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Abstract

The complexity and diversity of big data and AI workloads make understanding them difficult and
challenging. This paper proposes a new approach to characterizing big data and AI workloads. We
consider each big data and AI workload as a pipeline of one or more classes of unit of computations
performed on different initial or intermediate data inputs. Each class of unit of computation captures
the common requirements while being reasonably divorced from individual implementations, and
hence we call it a data dwarf. For the first time, among a wide variety of big data and AI workloads,
we identify eight data dwarfs that takes up most of run time, including Matrix, Sampling, Logic,
Transform, Set, Graph, Sort and Statistic. We implement the eight data dwarfs on different software
stacks as the micro benchmarks of an open-source big data and AI benchmark suite, and perform
comprehensive characterization of those data dwarfs from perspective of data sizes, types, sources,
and patterns as a lens towards fully understanding big data and AI workloads.
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1 Introduction

The complexity and diversity of big data and AI workloads make understanding them difficult and
challenging. First, modern big data and AI workloads expand and change very fast, and it is impossible to
create a new benchmark or proxy for every possible workload. Second, whatever early in the architecture
design process or later in the system evaluation, it is time-consuming to run a comprehensive benchmark
suite. The complex software stacks of the modern workloads aggravate this issue. The big data benchmark
suites like BigDataBench [1] or CloudSuite [2] are too huge to run on simulators and hence challenge
time-constrained simulation and even make it impossible. Third, too complex workloads are not helpful
for both reproducibility and interpretability of performance data in benchmarking systems.

Identifying abstractions of time-consuming units of computation is an important step toward fully
understanding complex workloads. Much previous work [3, 4, 5, 6, 7] has illustrated the importance
of abstracting workloads in corresponding domains. TPC-C [4] is a successful benchmark built on the
basis of frequently-appearing operations in the OLTP domain. HPCC [8] adopts a similar method to
design a benchmark suite for high performance computing. Unfortunately, to the best of our knowledge,
none of previous work has identified time-consuming classes of unit of computation in big data and AI
workloads. National Research Council proposed seven major tasks in massive data analysis [9], while they
are macroscopical definition of problems from the perspective of mathematics. , rather than identifying
time-consuming classes of unit of computation in Big Data and AI workloads .

In this paper, we propose a new approach to characterize big data and AI workloads. We consider each
big data and AI workload as a pipeline of one or more classes of unit of computation on different initial
or intermediate data inputs, each of which captures the common requirements while being reasonably
divorced from individual implementations. We call this abstraction a data dwarf. Significantly different
from the traditional kernels, a data dwarf’s behaviors are affected by the sizes, patterns, types, and sources
of different data inputs; moreover it reflects not only computation patterns, memory access patterns, but
also disk and network I/O patterns.

After thoroughly analyzing a majority of workloads in five typical big data application domains
(search engine, social network, e-commerce, multimedia and bioinformatics), we identify eight data
dwarfs that takes up most of run time, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort
and Statistic, the combinations of which describe most of big data and AI workloads we investigated.
Considering various data inputs—text, sequence, graph, matrix and image data—with different data types
and distributions, we implement eight dwarfs on different software stacks, including Hadoop [10], Spark
[11], TensorFlow [12] and POSIX-thread (Pthread) [13]. For big data, the implemented data dwarfs include
sort (Sort), wordcount (Statistics), grep (Set), MD5 hash (Logic), matrix multiplication (Matrix), random
sampling (Sampling), graph traversal (Graph) and FFT transformation (Transform), while for AI, we
implement 2-dimensional convolution (Transform), max pooling (Sampling), average pooling (Sampling),
ReLU activation (Logic), sigmoid activation (Matrix), tanh activation (Matrix), fully connected (Matrix),
and element-wise multiplication (Matrix), which are frequently-used computation in neural network
modelling. We release the implemented data dwarfs as the micro benchmarks of an open-source big data
benchmark suite. In the rest of paper, we use the big data dwarfs to indicate the dwarf implementations
for big data, and use the AI dwarfs to indicate the dwarf implementations for AI.

Just like relation algebra in database, the data dwarfs are promising fundamental concepts and tools
for benchmarking, designing, measuring, and optimizing big data and AI systems. In this paper, we call
attention to performing comprehensive characterization of those data dwarfs from perspective of data
sizes, types, sources, and patterns as a lens towards fully understanding big data and AI workloads. On a
typical state-of-practice processor: Intel Xeon E5-2620 V3, we comprehensively characterize all data
dwarf implementations and identify their bottlenecks.

