
SWITCH-ing from multi-tenant to event-driven
videoconferencing services

Jernej Trnkoczy
University of Ljubljana,

Faculty of Civil and
Geodetic Engineering

Uroš Paščinski
University of Ljubljana,

Faculty of Computer and
Information Science

and
Faculty of Civil and

Geodetic Engineering

Sandi Gec
University of Ljubljana,

Faculty of Computer and
Information Science

and
Faculty of Civil and

Geodetic Engineering

Vlado Stankovski
University of Ljubljana,

Faculty of Civil and
Geodetic Engineering

Jamova cesta 2
1000 Ljubljana

E-mail: vlado.stankovski@fgg.uni-lj.si

Abstract—Full mesh is the most commonly used networking
topology in Web Real-Time Communication (WebRTC) based
videoconferencing (VC) applications, however, due to its inher-
ently poor scaling capability it is not appropriate for multi-party
VC with many participants. Solutions based on centralized media
server infrastructures are used to leverage the scaling problem.
Service providers adopting centralized approach need to ensure
good resource utilization to lower the price, and at the same
time provide good Quality of Experience (QoE) to the end users.
In practice, even with todays advanced cloud technologies, these
two conflicting goals are difficult to achieve simultaneously. In
order to tackle this complex problem, we propose an innovative
event-driven model, that differs from the traditional multi-tenant
service provisioning model. In this work, the architecture and
implementation of a WebRTC event-driven multi-party VC,
based on Software as a Service (SaaS) principles is presented.
A prototype was developed on top of Docker containers and
Kubernetes container orchestration technologies, which in our
opinion represent key enabling technologies fostering the migra-
tion from multi-tenant towards event-driven architectures. The
technology readiness to support such time-critical applications
is evaluated. The initial results suggest that although there are
some trade-offs in terms of performance/resource consumption,
our fully functional prototype allows for on-the-fly media server
instance creation and destruction in arbitrary cloud provider
infrastructure with still acceptable application usability.

I. INTRODUCTION

With the advent of Web Real-Time Communication (We-
bRTC)1, the videoconferencing (VC) applications are becom-
ing widely spread. Any device with a WebRTC-enabled web
browser can establish a VC session without additional browser
plug-ins. This seamless usage fosters the raise of VC systems,
since it is now very easy to include them as a part of Web
applications. As a consequence, the number of VC users is
growing rapidly.

Many of today’s WebRTC applications operate in natively
supported mesh network topology, in which every peer in
the network sends their data to all other peers in the same
VC and requires no media server infrastructure. However, the
poor scaling properties of such topology limits the number
of participants that take part in a VC call. For multi-party

1https://www.w3.org/TR/webrtc/

calls with many participants, solutions based on centralised
media server infrastructures still represent the only viable
option [1]. Traditionally, dedicated hardware servers were used
for this. However, with the evolution towards the Web and
rapid growth in the number of users, this expensive and non-
scalable technology became obsolete.

At the same time, with the development of cloud computing
technology, new possibilities in terms of improved scalability
have emerged. Computing power on a pay-as-you-go pric-
ing basis has made Videoconferencing as a Service (VaaS)
attractive and possible: adaptation to large variations in the
number of users became easier. Thus, VaaS providers started
to emerge. The challenge for such service provider is to ensure
high infrastructure utilisation and at the same time allocate just
enough resources to satisfy the Quality of Experience (QoE)
requirements of the end users. High infrastructure utilisation
and precise resource allocation ensure the lowest possible
cost of service (and consequently higher revenue of VaaS
providers).

Traditionally, VaaS providers use the multi-tenant applica-
tion model, in which a single VC application instance is shared
by a large number of tenants. For a VC application a tenant
is represented by a group of users that have communication
needs. In multi-tenant model, simultaneous VC calls of dif-
ferent user groups are served by the same service instance
running on dedicated infrastructure. This approach, however,
is not ideal because in various cases customer security and
privacy concerns may lead to the strict requirement not to share
the VC service instance with other tenants. On the other hand,
the multi-tenant model allows for high utilisation of physical
resources; however, it is still difficult to assure that the VC
server will not run in an idle mode. With a rapidly changing
number of service clients, ensuring high utilisation becomes
more complex and a fine-grained scalability mechanism is
needed. Vertical scalability mechanisms may seem a simple
solution. However, it turns out that deploying more powerful
computing nodes may prove useless as in many cases the
scalability bottleneck is in the server network bandwidth
and not in the CPU or memory consumption of the server
instance [1]. This suggests that the VC service design must



support horizontal scalability as well. Horizontal scaling of
multi-tenant media servers is complex, since the application
logic of such servers is inherently stateful. Moreover, hori-
zontal scaling within a single data centre may not necessarily
improve network-level Quality of Service (QoS) metrics (such
as latency, jitter, packet loss and throughput) for the tenants,
potentially using the VC service from anywhere.

