Certifying Algorithm for Strongly Connected Components

Tadej Borovsak!, Jurij Miheli¢?

X1 AB d.o.o., Pot za Brdom 100, Ljubljana, Slovenia
2Faculty of Computer and Information Science, University of Ljubljana, Vecna pot 113, Slovenia
E-mail: jurij.mihelic @fri.uni-lj.si

Abstract

In the paper we focus on algorithms whose output is the
solution to the input instance as well as the certificate that
the computed solution is indeed correct; such algorithms
are called certifying. Our center of interest is the problem
of decomposing a directed graph into its strongly con-
nected components. Several non-certifying algorithms
are already known for the problem. Our contribution is a
certifying algorithm for the problem as well as the corre-
sponding checker algorithm. Additionally, we prove that
the checker correctly verifies the output of the certifying
algorithm.

1 Introduction

Algorithms for solving problems defined on graphs are
fundamental in computer science. Many such problems
exist, see for example any introductory textbook on algo-
rithms [1, 2] or for particular examples of graph problems
[3, 4, 5]. One of the elementary graph problems is deter-
mining a decomposition of a given directed graph into
strongly connected components. Many algorithms on di-
rected graphs may benefit from handling each component
separately [2].

Usually the algorithms used in real-life applications
must be shown correct. There are several approaches to
this, e.g., intuitive understanding, testing, formal proofs,
automatic verification, and certifying algorithms. In this
paper we focus on the latter.

A certifying algorithm is an algorithm that produces,
with each output, a certificate or witness (easy-to-verify
proof) that the particular output has not been compro-
mised by a bug [6, 7]. A user can convince herself that
the output is correct by inspecting the witness.

The process of checking the witness may be auto-
mated with a checker algorithm. The checker is an al-
gorithm, which automatically verifies using the witness
that the output is correctly corresponding to the input.

In practice, formal analysis of correctness of the al-
gorithm may be too involved, but analyzing the checker
may be much easier. Additionally, such verification of
the algorithm on a paper does not prove anything about
its implementation; it may contain bugs. On the other
side, testing the implementation with a limited test set
may leave out many test cases and miss some important

bugs as complete testing is in practice infeasible. No-
tice also, that automatic verification of programs is still
in its infancy: with many successes but also with a very
demanding implementation.

In this regard, certifying algorithms are somehow in-
between, yet their implementation effort is basically in-
distinguishable from the non-certifying ones. Neverthe-
less, additional effort must be put into the implementation
of the checker, and to formally prove that checking actu-
ally works.

2 Strongly connected components

2.1 Problem definition

A strongly connected component of a directed graph G =
(V, E) is a maximal set of vertices C' C V such that ev-
ery pair of vertices u,v € C are reachable from each
other, i.e., there is a path in G from w to v as well as
from v to u. Notice also, the component C' being max-
imal means that no vertex can be added to C' such that
C would still be strongly connected. (Clearly, the no-
tion of being “maximal” differs from “maximum”, i.e.,
there may be many (maximal) strongly connected com-
ponents of various sizes, yet the maximum strongly con-
nected components are the largest among them.)

A partition of a set S is a family { Py, Pa, ..., Ps} of
nonempty subsets of S such that every element in S is a
member of exactly one of the subsets, i.e., P; # @ and
P, C Sforalll <i < saswellas|J;,., P = S.
Additionally, the sets in a partition are pairwise disjoint,
ie, P,NP;=0forall1 <i,j <swithi# j.

Given a directed graph G = (V| E), the goal of the
strongly connected components problem is to find a par-
tition of the vertices V/, such that each set of the partition
is strongly connected component.

2.2 Non-certifying algorithms

There are several polynomial-time algorithms for solv-
ing the strongly connected components problem exactly.
The two well-known are Kosaraju’s algorithm [1, 2, 8]
and Tarjan’s algorithm [9]. Both algorithms are an appli-
cation of a depth-first search on a graph. Their running
time is O(|V(G)|+ |E(G)]) provided that an input graph
is represented by an adjacency matrix.