Our contributions are five-fold as follows:

• We identify eight data dwarfs through profiling a wide variety of big data and AI workloads.

• We provide diverse data dwarf implementations on the software stacks of Hadoop, Spark, Tensor-
Flow, Pthread.
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Figure 1: The Computation Dependency Graph and Run Time Breakdown of SIFT Workload.

• From the system and micro-architecture perspectives, we comprehensively characterize the behav-
iors of data dwarfs and identify their bottlenecks. We find that these data dwarfs cover a wide variety
of performance space, from the perspectives of system and micro-architecture behaviors. Moreover,
the behavior of each dwarf is not only influenced by its algorithm, but also largely affected by the
type, source, size, and pattern of input data.

• From the system aspect, we find that some AI dwarfs like convolution, fully-connected are CPU-
intensive, while the other AI dwarfs are not CPU-intensive, such as Relu, Sigmoid used as activation
layer. Further, the AI dwarfs have little pressure on disk I/O, since they load a batch (e.g. 128
images) from disk every iteration.

• From the micro-architecture aspect, we find that these dwarfs show various computation and
memory access patterns, exploiting different parallelism degrees of ILP and MLP. With the data
size expands, the percentage of frontend bound decreases while the backend bound increases.

The rest of the paper is organized as follows. Section 2 illustrates the motivation of identifying data
dwarfs. Section 3 introduces data dwarf identification methodology. Section 4 performs system and
micro-architecture evaluations on the data dwarf implementations. In Section 5, we report the data impact
on the data dwarfs’ behaviors from perspectives of data size, data pattern, data type and data source.
Section 6 introduces the related work. Finally, we draw a conclusion in Section 7.

2 Motivation

We take two examples to explain why we should call attention to performing comprehensive characteriza-
tion of those data dwarfs.

2.1 SIFT Workload in Computer Vision

SIFT [14] is a typical workload for feature extraction, and widely used to detect local features of input
images.

Fig. 1 shows the computation dependency graph and run time breakdown of SIFT workload. In total,
SIFT involves five data dwarfs. Gaussian filters G(x,y,∂ ) with different space scale factors ∂ are used to
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AlexNet
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2) Sampling:      13.45%
    ----Max Pooling
    ----Dropout

3) Matrix Multiply: 48.87%
    ----Fully Connected

4) Basic Statics:  0.76%
    ----Normalization

88.7ms (18.26%)

Figure 2: The Computation Dependency Graph and Run Time Breakdown of One Iteration of TensorFlow
AlexNet Workload.

generate a group of image scale spaces, through the convolution with the input image. Image pyramid
is to downsample these image scale spaces. DOG image means difference-of-Gaussian image, which
is produced by matrix subtraction of adjacent image scale spaces in image pyramid. After that, every
point in one DOG scale space would sort with eight adjacent points in the same scale space and points in
adjacent two scale spaces, to find the key points in the image. Through profiling, we find that computes
descirptors, finds keypoints and builds gaussian pyramid are three main time-consuming parts of the SIFT
workload. Furthermore, we analyze those three parts and find they are consist of several classes of unit of
computation, like Matrix, Sampling, Transform, Sort and Statistics, summing up to 83.23% of the total
SIFT run time.

2.2 AlexNet in AI

AlexNet [15] is a representative and widely-used convolutional neural network in deep learning. In total,
it has eight layers, including five convolutional layers and three fully connected layers.

We profile one iteration of the AlexNet workload (implemented with TensorFlow) using TensorBoard
toolkit and report its computation dependency graph and run time breakdown, as shown in Fig. 2. For
each operator, we report its run time and its percentage of the total run time, such as 6.57 ms and 1.35%
for the first convolution operator. We find that each iteration involves Transform (conv2d), Sampling (max
pooling, dropout), Statistics (normalization), and Matrix (fully connected). Among them, matrix and
transform computations occupy a large proportion—48.87% and 36.91%, respectively.

Through the analysis above, we have the following observation. Though big data and AI workloads
are very complex and fast-changing, we can consider them as a pipeline of one or more fundamental
classes of unit of computation performed on different initial or intermediate data inputs. Those classes
of unit of computation, which we call data dwarfs, occupy most of the run time of the workloads, so we
should pay more attention to them. In the next section, we will investigate more extensive big data and AI
workloads, and elaborate the design of data dwarfs.
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Figure 3: Identifying Data Dwarfs.

