Computational topology Lab work, 6th week

- 1. Let $S = \{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^2$. Build the Vietoris-Rips complex $\mathrm{Rips}(S,R)$ for
 - (a) R = 1,
 - (b) R = 1.2,
 - (c) R = 1.75.

In each case list all the simplices and determine its dimension.

Assuming there is a sensor placed at each point of S and all sensors can detect points that are at distance 1.75 or less, is the area covered by the sensors connected? Does it contain any holes?

- 2. Let $S = \{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^2$. Build the Čech complex $\operatorname{Cech}(S,r)$ for
 - (a) r = 0.5,
 - (b) r = 0.6,
 - (c) r = 0.875.

In each case list all the simplices and determine its dimension.

3. The simplicial complexes X and Y are given as lists of simplices:

$$X = \{A, B, C, AB, AC, BC\},\$$

 $Y = \{A, B, C, D, AB, AD, BC, CD\}.$

- (a) Construct the cones CX and CY by listing all the simplices.
- (b) Find the sequences of collapses that simplify CX and CY as much as possible.
- (c) Is CX a collapsible complex for all X?
- 4. Let $X = \Delta^3$ be the standard 3-simplex (tetrahedron) with vertices A, B, C and D. We obtain Y by identifying the edges AB and BD and the edges AC and CD (preserving the ordering of vertices). Show that Y collapses onto a Klein bottle.

5. Given the following triangulations of the cylinder X and the Moebius band Y, find a sequence of elementary collapses that simplifies them as much as possible, then compute the homology groups $H_*(X)$ and $H_*(Y)$.

6. For the simplicial complex X in the figure below

- (a) write down the chain groups \mathcal{C}_n ,
- (b) determine the boundary homomorphisms $\partial_n \colon \mathcal{C}_n \to \mathcal{C}_{n-1}$,
- (c) find the cycles $Z_n = \ker \partial_n$,
- (d) find the boundaries $B_n = im\partial_n$,
- (e) determine the simplicial homology groups with \mathbb{Z} coefficients, $H_n(X;\mathbb{Z})$,
- (f) determine the simplicial homology groups with \mathbb{Z}_2 coefficients, $H_n(X;\mathbb{Z}_2)$,
- (g) determine the Betti numbers of X and
- (h) compute the Euler characteristic of X.

