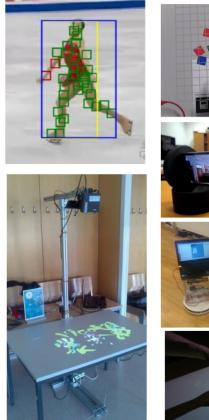
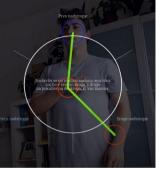


Multimedia Systems


About the lecturer

Luka Čehovin Zajc, PhD Assistant Professor Visual Cognitive Systems Laboratory


Office R2.39

luka.cehovin@fri.uni-lj.si

Course requirements

- Laboratory exercises / project work 50%
 - Practical exercises grading throughout semester
 - Single project grading at the end of the semester
 - Only valid for the current school year
- Exam (written + oral) -50%
 - Must pass laboratory exercises to attend
 - Theoretical and practical assignments
 - Optional oral exam for borderline students (50% to ~65%)
 - Only oral exam for less than ~10 students

Laboratory exercises

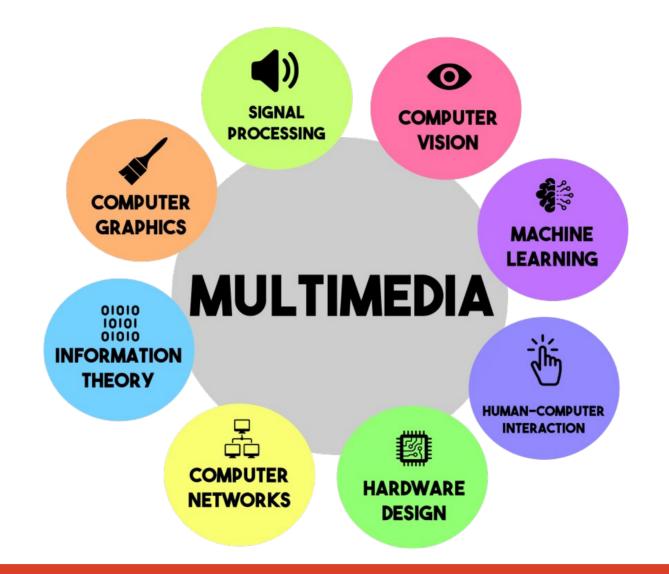
- Teaching assistant: Me
- Practical consolidation of selected topics
- Python (Jupyter, SciKit, NumPy, ...)
 - Hosted Jupyter instances at lab.vicos.si
 - Local installation (virtualenv, Docker)
 - Google Colab
- Each exercise is due in **two weeks** (approximately)
 - **Timely** assignment hand-in encouraged
 - Labs = Presentation + Consultations + Defenses

Project assignment

- Alternative to regular laboratory exercises
- In-depth project work on a selected topic
 - You have to pace your work yourself
 - Meetings can be arranged to discuss topic
- Work has to be finished by the end of semester
 - Presentation in classroom
 - Demonstration
 - Code hand-in
- Possible projects
 - 3D video stabilization using SfM
 - Content-based image retrieval with sketches
 - Content-based music retrieval in practice
 - Augmented reality without markers
 - Interactive / multi-touch surfaces
 - Embedded devices for natural interaction

Write me an email if you are interested!

multimedia *(Latin)* multum + medium



Devices

Computers, video players, game consoles, broadcast TV, Internet, converge into a unified multimedia products.

Domains

graphics, visualization, human-computer interaction, computer vision, data compression, signal processing, computer networks, machine learning ...

Hypermedia

- Ted Nelson (~1965): HyperText
 - Book: linear medium
 - HyperText: non-linear (interactive)
- Hypermedia: not only text
 - Form of multimedia application
 - WWW type of hypermedia application

Application domains

- Digital television, video on demand (video + sound)
- Computer games (graphics + sound + interactivity)
- Teleconferences (video + sound)
- Remote lectures (video + sound + slides)
- Telemedicine (video + sound + haptic + manipulation)
- Large databases (e.g. Google, YouTube, Facebook, Amazon, Dropbox)
- Extended reality
- Data visualization (image + sound + interactivity)

Research challenges

Processing, storage

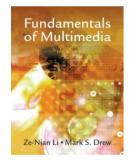
Content analysis, information retrieval, compression, security, etc.