Because our certifying algorithm for finding strongly
connected components is based on Tarjan’s algorithm, let

us present it here briefly. The pseudo-code of the (certify-
ing) algorithm is shown in Figures 4 and 5. In the depth-
first traversal, every vertex gets two numbers assigned:
index — when the vertex is first visited and incremented
on every visit, and low — the lowest index encountered in
the subsequently seen vertices. On vertex exit when in-
dex equals low, the current component is extracted from
the stack. Such a vertex is called the component’s repre-
sentative.

2.3 An example

Let us present the introduced notions with an example.
Consider a directed graph in Figure 1. The strongly con-
nected components of the graph are represented by the

partition {{a, b, c}, {d},{e, f,g,h}}.

@O—(F—(0—
@®) O

Figure 1: An example of a directed graph on eight vertices.

The trace of the execution of Tarjan’s algorithm on the
graph from Figure 1 is shown in Figure 2. The order in
which the vertices are visited in the depth-first traversal is
a,c,bye, f,g,h,d; the corresponding index numbers are
written above vertices before the colon. After the colon
the low numbers are shown in the order as they are also
updated by the algorithm.

0:0 1:1,0 3:3

@O—(—(e)
G——

2:2,0 7:7 4:43

5:5,3

6:6,3
Figure 2: The trace of Tarjan’s algorithm.

For example, consider vertex b. It is visited after a
and c, so its index=2. On the first visit its low number is
assigned to 2, but when considering b’s neighbors (i.e.,
vertex a, which is already marked), its low number is up-
dated to 0. This number is also propagated to vertex c
on traversal exit from vertex b. Notice also, that the first
component to be found by the algorithm is {e, f, g, h},
proceeding by {d}, and finally {a, b, c}.

3 Certifying algorithm

In this section we present how to alter Tarjan’s algorithm
in order to obtain certifying algorithm. Our goal is to
provide enough information to the checker to be able to
efficiently verify the correctness of the solution. As ex-
plained in the next section, a naive checker is not efficient
enough.

Therefore, the extended output of the algorithm is
a directed acyclic graph connecting the representatives
of strongly connected components. An example of such
graph for the strongly connected components of the graph
from Figure 1 is shown in Figure 3.

{a,b,c}

{e7f7g?h}

(©)
(d){a}

Figure 3: Directed acyclic graph of the component representa-
tives.

Additional information is provided with each vertex
(i.e., representative): vertices of the original graph con-
tained in the corresponding component as well as two
trees to speed up the checking procedure. The first tree
consists of forward edges of the corresponding compo-
nent, and the second one of backward edges.

The main traversal procedure is shown in Figure 4. It
does not differ much from the classic depth-first traversal,
apart from the initialization of two graphs, i.e., fw and bw,
and a final step consisting of a construction of a directed
acyclic graph connecting the representatives.
fun tarjan_certify is
count = 0
stack = []; result = []
fw = Graph (); bw = Graph()

for veV do
if not marked(v) then
connect(v)

dag = construct_dag(result)
return dag

Figure 4: The main traversal procedure.

In order to construct these two trees, the certifying al-
gorithm builds two forests during the depth-first traversal:
see Figure 5, the corresponding forests are denoted with
fw (forward edges) and bw (backward edges). The former
is extended with an edge on recursive calls, i.e., whenever
a new neighboring vertex is visited, and the latter is ex-
tended when the low number of a vertex is updated.

To continue our previous example. Forward and back-
ward trees for each component are shown in Figure 6.
Notice that, the representatives of the components are a,
e, and d.