Therefore, a challenge addressed by this work is to provide
a global VC service coverage and the associated problems
with assuring appropriate level of networking QoS. Real-time
interactive VC applications demand low network delays and
sufficient network bandwidth. Purposely built networks work
best, but are expensive and limited in range and flexibility. An-
other option represent guaranteed networking resources, which
have to be negotiated with telecommunication operators, but
are also expensive, especially for long-distance connections.
Our solution is, therefore, to instantiate a VC service for
every single usage need, that is closer to the end-users group.
Currently, most WebRTC-based applications use the Internet
as a best-effort public network that takes care of the traffic
management. Appropriate geographical positioning of the VC
service in relation to the location of the end-users and the
current networking conditions could form basis for achieving
higher QoE. This idea is not new by itself. Research in this
field goes back to 1997, when dynamic server selection was
proposed for the first time [2]. However, possibilities for global
service operation have been limited at that time.

In this study we propose a new VC service provisioning
model that mitigates various disadvantages of multi-tenant VC
applications. Our solution envisions creation of a new service
instance for every new VC call by using latest virtualization
technologies. This event-driven VC service delivery model
could be suitable for companies developing multi-party VC
applications and provide for higher QoE to the end-users com-
pared to the traditional multi-tenant approach. The approach,
as we further elaborate, has certain technological requirements
that cannot be satisfied in traditional Virtual Machine (VM)
virtualization environments.

Recent advancements in container-based virtualization
could be used to address the technological requirements (such
as fast VC service provisioning) and could actually make
an event-driven architecture a reality. The purpose of our
ongoing work is therefore to investigate the key prospects
and limitations of an even-driven architecture by designing,
developing and evaluating a real-world WebRTC multi-party
VC system following the event-driven approach. In this work,
an evaluation of appropriateness of the Docker container
ecosystem for realizing the event-driven approach is presented.
An initial evaluation of a developed prototype application is
also provided, while detailed evaluation is still ongoing. It is
important to note that the precise cloud resource allocation
mechanisms for a particular service instance are not in scope
of this study, and are left for future work.

II. RELATED WORK

With rising popularity of virtualization technology and
cloud computing, a lot of research has focused on evaluation
and comparison of different SaaS architectures. Multi-tenant
and multi-instance are two widely recognized approaches for
the delivery of SaaS. The authors [3] discuss the benefits
and shortcomings of the multi-tenant SaaS delivery model
from the service provider viewpoint. They find that benefits
outweigh the challenges related to complexity of multi-tenant
applications. Similarly, the work [4] concludes that multi-
tenant is the preferred model; however, they also mention the
challenges that are mostly related to resource isolation, scala-
bility, security, downtime and maintenance. Another work [5]
also finds that security and related resource isolation is a
critical point in multi-tenant applications. Compared to these,
the paper [6] discusses that the multi-instance approach, while
being easier to implement, is better suited, if the number of
tenants is likely to remain low. They state that the multi-
instance model suffers from an increased maintenance cost,
which can in part be attributed to the effort for deploying
updates to numerous instances of the application. The above
mentioned papers are mostly theoretical and do not take into
account the specifics of particular application. The paper [7]
provides empirical data showing lower operational costs for
multi-tenant SaaS. However, they warn that this may not apply
to all SaaS applications, since the suitability of the multi-
tenant model is application dependent. They conclude that
the software industry is constantly improving and that SaaS
providers might find a better way to deliver their services
exploiting a multi-instance application arrangement.

All of the above research efforts focus on the achievement
of cost-effective solutions for cloud service providers (for
SaaS in general, not for specific applications), and all of them
propose multi-tenant architecture as a general solution. It is
therefore not unusual that current VaaS providers follow this
approach. However, with the gradual transition to mobile and
Web applications and the corresponding growth in demand of
VC applications the providers are facing two key challenges:

1) how to achieve efficient, cost-effective scaling of com-
puting and networking resources, and

2) how to achieve high QoE.

Since vertical scaling of multi-tenant server instance cannot
solve these problems efficiently, most of the work has focused
on the horizontal scalability and systems with many geo-
graphically distributed servers, serving the same application
instance. The efforts in this field differ depending on the type
of media servers used (e.g. mixers as Multipoint Control Units
(MCUs) or routers as Selective Forwarding Units (SFUs)),
the particular sub-problem they want to address (e.g. ensuring
networking QoS, reducing the Wide Area Network complexity,
scaling of computing resources and so on, and combinations
of these), and the communication topology they adopt.

With regard to topology, horizontal scaling and geographic
distribution of servers can be realized by using:



1) a centralised topology, in which users belonging to the
same VC call always communicate through a single
server instance, and

2) a multi-server topology, in which users belonging to the
same VC can be attached to different geographically
dispersed server instances.