3 Methodology

Data dwarfs are frequently-appearing classes of unit of computation handling different data inputs. In this
section, we illustrate how to identify data dwarfs from big data and AI workloads, and illustrate our data
dwarf implementations.

3.1 Dwarf Identification Methodology

Fig. 3 overviews the methodology of dwarf identification. We first single out a broad spectrum of big
data and AI workloads through investigating five typical application domains (search engine, social
network, e-commerce, multimedia, and bioinformatics) and representative algorithms in four processing
techniques (machine learning, data mining, computer vision and natural language processing). Then we
analyze and profile these workloads. On one hand, we decompose the algorithm into a pipeline of units of
computations and focus on the input/intermediate data as well. On the other hand, we profile the workload
to analyze the computation dependency graph and run time breakdown.

According to the units of computation pipeline and run time breakdown, we finalize eight big data and
AI dwarfs, which are essential computations that take up most of run time. Table 1 shows the importance
of eight data dwarfs in a majority of big data and AI workloads. Note that previous work [16] has identified
four basic units of computation in online service, including get, put, post, delete. We don’t include those
four in our dwarf set.

3.2 Eight Data Dwarfs

In this subsection, we summarize eight data dwarfs frequently appearing in big data and AI workloads.
Matrix In big data and AI workloads, many problems involve matrix computations, such as matrix

multiplication and matrix transposition.
Sampling Sampling plays an essential role in big data and AI processing, which obtain an approximate

solution when one problem cannot be solved by using analytical method.
Logic We name computations performing bit manipulation as logic computations, such as hash, data

compression and encryption.
Transform The transform computations here mean the conversion from the original domain (such as

time) to another domain (such as frequency). Common transform computations include discrete fourier
transform (DFT), discrete cosine transform (DCT) and wavelet transform.
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Table 1: The Importance of Eight Data Dwarfs in Big Data and AI workloads.

Catergory Application Domain Workload Unit of Computation

Deep Learning
Image Recognition
Speech Recognition

Convolutional neural network(CNN) Matrix, Sampling, Transform
Deep belief network(DBN) Matrix, Sampling

Graph Mining
Search Engine
Community Detection

PageRank Matrix, Graph, Sort
BFS, Connected component(CC) Graph

Dimension Reduction
Image Processing
Text Processing

Principal components analysis(PCA) Matrix
Latent dirichlet allocation(LDA) Statistics, Sampling

Recommendation
Association Rules Mining
Electronic Commerce

Aporiori Statistics, Set
FP-Growth Graph, Set, Statistics
Collaborative filtering(CF) Graph, Matrix

Classification
Image Recognition
Speech Recognition
Text Recognition

Support vector machine(SVM) Matrix
K-nearest neighbors(KNN) Matrix, Sort, Statistics
Naive bayes Statistic
Random forest Graph, Statistics
Decision tree(C4.5/CART/ID3) Graph, Statistics

Clustering Data Mining K-means Matrix, Sort

Feature Preprocess
Image Processing
Signal Processing
Text Processing

Image segmentation(GrabCut) Matrix, Graph
Scale-invariant feature transform(SIFT) Matrix, Transform, Sampling,

Sort, Statistics
Image Transform Matrix, Transform
Term Frequency-inverse document fre-
quency (TF-IDF)

Statistics

Sequence Tagging
Bioinformatics
Language Processing

Hidden Markov Model(HMM) Matrix
Conditional random fields(CRF) Matrix, Sampling

Indexing Search Engine Inverted index, Forward index Statistics, Logic, Set, Sort

Encoding/Decoding

Multimedia Processing
Security
Cryptography
Digital Signature

MPEG-2 Matrix, Transform
Encryption Matrix, Logic
SimHash, MinHash Set, Logic
Locality-sensitive hashing(LSH) Set, Logic

Data Warehouse Business intelligence Project, Filter, OrderBy, Union Set, Sort

Set In mathematics, set means a collection of distinct objects. Likewise, the concept of set is
also widely used in computer science. For example, similarity analysis of two data sets involves set
computations, such as Jaccard similarity. Furthermore, fuzzy set and rough set play very important roles
in computer science.