• Tools, applications, methods

Content manipulation, user interfaces, multi-modal interaction, content production systems, collaboration systems, etc.

• Support systems

Network protocols, quality of service, distribution networks, storage systems, IO devices, etc.


Lectures overview

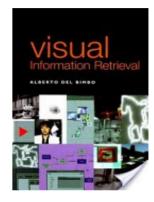
- Images
- Video
- Sound

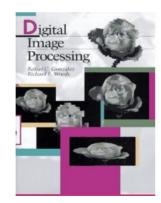
- Processing
- Compression
- Retrieval
- Interactivity

Literature

- Slides + lecture notes available at online Classroom (Učilnica)
- Multimedia overview, general topics

Li Ze-Nian, M. S. Drew, Fundamentals of Multimedia, 2010.

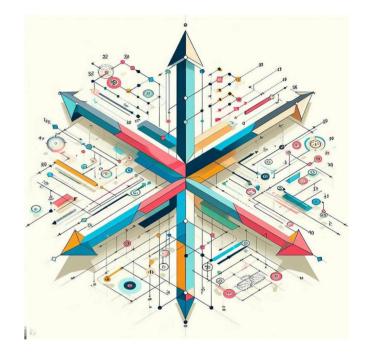

• General information retrieval concepts



C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press. 2008.

Additional literature

- A. del Bimbo: Visual information retrieval
- Gonzalez and Woods: Digital Image Processing
- J. O. Smith III, Introduction to Digital Filters



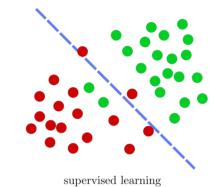
Representations and machine learning

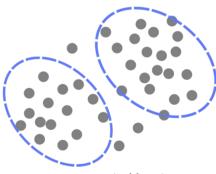
Representation

- Vector of values
 - Encoding data properties
 - Embedding special case (structured space)
- Task dependent
 - Select the right representation
 - General vs. specialized
 - What to describe?

Examples of representations

- Image / video
 - Sequence of pixels
 - Histogram, average color
 - Bag of words vector
 - Frequency space
 - Features
 - Embedding

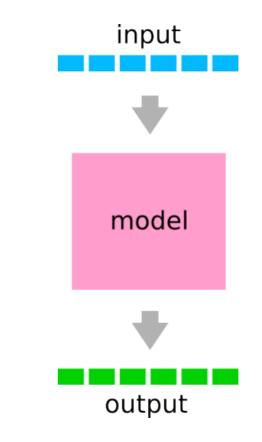

- Audio
 - Waveform
 - Spectrogram
 - Vocoder parameters
 - Features
 - Embedding
- Text
 - Word frequency
 - Text embedding


Machine learning

- Machine learning != artificial intelligence
- Model = Function approximation
 - Without explicit programming
 - Based on given data
 - Improve with more data
- Manipulate content
- Extract information

Learning scenarios

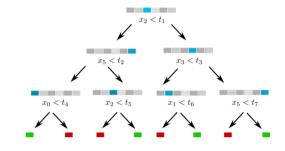
- Supervised learning
 - Known output
 - Optimization of objective function
 - Classification, regression
- Unsupervised learning
 - No annotations
 - Knowledge (structure) discovery, data mining
 - Clustering, latent variable estimation
- Reinforcement learning

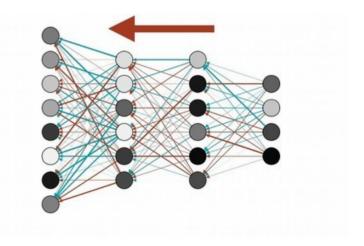


unsupervised learning

Prediction model

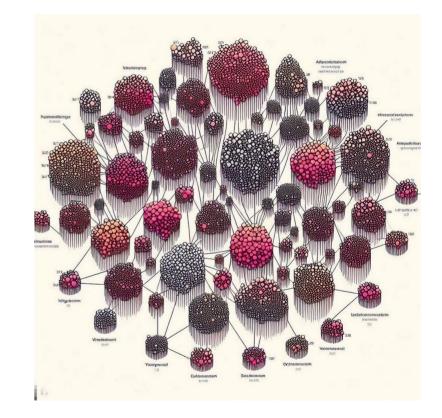
- Algorithm with parameters
 - Learnable parameters
 - Hyper-parameters
- Input (sample)
 - Vector representation
 - Image, waveform, ...
- Output (prediction)
 - Class
 - Property