In the case of a centralised topology, scaling is achieved at
the level of the VC call. Although the VaaS system could
be composed of many servers, the communication flow of
participants belonging to a particular VC session never goes
through different servers. A VC session has to be managed by
a single media server and it can never be split into two or more
server instances. Therefore, the highest scaling granularity that
one can achieve is that of a VC session.

In the case of a multi-server topology the VaaS system
contains multiple distributed media servers and the users
belonging to the same VC call are usually connected to
different media servers. Participants send their media streams
to the optimal media server in a cloud environment. The media
servers aggregate the streams and send them to other media
servers that are optimal for other users participating in a VC
session.

In order to satisfy QoS and QoE optimisation goals, re-
gardless of the topology adopted, and by knowing the client
locations and the number of servers constraint, the key ques-
tion is the same: where the servers should be placed and how
clients’ streams should be mapped to servers. Optimisation
goals could, for example, aim to reduce the overall end-to-end
latencies between the clients, maximise the bandwidth usage
and the processing resources for tasks off-loaded from clients
to servers and similar. However, in contrast with the centralised
topology, the optimisation problem is much more complex in
the case of a multi-server topology.

We believe that providing a cloud provider independent
solution is more favourable than currently existing vendor-
locked or proprietary solutions. Our solution allows for SaaS
providers to operate a Software Defined Data Centre making
use of many geographically distributed cloud providers. In
such a Software Defined Data Centre, it is possible to imaging
VC services starting and stopping for every single usage
need. To the best of our knowledge, no solution so far
has proposed such event-based VC system or implemented
a prototype with similar capabilities. This work presents its
design and implementation, while a detailed evaluation study
is still ongoing.

III. TECHNOLOGICAL REQUIREMENTS

The VC application is a very particular type of application,
in which several participants (clients) are engaged in a short-
lived conversation. Therefore, the event-driven approach is
very suitable for VC application (e.g. pay only for the time-
slot and amount of resources you need). On the other hand,
a VC is an interactive real time service with stringent QoS
requirements that depend on guaranteed computational and
network resources. While various private and public clouds
can offer a certain degree of networking QoS inside their cloud

environments (technologies like Open vSwitch, OpenFlow,
MPLS, etc.), guaranteed networking QoS in the open Internet
is still impossible. Hence, to address QoS requirements of
the VC application, the proper selection of the geographical
location of the VC host machine, targeting the specific group
of end-users (clients) is considered the best strategy. Therefore,
the proposed event-driven approach poses certain technical
requirements, such as:

• Service instance creation time that should be short enough
to be tolerable by the users.

• Availability of a fine-grained on-demand infrastructure
leasing mechanism. For example, the pricing of resources
consumed by the service instance should be on a pay-
as-you-go basis and it should allow for pay-per-minute
model.

• Guaranteed compute resource reservation. The real-time
VC applications need guaranteed memory and CPU re-
sources that are well isolated from the other users sharing
the infrastructure.

• Resource reservations with fine granularity. The service
instance should be allocated exactly the amount of re-
sources required to support the established VC session.

• Possibility to start the service instance globally and in
arbitrary location, which is motivated by: (i) the need
for global instance management/control that supports
automatic service creation anywhere in the World, and
(ii) the need for mechanism/technology that supports
multiple clouds and seamless portability between any
cloud provider and infrastructure type. This assures the
availability of infrastructure practically in arbitrary loca-
tion, worldwide.

• Highly-automated and efficient services administra-
tion/orchestration. Managing large number of services
can become costly, if it is not done efficiently.

The possibility to fulfil these requirements became possible
with the recent developments in container based virtualization
technologies (e.g. Docker and LXC) and container orches-
tration tools (e.g. Kubernetes, Mesos and Swarm). The later
might prove to be key enablers for the migration from multi-
tenant to event-driven applications.

IV. IMPLEMENTATION

Achievement of fully functional event-driven VC appli-
cation, which adheres to the above requirements, required
integration of several technologies. To better understand the
design, workflow, technology specifics and their benefits as
well as limitations, all the key technologies that were used for
the present study are discussed in the following subsection.

A. Baseline technologies

1) Jitsi-meet as WebRTC VC software: Centralized units
used in multy-party VC systems that do not follow a pure
peer-to-peer approach are of two types: (i) MCU and (ii)
SFU2. Both offer mechanism for enabling and managing group

2https://tools.ietf.org/html/rfc7667



communications through a centralized component and both
can be used in WebRTC-based systems. However, there is a
fundamental difference in their design.