Graph A lot of applications involve graphs, with nodes representing entities and edges representing
dependencies. Graph computation is notorious for having irregular memory access patterns.

Sort Sort is widely used in many areas. Jim Gray thought sort is the core of modern databases [6],
which shows its fundamentality.

Statistics Statistic computations are used to obtain the summary information through statistical
computations, such as counting and probability statistics.

3.3 Data Dwarf Implementations

Data dwarfs are the fundamental components of big data and AI workloads, which is of great significance
for evaluation, considering the complexity and diversity of big data and AI workloads. We provide the data
dwarf implementations for big data and AI separately, according to their computation specialties. For the
big data dwarf implementations, we provide Hadoop [10], Spark [11], and Pthreads [13] implementations.
These data dwarfs include sort, wordcount, grep, MD5 hash, matrix multiplication, random sampling,
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Table 2: Configuration Details of Xeon E5-2620 V3

Hardware Configurations

CPU Type Intel CPU Core

Intel R©Xeon E5-2620 V3 12 cores@2.40G

L1 DCache L1 ICache L2 Cache L3 Cache

12 × 32 KB 12 × 32 KB 12 × 256 KB 15MB

Memory 64GB,DDR4

Disk SATA@7200RPM

Ethernet 1Gb

Hyper-Threading Disabled

graph traversal and FFT transformation. For the AI dwarfs, we provide TensorFlow [12] and Pthread
implementations, including 2-dimensional convolution, max pooling, average pooling, relu activation,
sigmoid activation, tanh activation, fully connected (matmul), and element-wise multiply. We consider
the impact of data input from the perspectives of type, source, size, and pattern. Among them, data type
includes structure, un-structured, and semi-structured data. Data source indicates the data storage format,
including text, sequence, graph, matrix, and image data. Data pattern includes the data distribution, data
sparsity. As for data size, we provide big data generators for text, sequence, graph and matrix data to
fulfill different size requirements.

4 Characterization

In this section, we evaluate data dwarfs with various software stacks from the perspectives of both system
and architecture behaviors.

4.1 Experiment Setups

We deploy a three-node cluster, with one master node and two slave nodes. They are connected using 1Gb
Ethernet network. Each node is equipped with two Intel Xeon E5-2620 V3 (Haswell) processors, and
each processor has six physical out-of-order cores. The memory of each node is 64 GB. The operating
system, software stacks and gcc versions are as follows: CentOS 7.2 (with kernel 4.1.13); JDK 1.8.0 65;
Hadoop 2.7.1; Spark 1.5.2; tensorFlow 1.0; GCC 4.8.5. The data dwarfs implemented with Pthread are
compiled using ”-O2” option for optimization. The hardware and software details are listed in Table
2. Since Pthread is a multi-thread programming model, we evaluate both the TensorFlow and Pthread
implementations of AI dwarfs on one node for apple-to-apple comparison.

4.2 Experiment Methodology

We evaluate eight big data dwarfs implemented with Hadoop, Spark, and eight AI data dwarfs implemented
with TensorFlow and Pthread. Note that we use the optimal configurations for each software stack,
according to the cluster scale and memory size. The data configuration and selected metrics are listed as
follows.

Data Configuration To evaluate the impacts of data input comprehensively, we evaluate the data
dwarfs with three data sizes: Small, Medium, and Large. For the graph dwarf, Small, Medium, Large is
222, 224 and 226-vertex, respectively. For the matrix dwarf, we use 100, 1K and 10K two-dimensional
matrix data with the same distribution and sparsity. For the transform dwarf, we use 16384, 32768 and
65536 two-dimension matrix data. For the other big data dwarfs, we use 1, 10 and 100 GB wikipedia
text data, respectively. For the AI dwarfs, we use three configurations in terms of input tensor sizes
and channels. They are (224*224,64), (112*112,128) and (56*56,256). Among them, the first value
indicates the dimension of input tensor, the second value indicates the channels, and all of them use
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Figure 4: CPU Utilization and I/O Wait of Data Dwarfs.

128 as batch size. We choose these three configurations because they are widely used in neural network
models [17]. Note that the dimension for all input tensors is 224 for Large configuration, 112 for Medium
configuration and 56 for Small configuration. For the Pthread-version AI dwarfs, we use 1K, 10K, 100K
images from ImageNet [18]. In the following sections, we characterize the system and micro-architectural
behaviours of data dwarfs with the Large data size. In Section 5, we will analyze the impact of data input
on characteristics with all data sizes.

