## Computational topology Lab work, $5^{th}$ week

1. Let  $S = \{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^2$ . Build the Vietoris-Rips complex  $\mathrm{Rips}(S,R)$  for

(a) 
$$R = 1$$
, (b)  $R = 1.2$ , (c)  $R = 1.75$ .

In each case list all the simplices and determine its dimension.

If there is a sensor placed at each point of S and all sensors can detect points that are at distance 1.75 or less, is the area covered by the sensors connected? Does it contain any holes?



2. Let  $S = \{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^2$ . Build the Čech complex  $\operatorname{Cech}(S,r)$  for

(a) 
$$R = 0.5$$
, (b)  $R = 0.6$ , (c)  $R = 0.875$ .

In each case list all the simplices and determine its dimension.



3. Given the following triangulations of the cylinder X and the Moebius band Y, find a sequence of elementary collapses that simplifies them as much as possible, then compute the homology groups  $H_*(X)$  and  $H_*(Y)$ .



- 4. For the simplicial complex X in the figure below
  - (a) write down the chain groups  $\mathcal{C}_n$ ,
  - (b) determine the boundary homomorphisms  $\partial_n \colon \mathcal{C}_n \to \mathcal{C}_{n-1}$ ,
  - (c) find the cycles  $Z_n = \ker \partial_n$ ,
  - (d) find the boundaries  $B_n = \text{im}\partial_n$ ,
  - (e) determine the simplicial homology groups with  $\mathbb{Z}$  coefficients,  $H_n(X;\mathbb{Z})$ ,
  - (f) determine the simplicial homology groups with  $\mathbb{Z}_2$  coefficients,  $H_n(X;\mathbb{Z}_2)$ ,
  - (g) determine the Betti numbers of X and
  - (h) compute the Euler characteristic of X.