The MCUs transcode, mix and multiplex different audiovi-
sual streams into a single one. By doing so, their advantage
is optimized bandwidth consumption. However, the composite
mixing requires a decoding of all the input streams, a mixing
process, and an encoding process, which altogether tend to
increase the latency. Additionally, the composition is CPU
intensive processes, which makes the scaling to a large number
of participants impossible.

Selective Forwarding Unit (SFU) are centralized units that
perform only forwarding/routing of video streams. They for-
ward the incoming media stream from participant to outgoing
media streams to be received by other participants. This com-
ponent only forwards real time protocol packets, optionally
changing their headers, but without processing the payload.
The forwarding mechanism, which forwards incoming stream
to receivers, can be controlled by the application. Unlike
MCUs, the advantage of SFUs is lack of need for heavy
processing, because they do not perform transcoding and
mixing. Additionally, without encoding/decoding, the latency
of the added SFU media server is minimal. Lastly, the clients
with full correspondence with the SFU media server have
complete control over the streams they receive, and because
the clients receive the streams they want, they can have full
control over the user interface flexibility. However, SFUs
have the ”least common codec” disadvantage, in which every
participant in the conference needs to use the same codec.
Another disadvantage is the need for higher bandwidth and
processing power of the participants (e.g. if there are N
participants, any of them wishing to visualize the video of the
whole group needs to receive and decode N-1 video streams).
The latter can be mitigated by using a selection algorithm
to decide which packets should be forwarded and to which
endpoints (e.g. last N configuration).

To support the above discussion, in Section V it will be
shown that while SFU-based WebRTC services still require
substantial amount of CPU power, compared to MCUs they
represent an attractive approach to address the server perfor-
mance issue and at the same time offer maximum flexibility for
the client User Interface (UI). With the raise of bandwidth and
processing capabilities of clients (which could be a limiting
factor when using SFU) the SFU became very popular in
WebRTC cloud-based systems. This is why we chose to base
our system on the SFU. We selected the Open Source project
Jitsi-meet to develop our prototype.

The Jitsi-meet is a WebRTC based multi-party VC software
with a production-level quality, while all the constituting
components are Open Source.

The complete Jitsi-meet prototype system is composed of
four server-side components:

1) Jitsi Videobridge is an SFU unit responsible for con-
trolling/forwarding video/voice media streams between
participants.

2) Jicofo acts as a conference focus, taking care of man-
aging the videoconferences, the signalling needed to
establish WebRTC connectivity, terminating the calls,
etc.

3) Prosody is the XMPP server allowing the exchange of
the signalling messages.

4) Web Server serves the JitsiMeet – a JavaScriptWebRTC
application to the participants.

In the course of our work, for experimentation we imple-
mented the components in two ways: (1) all components as a
single Docker container and (2) each of the four components
as a separate Docker container.

2) Docker as container-based virtualization: Containeriza-
tion is the process of distributing and deploying applications in
a portable and predictable way. It accomplishes this by pack-
aging components and their dependencies into standardized,
isolated, lightweight process environments called containers.
These are not new concepts, with some operating systems
leveraging containerization technologies for over a decade. For
example, LXC, the building block that formed the foundation
for later containerization technologies was added to the Linux
kernel in 2008. It combined the use of kernel control groups
(allows for isolating and tracking resource utilization) and
namespaces (allows groups to be separated) to implement
lightweight process isolation.

Containers come with many attractive benefits for devel-
opers and system administrators, such as: (i) abstraction of
the host system away from the containerized application,
(ii) seamless scalability, (iii) simple dependency management
and application versioning, (iv) lightweight execution environ-
ments and others. Comparing to VM virtualization, containers
provide a lighter execution environment, since they are isolated
at the process level, sharing the host’s kernel. This means
that the container itself does not include a complete operating
system, leading to very quick start-up times and smaller
transfer times of container images.

Among several containerization technologies available to-
day, Docker is the most common containerization software
in use. While not introducing many new ideas, Docker made
containerization technologies accessible by simplifying the
process and standardizing on an interface. It was developed to
simplify and standardize deployment in various environments.
By packaging up the application with its configuration and de-
pendencies and shipping as a container image, the application
will always work as designed locally, on another machine, in
test or production. Moreover, Docker containers spin up and
down in seconds, improving horizontal scalability at any time
to satisfy peak customer demand, when needed.

Docker containers are launched from Docker images. An
image can be basic, with nothing, but the operating system
fundamentals, or it can consist of a sophisticated pre-built
application stack ready for launch. Docker images follow the
principle of shared layering: each image consists of a series
of layers. When building images with Docker, each command
executed forms a new layer on top of the previous one. These
layers can then be reused to create new images. Docker makes



use of union file systems to combine these layers into a
single image. Union file systems allow files and directories of
separate file systems, known as branches, to be transparently
overlaid, forming a single coherent file system. If multiple
containers are based on the same layer, they can share the
underlying layer without duplication, leading to optimized
disk space utilization. Perhaps even more important aspect of
layering is image transfer time. By making use of layers cache,
it is possible to reduce transfer times and required bandwidth,
because what is actually transferred are image layers that are
later on combined to make up the image itself. If most of the
layers constituting a certain image are already present on the
machine where the image is needed, the transfer will be fast,
since only the missing layers will be transferred.