System and Micro-architecture Metrics We characterize the system and micro-architectural behav-
iors [19] of the data dwarfs, which is significant for design and optimization [20]. For system evaluation,
we report the metrics of CPU utilization, I/O Wait, disk I/O bandwidth and, network I/O bandwidth. The
system metrics are collected through the proc file system.

For micro-architecture evaluation, we use the Top-Down method [21], which categorizes the pipeline
slots into four categories, including retiring, bad speculation, frontend bound and backend bound. Among
them, retiring represents the useful work, which means the issued micro operations (uops) eventually get
retired. Bad speculation represents the pipeline is blocked due to incorrect speculations. Frontend bound
represents the stalls due to frontend, which undersupplies uops to the backend. Backend bound represents
the stalls due to backend, which is a lack of required resources for new uops [22]. We use Perf [23], a
Linux profiling tool, to collect the hardware events referring to the Intel Developerś Manual [24] and
pmu-tools [22].

4.3 System Evaluation

Fig. 4 presents the CPU utilization and I/O Wait of all data dwarfs. We find that Hadoop dwarfs have
higher CPU utilization than Spark dwarfs, and suffers less I/O Wait than Spark dwarfs do. Particularly,
Hadoop dwarfs take 80 percent CPU time. The I/O Waits of AI data dwarfs are extremely lower than that
of big data dwarfs. For deep neural networks, even the total input data is large, the input layer loads a
batch from disk every iteration, so data loading size from disk by the input layer occupies a very small
proportion comparing to intermediate data, and thus introduce little disk I/O requests. Pthread dwarfs has
less CPU utilization and I/O Wait in general, because Pthreads dwarfs have less memory allocation and
relocation operations than counterparts using other stacks. Moreover, the data loading time overlaps the
processing time since computation is simple, except that Pthread Matmul has almost 100% CPU utilization
because it is very CPU-intensive. Tensorflow dwarfs, such as AvgPool, Conv, Matmul, Maxpool, and
Multiply, have taken most of CPU time, because these five dwarfs are CPU-intensive. Nevertheless, we
also find that the other AI dwarfs are not that CPU-intensive, such as Relu, Sigmoid, and Tanh.

Fig 5 presents the network bandwidth and disk I/O bandwidth. For AI dwarfs, most of them (e.g.
matmul, relu, pooling, activation) are executed in the hidden layers, and the intermediate states of
hidden layers are stored in the memory. That is to say, the hidden layers consume the most resources of
computation and memory storage, while the disk I/O for input layer is relatively minor. Our evaluation
confirms this observation. Meanwhile, we mentioned in Section 4.1, we evaluate both the TensorFlow
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Figure 5: I/O Behaviors of Data Dwarfs.

and Pthread implementations of AI dwarfs on one node for apple-to-apple comparison. So we do not
report the I/O behaviors of AI dwarfs. We find that for all big data dwarfs, Spark stack has much larger
network I/O pressure than that of Hadoop stack, because Spark stack has more data shuffles, so it needs
transferring data from one node to another one frequently. Five of the eight Spark implementations have
smaller disk I/O pressure than that of Hadoop, because Spark targets in-memory computing. Except Spark
Matmul, Spark MD5 and WordCount have larger disk I/O pressure than that of Hadoop counterparts. The
disk I/O read sector numbers are nearly equal, while the write sector numbers are much larger.

4.4 Micro-architecture Evaluation

To better understand the data dwarfs, we analyze their performance and micro-architectural characteristics.
Execution Performance The execution performance indicates the overall running efficiency of the

workloads [25]. We use the instruction level parallelism (ILP) and memory level parallelism (MLP)
to reflect the execution performance. Among them, ILP measures the number of instructions that can
be executed simultaneously. Here we use the retired instructions per cycle (IPC) to measure ILP. MLP
indicates the parallelism degree that memory accesses can be generated and executed [26]. Fig. 6 presents
the ILP and MLP of all data dwarfs. We find that these dwarfs cover a wide range of ILP and MLP
behaviors, reflecting distinct computation and memory access patterns. For example, TensorFlow Multiply
does element-wise multiplications and has high MLP (5.27) but extremely low ILP (0.15). This is because
that its computation is simple and has little data dependencies, so it generates a large amount of memory
access requests while has no enough independent instructions to execute, thus incurs severe backend stalls
and results in low ILP. Also, max pooling and average pooling have high MLP. The MLP of average
pooling is lower than max pooling, because average computation involves many divide operations, and thus
suffers more stalls due to the delay of divider unit. The software stack changes workload’s computation
and memory access patterns, which is also found in previous work [27]. For example, both Hadoop FFT
and Spark FFT are based on cooley-tukey algorithm [28], while they have different parallelism degrees.
Spark FFT is more memory-intensive and has higher MLP.