Classification


- Fixed number of classes
 - Binary yes/no
 - Multi-class
- Use-cases in multimedia
 - Object detection, segmentation
 - Object categorization
 - Semantic description

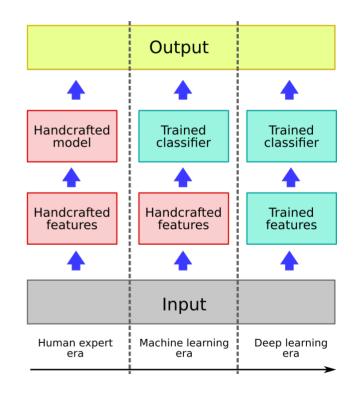
Classification methods

- K nearest neighbors
- Decision trees
- Random forest
- Boosting
- Support vector machines
- Artificial neural networks

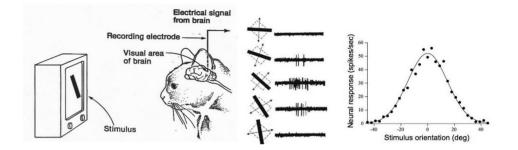


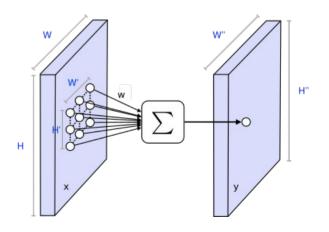
Clustering

- Input feature vectors
- Output cluster assignments (labels)
- Chicken / egg problem
- Use cases in multimedia
 - Segmentation grouping pixels
 - Visual dictionary formation grouping descriptors
 - Efficient searching grouping representations

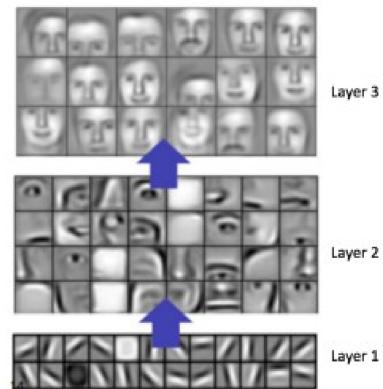

Clustering methods

- Hierarchical
- K-means, mean-shift
- Spectral
- Message passing


Big data and end-to-end learning


- End-to-end learning
 - Learning features and classifier
 - From pixels to high-level decisions
- Big data
 - More data (Internet, Mechanical Turk)
 - Hardware (storage, GPUs)
 - Learning techniques

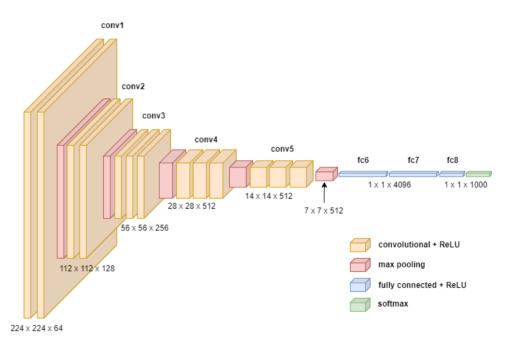
Convolutional neural networks


- Neural networks
 - Biological motivation (~1960)
 - Character recognition
 - High number of parameters
- Convolution
 - Receptive field
 - Same operation on entire image
 - Reduced number of parameters

Hierarchy of operations

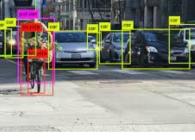
- Training
 - Back-propagation
 - Gradient descent
- Layers
 - Convolution
 - Fully-connected
 - Max-pooling
 - Soft-max
 - Attention

High level features Objects Laver 3

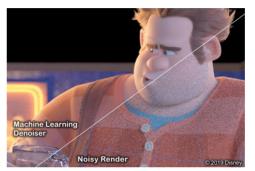

Object parts Circles, squares, ...

Layer 2

Low-level features Edges, corners


Deep learning

- Large models
 - Neural networks, convolution
 - Many parameters
- Highly non-linear
- Optimization
 - Automatic differentiation
 - Backpropagation of loss function
 - Gradient descent



Differentiable programming

- Input
 - Image
 - Video
 - Audio
- Output
 - Labels
 - Regions
 - Transformed image
 - Generated image
 - Generated video

Detection

De-noising

Super resolution

Style transfer

Text-to-image