3) Container orchestration with Kubernetes: Docker pro-
vides all of the functions necessary to build, upload, download,
start, and stop containers. It is well-suited for managing
these processes in single-host environments with a relatively
small number of containers. When it comes to orchestrating
a large number of containers across many different hosts,
Docker tools are not sufficient. Clustered Docker hosts present
special management challenges that require a different set of
tools, usually called orchestration tools or schedulers. When
applications are scaled out across multiple host systems, the
ability to manage each host system and abstract away the
complexity of the underlying platform becomes necessary.
Container orchestration is a broad term that generally refers
to cluster management and container scheduling. The or-
chestrator represent the primary container management inter-
face for administrators of distributed deployments. Currently,
several orchestration tools capable of managing distributed
deployments based on Docker containers exist. For example,
Kubernetes3, Docker Swarm4, Mesos/Marathon5, etc. These
tools offer management, scheduling and clustering capabil-
ities that provide the basic mechanisms for scalability and
controllability of container-based applications, and vary in
capabilities.

4) Fabric8 Kubernetes client: Kubernetes cluster should be
a relatively self-contained unit. This is not strict requirement;
however, due to the design of Kubernetes scheduling and
network routing domains, each cluster should be arranged
within a relatively performant, reliable and cheap network,
which in practice confines the cluster boundaries to a single
data centre or single availability zone of a cloud provider.
The global VaaS, on the other hand, should be running
over different cloud providers and multiple data centres and
availability zones. Therefore, in our scenario the VC services
should be scheduled across multiple clusters. In order to allow
VC instance creation over several clusters, a software capable
of connecting to different clusters and scheduling services on
them is needed.

Kubernetes cluster exposes Kubernetes API on master
nodes. This API provides internal and external interface to

3https://kubernetes.io/
4https://docs.docker.com/engine/swarm/
5http://mesos.apache.org/

Kubernetes cluster. Fabric8 Kubernetes client is a Java library
providing simplified access to the Kubernetes API. Although
Kubernetes RESTful API can be accessed directly, the use
of Fabric8 Kubernetes API allowed us to abstract away the
complexities related to security aspects (authentication, autho-
rization) and asynchronous nature of Kubernetes API, which is
challenging to support using request-response HTTP/HTTPS
protocols. Fabric8 Kubernetes API Java libraries were there-
fore used in our VC instance management layer, which was
implemented as Java Servlets running in Apache Tomcat
Server container. This VC instance management layer is
responsible for adding and removing application component
instances, managing the amount of RAM and CPU share of
individual containers and determining the subset of hosts or
individual host, where the container will be placed.

B. Application prototype and testbed

The overall architecture of the prototype is depicted in
Figure 1. Seven geographically distributed clusters formed
an initial, geographically widely distributed testbed. As pre-
viously mentioned, the Jitsi-meet software was implemented
in Docker container images that can be managed by the
Kubernetes container orchestrator tool. A Web application for
the management of application instances was developed as a
Java Web based API that uses the Fabric8 libraries to access
the Kubernetes clusters. A decision, which components would
be shared between multiple tenants and across multiple VC
sessions and which components would be instantiated per
single VC session was made. For example, the signalling
components that are needed to establish VC sessions, and
are not computationally and bandwidth demanding are shared
by all the customers of the VaaS service. However, we
decided to isolate the VC sessions and instantiate for each
VC call both signalling and media services. In summary, in
the developed prototype, for each new VC session all four
Jitsi-meet components are instantiated as Docker containers.
Due to the architectural design of the Jisti-meet application all
four component instances serve only one VC session and they
are deployed together on the same host machine – the four
Docker containers are scheduled on Kubernetes as a single
Kubernetes pod. To expose the instantiated services outside
the cluster, an appropriate Kubernetes proxy services also need
to be deployed.

Following is a sequence of planned interactions between a
user requesting high QoE VC session and the event-driven VC
service.

1) A conference organizer wants to create a VC session. By
using the Web application in the browser, all the actions
are reflected as HTTP REST-based request. To maximize
the user experience (QoE/QoS), the Web application
performs a context capturing phase. For example, the
organizer could type the IP addresses of the conference
participants or obtain their geolocations through other
services (e.g. Google services), determine the VC appli-
cation instance configuration (last-N, simulcasting etc.)
and other more automatized mechanisms.