The Uppermost Level Breakdown Fig. 7 shows the uppermost level breakdown of all data dwarfs
we evaluated. We find that these dwarfs have different pipeline bottlenecks. For Hadoop dwarfs, they
suffer from notable stalls due to frontend bound and bad speculation. Moreover, Hadoop dwarfs reflect
nearly consistent bottlenecks, indicating the Hadoop stack impacts workload behaviors more than other
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Figure 6: Execution Performance of Data Dwarfs.

Figure 7: The Uppermost Level Breakdown of Data Dwarfs.

stacks like Spark and TensorFlow. For Spark dwarfs, which mainly compute in memory, they suffer from
a higher percentage of backend bound than that of Hadoop counterparts. Spark Grep, Sample and Sort
suffer from more frontend bound and their percentages of backend bound are smaller than the others.
The AI data dwarfs face different bottlenecks both on TensorFlow and Pthreads. Conv and Matmul have
the highest IPC (about 2.3) and retiring percentages (about 60% on TensorFlow). Max pooling, average
pooling, and multiplication have extremely low retiring percentages, which has been illustrated in above.
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Figure 8: The Frontend Breakdown of Data Dwarfs.

Figure 9: The Frontend Latency Breakdown of Data Dwarfs.

However, activation operation like ReLU, sigmoid and tanh suffer from more frontend bound. For AI data
dwarfs implemented with Pthread, their main bottleneck is backend bound. They suffer little frontend and
bad speculation stalls.

Frontend Bound Frontend bound can be split into frontend latency bound and frontend bandwidth
bound. Among them, latency bound means the frontend delivers no uops to the backend, while bandwidth
bound means delivering insufficient uops comparing to the theoretical value. Fig. 8 presents the frontend
breakdown of the data dwarfs. We find that the main reason that incurs the frontend stalls is latency bound
for almost all dwarfs that suffer severe frontend bound.

We further investigate the reasons for the frontend latency bound and frontend bandwidth bound,
respectively. Generally, the frontend latency bound are incurred by six reasons, including icache miss,
itlb miss, branch resteers, DSB switches, LCP, and microcode sequencer (MS) switches. Among them,
icache miss and itlb miss are instruction cache miss and instruction tlb miss. Branch resteers means the
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Figure 10: The Backend Bound Breakdown of Data Dwarfs.

delays to obtain the correct instructions, such as the delays due to branch misprediction. LCP measures
the stalls when decoding the instructions with a length changing prefix. Generally, uops comes from
three places, including the decoded uops cache (DSB), legacy decode pipeline (MITE) and microcode
sequencer (MS). DSB switches record the stalls caused by switching from the DSB to MITE. MS switches
measure the penalty of switching to MS unit. As for latency bandwidth bound, there are mainly two
reasons: the inefficiency of MITE pipeline and the inefficient utilization of DSB cache. Additionally, LSD
represents the stalls due to waiting the uops from the loop stream detector [29]. Fig. 9 lists the latency and
bandwidth bound breakdown of all data dwarfs. For all data dwarfs except Spark Matmul, we find that
branch resteers are the main reason of the high percentage of frontend bound. Instruction cache miss is
more severe on Hadoop and Spark stacks than that on TensorFlow and Pthread stacks, because of the large
binary code size. Moreover, MS switch is another significant factor that incurs frontend latency bound.
Because big data and AI systems use many CISC instructions that cannot be decoded by default decoder,
so they must be decoded by MS unit, and results in performance penalties. Big data dwarfs implemented
with Hadoop and Spark suffer more icache misses than AI data dwarfs.