4 Checking the output

In the following sections, we first present an efficient al-
gorithm for checking the correctness of the output of the
certifying Tarjan’s algorithm. Then we prove the correct-
ness of the checker.

fun connect(v) is
index(v) + low(v) + count
count < count + 1
stack.push(v)
fw.addVertex(v)
bw.addVertex(v)

for x € N (v) do
if not marked(z) then

fw.addEdge(v, x)

connect(x)

if low(z) < low(v)) then
low(v) + low(z)
bw.addEdge(v, x)

if z € stack then

if index(z) < low(v) then
low(v) + index(x)
bw.addEdge(v, x)

else

endif
done

if index(v) = low(v) then
comp = []
do
comp.add(stack.pop())
while stack.top()! =v
result.add(comp, fw(comp), bw(comp))
endif

Figure 5: The traversal procedure.

4.1 Checker algorithm

The input to checker algorithm is the output of a certi-
fying algorithm. Denote with G = (V| E) the original
input graph on which the strongly connected components
are to be found, and recall that, the output of the certi-
fying algorithm is a directed acyclic graph H = (U, F)
of representatives as well as forward and backward tree
witnesses. To check the output we proceed as follows.

First, perform a topological sort of the graph H. For
example, the topological order of vertices of the graph
from Figure 3 is d, a, e. This can be done in O(|V (H)| +
|E(H)|) time [2]. Afterwards, in the reverse topological
order perform the following checks for each component
C assigned to the representative:

backward tree

» (@O—(0—0® -0
@
c ©O— ©
®<@ @
@ @

Figure 6: Forward and backward trees for each component.

forward tree

C1 Check if all vertices in the component C' are also
present in the input graph G. Here the set of ver-
tices in both forward and backward trees must be
the same as well as it must be a subset of V. The
time complexity of this step is O(|V (C))).

C2 Check if all edges in the component’s both forward
and backward trees are also present in the input
graph G. This step takes O(|V (C)|) time.

C3 Check if all vertices in the component C' are reach-
able from each other (in both directions). To do this
the forward and backward trees are used for depth-
first traversal. Thus, the times complexity of this
step is O(|V(C))).

C4 Check if all vertices, which are reachable in the orig-
inal graph G from the component representative,
are actually all in this component. To do this, we
again employ depth-first traversal on the graph G.
Notice that the search for reachable vertices is con-
strained to the corresponding component (because
we use reverse topological order). Hence, this step
takes O(|V(C)| + |E(G¢)|) time, where G¢ is
vertex-induced subgraph in G of vertices in C'.

If all the checks evaluate successfully, then remove
the component vertices (and corresponding edges) from
the original graph G. Afterwards, proceed to the next
component. Finally, when the loop terminates the graph
G should be empty.

Observe that, the preforming the checks for one com-
ponent C' altogether takes O(|V(C)| + |E(G¢)|) time.
Each component has to be checked, hence, the total time
complexity of the checker is O(|V (GQ)| + |E(G))).

4.2 Checker correctness

In order to prove that the algorithm indeed computed the
correct result several properties of the output need to hold.
In particular, for the resulting components C, we need to
show that:

P1 The components C contain all the vertices of the input
graph G, i.e., V C Ucec-

P2 The components C contain only the vertices of the
input graph G, i.e., Ucec C V.

P3 The components C are pairwise disjoint, i.e., for two
components A, BeC = ANB=1.

P4 The components C are strongly connected, i.e., there
exists a path from u to v, where (u,v) € A x A for
each A € C.

P5 The components C are maximal, i.e., there is no path
from u to v or v to u, where u and v are vertices
from two distinct components in C.

Notice that, the first three properties, i.e., P1, P2, and P3,
together prove that the components C' are a partition of
the input graph vertices.

A naive approach to checking the five conditions is
inefficient (i.e., super linear), since, for example, proving

that there is no path from u to v may involve performing
a full graph traversal. Additionally, one must do this for
many pairs v and v.

Now we show that the checker correctly checks the
above conditions. We summarize our result in the fol-
lowing theorem.

Theorem 1. The checks C1, C2, C3, and C4 are sufficient
to prove the properties P1, P2, P3, P4, and P5.