Fig. 1. Architecture prototype showing the main steps of deploy-
ing/undeploying the container-based Jitsi-meet VC application.

2) The Web application extracts the context, which is then
forwarded to a Decision Maker service, that decides the
best geographical position for the VC service session
(based on an implemented QoE model, e.g. minimal
average latency between the clients and the potential
location of the new service) to be deployed and also
determines the precise amount of hardware resources
(memory and CPU power) that are needed for that
particular VC session. All the metadata of the system
is stored in a Knowledge Base, while the monitoring
data needs to be stored in a purposive storage such as
Time Series Database (TSDB).

3) Decision Maker service sends notification on a selected
Kubernetes cluster host machine to the System Logic
service.

4) The System Logic service initiates the creation of a
Kubernetes service pod, in our case the Jitsi-meet appli-
cation, on the chosen Kubernetes cluster host machine.
The request for the pod creation is sent to the appropriate
Kubernetes Master, which asynchronously creates the
pod.

5) During the pod creation process, the end-user is notified
about the progress. After application is deployed and
running, its respective URL is provided to the end-user.

Upon successful deployment of the application, the VC
organizer and the participants can enjoy the VC session.
When the session is finished, the organizer simply triggers the
stop event that undeploys the pod and frees all the allocated
resources of the session. This action is also asynchronous,

so the progress is shown to the organizer with the final
notification among all the participating users.

V. EVALUATION

A. Discussion on technology readiness

1) Benefits of container-based virtualization (why contain-
ers are better than VM): The benefits of container-based
virtualization in relation to traditional VM virtualization has
already been discussed by Pahl et al. [8], who found benefits
of container-based virtualization, such as quick startup time
and convenient packaging. In the following we provide a
qualitative analysis of the developed prototype and evidence
for its functioning according to the requirements presented in
Section III. More detailed evaluation and experimentation is
still ongoing.

Quick startup time: Our proposal of event-based ap-
proach assumes creation of a new media server instance for
every new VC call. However, booting up a VM often takes
time and does not complete fast enough; thus, keeping VMs in
disk and booting VMs on demand is often not practical. This
is why in traditional VM-based clouds providers use multi-
tenancy, which allows the unit of sharing to be smaller than a
VM and thus enable more sharing of resources.

Good resource isolation allowing for guaranteed re-
sources: Traditional multi-tenant approach, in which, for ex-
ample, one application instance serves thousands of users, has
difficulty of efficiently separating resources to maintain QoE
among all the users. In our case, event-driven one-instance-per-
VC-call approach means that we have pushed multi-tenancy
from application layer to the infrastructure layer, since a new
separate container instance is created and destroyed on demand
for every new VC request [9], that generally leads to better
resource isolation.

Pay-as-you-go pricing with high temporal granularity:
Our proposal of event-based multi-instance approach assumes
creation of a new media server instance for every new VC
call. Because VC sessions are typically short-lived, reaching
acceptably low service cost requires IaaS infrastructure that
allows to lease instance only for a needed time period. For
example, Amazon’s Elastic Compute Cloud (EC2), offers on-
demand VM instance, which lets users pay for compute ca-
pacity by the hour with no long-term commitments. Container
management (start/stop) allows IaaS providers to decrease
the temporal granularity of leasing, for example Joyent Tri-
ton Compute cloud infrastructure6 already offers per minute
billing for containers.

Low cost of instance management: With the proposed
event-driven approach we can achieve thousands of individ-
ual services running independently from each other. Highly-
automated services administration/orchestration (port manage-
ment, IPs management, etc.) is required. While the high
operational costs of running thousands of instances (multi-
instance approach) might seem prohibitive, in the future we
believe that with rapid evolution and widespread adoption of

6https://www.joyent.com/triton/compute



container-based technologies the SaaS instance management
and application upgrade costs will decrease. Thus, it makes
the instance-based approach the preferred choice for SaaS
providers.

No vendor lock-in: Another notable problem of VM-
based virtualization is vendor lock-in, because it is not straight-
forward to migrate a VM image created within one cloud
provider to other cloud provider. However, container based
technologies and container orchestration technologies avoid
vendor lock-in for multi-cloud deployment; although, different
container technologies might not be jointly compatible, which
introduces platform dependency.

High performance: The ability of Docker to work closer
to bare-metal brings performance advantages, relevant for
real time services that, like WebRTC, are very sensitive to.
From the perspective of VaaS provider, which is leasing
infrastructure from public cloud, this might not be a direct
requirement. For example, in [10] authors made an up-to-
date comparison of the Docker containers and VMs hosting a
WebRTC application and they confirmed that the overhead of
VMs affects the performance by 5–10%.

