Computational topology
 Lab work, $6^{\text {th }}$ week

1. Let $S=\{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^{2}$. Build the Vietoris-Rips complex $\operatorname{Rips}(S, R)$ for
(a) $R=1$,
(b) $R=1.2$,
(c) $R=1.75$.

In each case list all the simplices and determine its dimension.
Assuming there is a sensor placed at each point of S and all sensors can detect points that are at distance 1.75 or less, is the area covered by the sensors connected? Does it contain any holes?

2. Let $S=\{A(0,0), B(0.5,0.5), C(0,1), D(1,2), E(1.5,1.5), F(2,1.5), G(2.5,1), H(2,0)\} \subset \mathbb{R}^{2}$. Build the Cech complex $\operatorname{Cech}(S, r)$ for
(a) $r=0.5$,
(b) $r=0.6$,
(c) $r=0.875$.

In each case list all the simplices and determine its dimension.

3. The simplicial complexes X and Y are given as lists of simplices:

$$
\begin{aligned}
X & =\{A, B, C, A B, A C, B C\} \\
Y & =\{A, B, C, D, A B, A D, B C, C D\} .
\end{aligned}
$$

(a) Construct the cones $C X$ and $C Y$ by listing all the simplices.
(b) Find the sequences of collapses that simplify $C X$ and $C Y$ as much as possible.
(c) Is $C X$ a collapsible complex for all X ?
4. Let $X=\Delta^{3}$ be the standard 3 -simplex (tetrahedron) with vertices A, B, C and D. We obtain Y by identifying the edges $A B$ and $B D$ and the edges $A C$ and $C D$ (preserving the ordering of vertices). Show that Y collapses onto a Klein bottle.

5. Given the following triangulations of the cylinder X and the Moebius band Y, find a sequence of elementary collapses that simplifies them as much as possible, then compute the homology groups $H_{*}(X)$ and $H_{*}(Y)$.

6. For the simplicial complex X in the figure below
(a) write down the chain groups \mathcal{C}_{n},
(b) determine the boundary homomorphisms $\partial_{n}: \mathfrak{C}_{n} \rightarrow \mathfrak{C}_{n-1}$,
(c) find the cycles $Z_{n}=\operatorname{ker}_{n}$,
(d) find the boundaries $B_{n}=i m \partial_{n}$,
(e) determine the simplicial homology groups with \mathbb{Z} coefficients, $H_{n}(X ; \mathbb{Z})$,
(f) determine the simplicial homology groups with \mathbb{Z}_{2} coefficients, $H_{n}\left(X ; \mathbb{Z}_{2}\right)$,
(g) determine the Betti numbers of X and
(h) compute the Euler characteristic of X.