We prove the theorem separately for each property.

Proof of P1. Assume that a vertex x € V is not con-
tained in any of the components. Then the checker will
not remove z from the graph G. Hence, the graph G will
not be empty at the end, and the check will fail. O

Proof of P2. This property is examined by the check C1.
O

Proof of P3. Assume that the components A, B € C are
not disjoint. Let x € A N B. Without loss of generality,
assume that A is processed before B for it is preceding B
in a reverse topological order. The checker algorithm re-
moves z from the graph when done processing A. How-
ever, when B is processed, the check Cl1 fails, since x is
no longer part of the graph. O

Proof of P4. This property is examined by the check C3,
which verifies that all vertices of the component are reach-
able in the forward tree from the component representa-
tive. Additionally, all vertices of the component are also
reachable from the component representative in the re-
versed backward tree, which ensures that the component
representative is reachable form all vertices. O

Proof of P5. First, recall that the components form a di-
rected acyclic graph. Observe, if there would be a cycle
in such a graph, the components on the cycle are actually
all part of the same component, i.e., they are not maximal.
The checker first proves that the graph of components is
indeed directed acyclic graph, by performing topologi-
cal sort (which only works properly on directed acyclic
graphs).

Proof that the paths between different components do
not exist stems from the check C4. Since the components
are processed in a reverse topological order, the depth-
first traversal in the original graph G visits only vertices
in this component. Additionally, the component is re-
moved from the graph G at the end of the loop. O

5 Conclusion

In the paper we redesigned a well-known Tarjan’s algo-
rithm for finding strongly connected components of a given
directed graph in order to obtain a certifying algorithm,
which additionally to the solution of the problem outputs
also the certificate that the solution is correct. Since the
changes made to the original algorithm are minor, we ex-
pect that the resulting algorithm has very similar perfor-
mance in practice than the original. Asymptotically, both
algorithms have the same time complexity.

Notice also, that there exists another well-known al-
gorithm for the problem, namely Kosaraju’s algorithm:
we believe that it could also be extended to become certi-
fying by the use of similar techniques as described above.

Acknowledgments

This work was partially supported by the Slovenian Re-

search Agency and the projects “Parallel and distributed

systems” and ’Graph optimization methods for Data Anal-
ysis and Data Mining”.

References

[1] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman. Data

Structures and Algorithms. Addison-Wesley, 1983.

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, Clifford Stein. Introduction to Algorithms, 3rd edi-
tion. The MIT Press, 2009.

[3] Jurij Miheli¢, Borut Robi¢. K-center problemi. Zbornik
enajste mednarodne Elektrotehniske in racunalniske kon-
ference ERK 2002, B:3-6, 23.-25. september 2002, Por-
toroz, Slovenija.

[4] Jurij Miheli¢, Borut Robi¢. Algoritmi za razmes¢anje cen-
trov. Elektrotehniski vestnik letn. 70(3):162-166, 2003.

[5] Jurij Miheli¢, Borut Robi¢. Algoritmi za problem naj-
manjSega vozli§¢nega pokritja. Zbornik trinajste mednaro-
dne elektrotehniSke in racunalniske konference ERK 2004,
B:115-118, 27. - 29. september 2004, Portoroz, Slovenija.

[6] R. M. McConnell, K. Mehlhorn, S. Naher, P. Schweitzer.
Certifying Algorithms, 2010.

[7]1 Eyad Alkassar, Sascha Bohme, Kurt Mehlhorn, Christine
Rizkallah, Pascal Schweitzer. An Introduction to Certifying
Algorithms. Information Technology 53(6):287-293, 2011.

[8] Micha Sharir. A strong connectivity algorithm and its appli-
cations to data flow analysis. Computers and Mathematics
with Applications 7(1):67-72, 1981.

[9] R.E. Tarjan, Depth-first search and linear graph algorithms.
SIAM Journal on Computing 1 (2):146-160, 1972.