2) Issues with container-based virtualization:
Problems with compute resource allocation in Kuber-

netes: While Kubernetes provides resource allocation, its
built-in scheduler might neither take good decisions in case
of heterogeneous machines in a cluster nor adequately address
current load on the cluster nodes.

Performance regression of overlay networks: Network
virtualization is a very complex and problematic topic when
trying to achieve optimal QoE in WebRTC cloud deployments.
With virtual networks, some or all of the hardware components
such as network cards, switches, routers, etc. are replaced
with respective software counterparts. Besides, TCP/IP stack
might need to be extended with additional layer embedded in
the application layer, inducing lower ratio between the size
of payload versus the size of headers. Some might require
presence of distributed key-value store for management. Vir-
tual networks are still less performant compared to hardware
counterparts, resulting in higher delays, lower bandwidth and
higher packet loss, while also utilising more computational
resources.

Lack of bare-metal container providers: Currently, most
cloud providers offer containers on top of VMs, which leads to
double virtualization. While rental of physical machines and
installation of Docker on top of them is possible, it is more ex-
pensive and less flexible option compared to virtual machines.
One of the few providers offering containers on bare-metal
is Joyent with their Triton Elastic Container Infrastructure,
albeit their container technology, while being compatible with
Docker interfaces, relies on different implementation. Clearly,
double virtualization can be considered redundant, at least
from a performance perspective.

Weaker isolation of containers compared to VMs: Escap-
ing from container to underlying host or to another container is
easier than with VMs, which implies weak support for multi-

tenancy, but in our case container clusters as well as containers
are maintained by a single SaaS provider.

B. Experimental results

The evaluation environment consists of seven cloud clusters
spread among different locations around the World: flexiOps
nodes are located in Edinburgh (UK), Arnes nodes in Ljubl-
jana (Slovenia), Google Cloud Platform (GCP) US West in
The Dalles Oregon (USA), GCP EU West in St. Ghislain
(Belgium), GCP Asia East cluster in Changhua County (Tai-
wan), GCP Asia South-East in Jurong West (Singapore), and
GCP Asia North-East in Tokyo (Japan). Their characteristics
roughly match with only few minor differences: all VMs utilise
a single vCPU, except flexiOps machines which are run by
four. Arnes and GCP clusters run on Intel Xeon processors,
ranging from Ivy Bridge, Broadwell and Haswell platforms,
while the flexiOps cluster is powered by ageing AMD Opteron
processors. vCPUs are scheduled on a pre-emptive basis for
Arnes and flexiOps, but are dedicated per hardware thread
for GCP VMs. Nodes have 3.75 or 4 GB of RAM and 80
or 100 GB of disk space backed by hard disks shared over
network. Arnes’ and flexiOps’ Docker networking is based
on overlay network (flannel), while GCP avoids overlay with
network over dedicated hardware switch. Docker versions are
1.10.3 for Arnes and 1.11.2 for the rest of the nodes.

1) Compute resources consumption: In this experiment a
stress test was made for all available Kubernetes clusters by
using Jitsi-hammer7 software. The Jitsi-meet application was
run in one of the Kubernetes nodes of the cluster whereas
the Jitsi-hammer was run on the other node in the cluster.
To improve performance, Kubernetes logging was disabled,
as by default GCP collects all the output printed to standard
or error output to Elastic search database, which can hinder
the performance of the containers if a lot of log content is
generated. Despite this optimisation, Jitsi-meet video bridge
component was able to saturate the CPU completely when
merely serving 18 users. We claim that the VM was a bit too
weak for the task. The results for GCP US West are depicted
in Figure 2.

2) Frame delay among the clouds: Another experiment
focused on more specific VC related metric – video roundtrip.
The measurements are depicted in Figure 3.

VI. CONCLUSION

Multi-tenancy has been so far the predominant delivery
model for cloud services. However, with the emergency of
container based technologies, it is now possible to orches-
trate services seamlessly across software defined data centres.
This allows us to switch from multi-tenant to event-driven
services architecture, supporting diverse applications including
complex applications such as VC. In the course of this work
we developed an event-driven VC service prototype based
on Docker container virtualization and Kubernetes container
orchestration technologies.