Backend Bound Fig 10 presents the backend bound breakdown of data dwarfs, which are split into
backend memory bound and backend core bound. Backend memory bound is mainly caused by the
data movement delays among different memory hierarchies. Backend core bound is mainly caused by
the lackness of hardware resources (e.g. divider unit) or port under-utilization because of instruction
dependencies and execution unit overloading. We find that more than half of these data dwarfs suffer
from more backend memory bound than core bound. For each software stack, there is at least one data
dwarf that suffer from equal percentages of core bound or even more percentages of core bound than
memory bound, such as Hadoop WordCount, Spark MD5, TensorFlow Conv and Pthread Avgpool. Fig. 11
shows the core bound breakdown. We find that TensorFlow Conv and Hadoop WordCount suffer from
significantly long latency of divider unit. While for Spark MD5, which has the highest percentage of
backend core bound, mainly suffer from the stalls due to port under-utilization. As for backend memory
bound, we find that external memory bound is much severe than level 1, 2, and 3 cache bound for almost
all big data and AI dwarfs, indicating that the memory wall [30] still exists and need to be optimized.
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Figure 11: The Backend Core Bound Breakdown of Data Dwarfs.

Figure 12: Linkage Distance of Data Dwarfs.

5 Impact of Data Input

In this section, we evaluate the impact of data input on system and micro-architecture behaviors from the
perspectives of size, source, type, and pattern. For type and pattern evaluation, we use Sort and FFT as an
example, respectively.

13



Figure 13: Impact of Data Size on I/O Behaviors.

5.1 Impact of Data Size

Based on all sixty metrics spanning system and micro-architecture we evaluated in Section 4, we conduct
a coarse-grained similarity analysis using PCA [31] and hierarchical clustering [32] methods on three
data size configurations. Fig. 12 presents the linkage distance of all data dwarfs, which indicates the
similarity of system and micro-architecture behaviors. Note that the smaller the linkage distance, the
more similar the behaviors. We find that data dwarfs with small data size are more likely to be clustered
together. A small data size will not fully utilize the system and hardware resources, hence that they tend to
reflect similar behaviors. However, for the dwarf that is computation intensive and has high computation
complexity, even with the large data set, it will be clustered together with small data set. For example,
FFTs with three data size configurations are clustered together for both Hadoop and Spark version. AI
Dwarfs with TensorFlow implementations are also greatly affected by the input data size. However, they
reflect distinct behaviors with big data dwarfs implemented with Hadoop and Spark, with the least linkage
distance of 5.09.

Impact of Data Size on I/O Behaviors We evaluate the impact of data size on I/O behaviors using
the fully distributed Hadoop and Spark dwarf implementations, as illustrated in Fig. 13. Here we do not
report the performance data of the AI dwarfs because the disk I/O behavior is little in neural network
modeling, which we have illustrated in Subsection 4.3. We use the small data input as the baseline, and
report the ratio of the number of the medium or large input divided by that of the small input. The bold
black horizontal line in Fig. 13 shows the equal line with the small input. That is to say, the value higher
than the line means larger I/O bandwidth than the value of the small input. We find that almost for all data
dwarfs, their I/O behaviors are sensitive to the data size. When the data size large enough, the whole data
can not be stored in memory, then the data have to be swapped in and swapped out frequently, and hence
put great pressure on disk I/O access. Modern big data and AI systems adopt an distributed manner, with
the data storing on an distributed file system, such as HDFS [33], the data shuffling or data unbalance will
generate a large amount of network I/O.

Impact of Data Size on Pipeline Efficiency We further measure the impact of data size on pipeline
efficiency. As shown in Fig. 14, we find that with the data size increases, the percentage of frontend bound
decrease, while the percentage of backend bound increase. For example, Spark Matmul with large input
size decrease nearly 20% of frontend bound and increase more than 30% of backend bound. As the data
size increase, the high-speed cache and even memory are unable to hold all of them, and further incur
many data cache misses, resulting in large penalties due to memory hierarchy.
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Figure 14: Impact of Data Size on Pipeline Efficiency.

(a) System Behavior with Different Patterns.

(b) Micro-architecture Behavior with Different Patterns.

Figure 15: Impact of Data Pattern on Data Dwarfs.

5.2 Impact of Data Pattern

Data pattern and data distribution impact the workload performance [34, 35] significantly. To evaluate
the impact of data pattern on the dwarfs, we use two different patterns of dense matrix and sparse matrix,
to run FFT dwarf as an example. The matrix sparsity indicates the ratio of zero value among all matrix
elements. With different sparsity, the data access patterns vary, and thus reflect different behaviors.

