf{A}_j + r_a \sqrt{\mathbf{V}_2}, \mathbf{V}_2 = \mathbf{A}_j \mathbf{GCM}$)

parameter	description	typical values
1	side length of initial square field	150 m
agent parameters		
N	total number of agents	1 - 201
	number of nearest neighbours	1 - 290
5	shipheril detection distance	65 m
fa	agent to agent interaction distance	2 m
Pr .	relative strength of republion from other agents	2
1	relative strength of attraction to the n nearest neighbours	1.05
A	relative strength of repulsion from the shepherd	1
	relative strength of proceeding in the previous direction	0.5
e	relative strength of angular noise	0.3
8	agent displacement per time step	T m ts ⁻¹
p	probability of moving per time step while gazzing	0.05
shiphend parameters		
ą.	shepherd displacement per time step	1.5 m 15 ⁻¹
P4	driving position	$r_s\sqrt{R}$ m behind the flock
Pc .	collecting position	r, m behind the furthest age
	relative strength of angular noise	0.3
for local shipters!		
n,	number of rearest agents the local shepherd operates on	20
β	blad angle behind the shepherd	11/2

Figure 4. Projections used to define the driving and collecting modes and how the proportion of time spent driving and collecting dynamics (N). If we have retrained works n_{i} , the further agret works n_{i} and hopker's works i are used to the specifical field specification go dynamics in the number of agrets, (i) filew the central works n_{i} , the further agret works n_{i} and hopker's works i are used to the specifical field specification go dynamics N. The specifical of S on i denoted by n_{i} , and the height of i. (i) Proportion of time the sheep dual (figures S > 0.57) as a function of group size (N) in the global case (n = N - 1) over 100 simulations. (i) Proportion of time sheep collecting ($n_{i} \leq S > 0.57$) as a function of group size (N) in the global case (n = 10 simulations. The other parameters are the typical values listed in table 1. (Drine version in colour.)

Ginelli et al. 2014 doi: 10.1098/rsif.2014.0719

Based on quantitative field abservations of large groups of Merino sheep. While grazing, these sheep must balance two competing needs: (i) the maximization of individual foraging space and (ii) the protection from predators offered by a large dense group.

Universe: $L \times L$ field, N sheep ($\mathbf{r}_i, i = 1, ..., N$)

...... R 4 145 200 **** - Just and

- Sheep behaviour Heading $\mathbf{s}_1^r = [\cos\theta_i^r]$, $\sin\theta_i^r]$, $\operatorname{distance} r_h^s = \|\mathbf{r}_j \mathbf{r}_i\|$, unit vector $\mathbf{e}_{ij}^r = (\mathbf{r}_j \mathbf{r}_i)/\|\mathbf{r}_j \mathbf{r}_i\|$ Three states: $\operatorname{ide}(q_1^r = 0, v(0) = 0)$, $\operatorname{substack}(q_1^r = 1, v(1) = 0.15)$, $\operatorname{running}(q_1^r = 2, v(2) = 1.5)$ If waking $\operatorname{and}(\mathbf{r}_i)$ and $\operatorname{rundom}(\mathbf{r}_i)$, $\operatorname{rundom}(\mathbf{r}_i)$, $(\mathbf{r}_i) = (1, \mathbf{r}_i)$, (\mathbf{r}_i) , (\mathbf{r}_i)

	$p_{h=1}(i,t) \equiv \frac{1 + \alpha \sigma_{h}^{i}(t)}{n_{h=1}}, p_{1,\alpha\beta}(i,t) \equiv \frac{1 + \alpha \sigma_{h}^{i}(t)}{r_{1,\alpha\beta}},$ [4] where $r_{h=1}$ and $r_{h=1}$ are spontaneous transition times, σ measures the transition form of the num- sures the transition of minimum (effects, and <i>A</i> (<i>a</i>)) is the num-		
State transitions	ber of stationary and walking metric neighbors, respectively. The transitions to and from the running state are similar, but they depend on the nameler m_0 of running topological neighbors, with the allelomimetic effect strengthened by an exponent $\delta > 1$,	$P = 1 - e^{-p\Delta t}$	
	$p_{0,t-2}(i,t) = \frac{1}{\tau_{0,t-2}} \left[\frac{t_i^i}{d_R} (1 + a m_R^j(t)) \right]^{\delta}$, [5]		
	where r_i is the mean fictures to all perdogical weighters of deep, i.e. and d as have dimensionlike longing back. The runk here these two scales estimates that spread-out groups are much more likely to ringer a possible, for simplicity, running sheep can only transit to the stationary state with a rate $p_{i-a,i}(r)$ endured by m_{i} the number of their suppling topological neighbors, i.e., those that southed from running to ationary in the previous time step.		
	$p_{2\rightarrow0}(i,t) = \frac{1}{t_{2\rightarrow0}} \left[\frac{dg}{t_i^2} (1 + am_3^t(i)) \right]^{\delta}$, [6]		
	where de c de is a second characteristic length. The positive feed		

