Process automation

Programmable Logic Controllers (PLCs)
Programming — part 2

BS UNI studies, Fall semester 2025/2026

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

Outline

Function Block Diagrams (FBD)
e Sequential Function Charts (SFC)

Instruction Lists (IL)
Structured Text (ST)

Programming Techniques

TwinCAT — shortcuts for ease of use

* Tools - Customize > Commands - Keyboard...

Options

Search Options (Ctrl+E)

4 Environment
General
Accounts
AutoRecover
Documents
Extensions
Find and Replace
Fonts and Colors
Import and Export Settings
International Settings
Keyboard
Preview Features
Product Updates
Startup
Tabs and Windows
Task List
Terminal

Trust Settings

Weh Rrowser

Apply the following additional keyboard mapping scheme:
(Default) p2 Reset

Show commands containing:

writevalues

PLC Writevalues

PLC. Writevaluesforallonlineapplications

Remove

Use new shortcut in: Press shortcut keys:

Global v | | Ctrl+F7 Assign

OK Cancel

Function Block Diagram: Standard

e Function Block Diagram is one of the standard graphical languages
* It visually displays the interconnection of functions and function blocks.

* It resembles electrical and block diagrams from analog and digital
technologies

e Each block has inputs and outputs.
* The connections represent the flow of electrical current in proper circuits.

* Blocks usually represent combinatorial functions (decision logic) but can
also have memory (sequential logic)

* Some blocks are combinational, meaning they make decisions based on inputs.
Others include memory, allowing for sequential operations.

 The standard also allows for feedback connections

* The standard prescribes defining the order of execution for blocks with feedback but
does not prescribe how.

Function Block Diagrams: standard

A function block is defined by: Example:
e Interface: parameters
» Specifies the number and types of inputs and \
outputs. reference PID
e Black box functionality: measurement [motor
* The operation of the block is described graphically,
with a table, formula, or description.
* Connection Rules:
* Every signal is connected to exactly one source.
 The source, sink, and connection must all be of
the same data type. Example:
signal_a signal_b

signal_c

Function Block Diagrams: program

* Program Execution:

* The program is executed in
a specific order:
* From top to bottom
* From left to right

e Exceptions are backward
connections (e.g., feedback
loops)

* Example: ABB
development environment

B Program - Application_1:General g =18 x|
Editor Edt View Insert Tools Window Help
[xrgl@Bloos bR AgMo|i~ea|u®||QMaex -|[eci =
Item |Commen! B R R e e T ey :I
OR(b...
TOn
AND..
CellC... >1) >=i
>2)
>3)
>4)
>5)
>6)
>7)
tCycleStop OK
Tn
>8) In Q
TimeCycleStop PTEET—
I Nachine
>9) &
>10) CellControl
>11) 1— Emsble —
>12) — Manual
— Automatic
— AamaticStart
L amomaticStop
>13) CycleStop
CycleStop OK
— MechineReset
— MachineReset Timeout
Mechine InHomePos
>14) PLC_CellControl >16)
>15) HMI_CellControl >17)
=
KN I TIRIE e | »rE

‘|»|\ PLC_Control A test A _HMI_Control A WarningToHMI__AlarmToHMI A _LightStack A ProductionPerformance A _ProductSelection A Alarm_Warning_Sim__/

Row 1, Col 1 [hom [

Function Block Diagrams: program

* Example: Motor control

Hetwork 1 :

in Siemens TIA Portal.

#Manua.l._OH —_—

#Automatic

_Mode ={}

#AutD_OH —

#Arutomatic

_Mode —

==1

M11.1

#Mot or OFF —

#Fault =}

SR

#M start

#Enable —

#M Running

Function Block Diagrams: program

* Elementary block: n
 Microcode, Assembler, Structured Text (ST)

* Composite block:

e Connects multiple elementary blocks into a whole.

* Function block diagram (FBD) where multiple
functions work together.

Function Block Diagrams: program

* Segmentation:

* For better clarity, the functional
plan is divided into several
segments.

* Inside each segment, the
connections are represented
graphically.

 Temporary variables connect the
segments to each other.