7https://github.com/jitsi/jitsi-hammer



1 2 3 4 5 7 10 13 14 15 16 17 18

10
20
30
40
50
60
70
80
90

100

Number of users

C
PU

us
ag

e
(%

)
Avg. VM CPU usage
Avg. container CPU usage

Fig. 2. Average CPU usage of VM (blue) and its container (red) during Jitsi-
meet running in Kubernetes cluster deployed in GCP US West region over
120 runs. Box plots show the median VM’s CPU usage, and the first and the
third quartile. Whisker plots show the minimum and the maximum VM’s CPU
usage. VM’s CPU was maxed out for 18 users participating simultaneously
in a VC.

arnes1
arnes2

gke-eu-west1

gke-eu-west2
flexiOps1

gke-us-w
est2

gke-us-w
est1
flexiOps2

gke-asia-northeast1

gke-asia-east1

gke-asia-southeast1

gke-asia-southeast2

gke-asia-east2

0

100

200

300

400

500

600

700

800

900

1,000

1,100

R
ou

nd
tr

ip
tim

e
(m

s)

Avg. video roundtrip
Avg. ICMP roundtrip

Fig. 3. Roundtrip time measurements performed from a Jitsi-meet client
located in Ljubljana against all of the available Kubernetes clusters and
machines within. The measurements were done by using ping and VideoLat
software. As expected, the geographical proximity plays important role in the
VC QoS.

The realisation of event-driven VC services is particularly
challenging since the QoE of real time VC applications
depends on many environmental conditions, including network
properties, which all have to be considered when making
decisions on resource allocation and VC services placement
for the particular users. This paper presented functional and
non-functional requirements of the event-driven VC applica-
tions, and technological considerations for the realisation of
the event-driven architecture. Furthermore, the paper presented
the measurements of parameters that are relevant for the
evaluation of the event-driven VC applications. The CPU
consumption with varying number of users was presented.
It is important to note that the estimation of the needed
computational resources is challenging, since it also depends

on the configuration (e.g. last-n and simulcasting parame-
ters) of the VC application. The presented video roundtrip
measurements prove our assumption that the selection of the
instance geolocation is very important to achieve lower video
delays, which is besides network throughput important factor
of the end-user QoE. Further experimental research is needed
to propose the exact algorithms for geolocation selection and
precise computational resource allocation. In our ongoing
research work we are trying to exploit the Knowledge Base
and inference mechanisms, coupled with monitoring system
to achieve this. However, in this paper we proved on a real
application prototype that, in case of appropriate selection of
service instance location and precise computational resources
allocation, our event-driven architecture provides cost-effective
and highly scalable solution, that at the same time mitigates
the vendor lock-in problem and increases the privacy of the
service users.

ACKNOWLEDGEMENT

This project has received funding from the European Unions
Horizon 2020 Research and Innovation Programme under
grant agreement No. 643963 (SWITCH project: Software
Workbench for Interactive, Time Critical and Highly self-
adaptive cloud applications).

REFERENCES

[1] Y. Lu, Y. Zhao, F. Kuipers, and P. Van Mieghem, “Measurement Study
of Multi-party Video Conferencing,” in Proceedings of the 9th IFIP TC
6 International Conference on Networking. Chennai, India: Springer-
Verlag Berlin Heidelberg, 2010, pp. 96–108.

[2] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proceedings of the IEEE
INFOCOM ’97, Kobe, Japan, April 1997.

[3] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns in Multi-
Tenant SaaS Applications,” in Proceedings of the 2nd International
Conference on Cloud Computing and Services Science (CLOSER 2012),
Setubal, Portugal, 2012.

[4] C. Bezemer and A. Zaidman, “Multi-tenant SaaS applications: main-
tenance dream or nightmare?” in Proceedings of the Joint ERCIM
Workshop on Software Evolution (EVOL) and International Workshop
on Principles of Software Evolution (IWPSE). ACM, September 2010,
pp. 88–92.

[5] M. Pathirage, S. Perera, I. Kumara, D. Weerasiri, and S. Sanjiva Weer-
awarana, “A scalable multi-tenant architecture for business process
executions,” Web Services Research, vol. 9, no. 2, pp. 12–41, 2012.

[6] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework
for native multi-tenancy application development and management,” in
Proc. Int. Conf. on E-Commerce Technology (CEC) and Int. Conf. on
Enterprise Computing, E-Commerce, and E-Services (EEE). IEEE,
2007, pp. 551–558.

[7] H. A. and S. F., “Cloud Computing: A Multi-tenant Case Study,” in
Kurosu M. (eds) Human-Computer Interaction: Users and Contexts. HCI
2015. Lecture Notes in Computer Science, vol. 9171. Springer, Cham,
2015.

[8] C. Pahl and B. Lee, “Containers and Clusters for Edge Cloud Archi-
tectures a Technology Review,” in 3rd International Conference on
Future Internet of Things and Cloud. IEEE Computer Society, 2015,
pp. 379–386.

[9] C. Momm and R. Krebs, “A qualitative discussion of different ap-
proaches for implementing multi-tenant saas offerings,” in Software
Engineering, 2011.

[10] C. C. Spoiala, A. Calinciuc, C. O. Turcu, and C. Filote, “Performance
comparison of a WebRTC server on Docker versus Virtual Machine,” in
13th International Conference on Development and Application Systems.
Suceva, Romania: IEEE, 2016, pp. 295–298.