We use two 16384×16384 matrixes as the input for the FFT dwarf, with the one having 10% sparsity
and the other one 90% sparsity. Fig. 15 shows the impact of data pattern on the data dwarfs from system
(Fig. 15(a)) and micro-architecture perspectives(Fig. 15(b)). We find that using the matrix with high
sparsity, the network I/O and disk I/O are nearly half of the values using the dense matrix, and the major
page fault per second is almost the same. Spark dwarfs suffer from more I/O pressure than Hadoop dwarfs.
As for pipeline bottlenecks, sparse data input incurs more frontend stalls while less backend stalls.

5.3 Impact of Data Type and Source

Data types and sources are of great significance for read and write efficiency [36], considering their storage
format and targeted scenarios, such as the supports for splitable files and compression level. To evaluate
the impact of the data type and source on system and micro-architecture behaviors, we use two different
data types for Sort dwarf, with the same data size of 10 GB. two types are un-structured wikipedia text
data and semi-structured sequence data. Wikipedia text file is laid out in lines and each line records an
article content. Sequence files are flat files that consist of key and value pairs, stored in binary format.
Fig. 16 lists the impact of data type on data dwarfs from the system (Fig. 16(a)) and micro-architecture
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(a) System Behavior with Different Types.

(b) Micro-architecture Behavior with Different Types.

Figure 16: Impact of Data Type on Data Dwarfs.

aspects (Fig. 16(b)). We find that the difference between using text type and sequence type ranges from
1.12 times to 7.29 times from the system aspects. Using text data type, the CPU utilization is lower than
using sequence data, which indicates that using sequence data has better performance. Both Hadoop Sort
and Spark Sort suffer more major page faults and further impact the execution performance, because
of page loads from disk. Note that we use the major page fault number per second in Fig. 16 and the
total number during the running process is about 100 to 200. Even with the same amount of data size,
their network I/O and disk I/O bandwidth still have a great difference. We find that the sequence format
have larger requirements for I/O bandwidth than the text format. From the micro-architecture aspect
(Fig. 16(b)), Sort with different data types reflect different percentages of pipeline bottlenecks. With the
text format, backend bound bottleneck is more severe, especially backend memory bound, which indicates
that they waste more cycles to wait for the data from cache or memory.

6 Related Work

Our big data and AI dwarfs are inspired by previous successful abstractions in other application scenarios.
The set concept in relational algebra [3] abstracted five primitive and fundamental operators, setting off a
wave of relational database research. The set abstraction is the basis of relational algebra and theoretical
foundation of database. Phil Colella [5] identified seven dwarfs of numerical methods which he thought
would be important for the next decade. Based on that, a multidisciplinary group of Berkeley researchers
proposed 13 dwarfs which were highly abstractions of parallel computing, capturing the computation and
communication patterns of a great mass of applications [6]. National Research Council proposed seven
major tasks in massive data analysis [9], which they called giants. These seven giants are macroscopical
definition of problems in massive data analysis from the perspective of mathematics, while our eight
classes of dwarfs are main time-consuming units of computation in the Big Data and AI workloads.

Application kernels [37, 38] also aim at scaling down the run time of the real applications, while
preserving the main characteristics of the workload. Consisting of the major function of the application,
Kernel tries to cover the bottleneck of the real application. But kernel is still hard to understand the
complex and diversity big data and AI workloads [37, 39]. Other than that, kernel mainly focuses on the
CPU and memory behaviors, and pays little attention to the I/O, which is also important for many real
applications, especially in an era of data explosion.

7 Conclusions

In this paper, we answer what are abstractions of time-consuming units of computation in big data and AI
workloads. We identify eight data dwarfs among a wide variety of big data and AI workloads, as a pipeline
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of units of computation performed on initial and intermediate data, including Matrix, Sampling, Logic,
Transform, Set, Graph, Sort and Statistic computation. We implement the data dwarfs for big data and
AI separately, including the big data dwarf implementations using Hadoop, Spark, Pthreads, and the AI
data dwarf implementations using TensorFlow, Pthreads, considering the impact of data type, data source,
data size, and data pattern. From the system and micro-architecture perspectives, we comprehensively
characterize the behaviors of data dwarfs and identify their bottlenecks. Moreover, we measure the impact
of data type, data source, data pattern and data size on their behaviors.
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