Segment A
X1 L
M2 M1
Y1
Segment B
X2 |_ Y2
M1
X3 M2

Function Block Diagrams: TwinCAT

Key Con cepts: : Assigning values
* Rungs (network):
* The concept of “rungs” (networks) is borrowed from ladder diagrams. se——1Le
 The program is executed sequentially, one “rung” after another, from left to right. —
. egation
Best Practices:
* Input Definition:
. . . . Se—(O—L1
e All inputs should be defined to avoid unwanted behavior.
e Output Handling: ’ Logical AND and OR
* Each output (denoted as %Q) should only appear once in the program for AND oR
clarity and control. SO —
o0 ree s1 _O & 21
Example: Basic Operations: ad & [T 21 [
* Negation can be accessed via the context menu (right- % B Call Tee s2 -0
click) in the program. > % Go To Definition F12 53—
SWltChlng Between VleWS' Find All References Shift+F12
Auto Dedlare... 4 M I (SET h iori
* Switching from LD to FBD: You can switch between Ladder jr— X o el BET e pronty)
Diagram (LD), Function Block Diagram (FBD), and = s R
Instruction List (IL) views through: o |:i:n5::pty . cp — e 4?’ o1l
* Extensions - FBD/LD/IL - View. FF Insert Empty Box with EN/ENO S1—RESET
~| Insert Input
-0l Negation
-# Edge Detection

Sequential Function Chart (SFC): standard

 The SFCis a method to represent the sequence of
operations and interactions between parallel processes.

e Sequential operations: It describes how various processes follow a 4
sequence of operations.

* Parallel interactions: It also illustrates how processes interact when -~
multiple operations occur simultaneously. ' transitions

 Mathematical basis: The mathematical foundation of SFC is based

h ; Sa
on Petri nets, which are used to model and analyze systems where
parallelism, concurrency, and synchronization are essential. /

SO

* States and Transitions: In SFC, the system states are connected with '/— Ec = ((varX & varY) | varZ)
transitions that move the process from one state to another.

states > Sb condition for transition

* Token: . Eb +
* Active State: A state is considered active if it holds a token. oken
\ .

« Transition: The token leaves the current state when the transition Sc example: state Sc is active,

condition is met. This means the system moves to the next state SO, Sa, Sb are not active
based on specific conditions.

e One transition at a time: Only one transition can occur at any given
time.

 Initial token placement: At the beginning of the program, the token
is placed in the initial state to start the process.

Sequential Function Chart: standard

* Program Execution:

* Token traverses the first active transition:
* The token moves through the first active transition. If

.

both transitions Ea and Eb are active, the system will Sa
either follow a set priority or randomly choose betweer
the two transitions. Ea

 When condition Ee is met, the token is split across
two states:

* Upon the fulfillment of the Ee condition, the token
splits into two parts, moving into both connected
states.

 When all divided tokens are present, and condition
Ef is met, the token continues as one:
* Once the tokens reach all relevant states and Ef

condition is satisfied, the tokens merge back into one,
continuing in the flow.

Eb
Sc
. Sb .|. Ec
Sd
|
= Ed
Se
+ Ee
\ . Sf . Sg

Ef mm

Sequential Function Chart: standard

* Dangers of Complex Diagrams
e Deadlock
* Uncontrolled Handling of Tokens

e Solutions =

e Editor Restrictions

e Editor Functions -'r'-

Sequential Function Chart: standard

* Writing the diagram into a more transparent,
structured form

* Use duplication of states

|a—

A
a -|-_.

. . B

* Work with exceptional events | T
* Interlock b -

* If the given condition is met, the actions in the state are c

interrupted — 7T

* Atransition to a new state is possible
e Control errors

* When an error occurs, transition to the next state is not
possible

 The automaton stops

Sequential Function Chart: comparison

Function Block Diagram, FBD: Sequential Function Chart, SFC:
e Continuous control, regulation » Stepwise/sequential control, management

Often, the best choice is a combination of both, so
communication between them must be possible:
integration at the functional block level.

Sequential Function Chart: comparison

Example:

Functional Block Diagram

a

b

S

R

NOT]

Sequential Function Chart

o

i ——

F

Sequential Function Chart:

Example:
Functional Block Diagram

Nt =—

2

w

w

comparison

Sequential Function Chart

Ll

Sequential Function Chart: Siemens Graph example

—
E‘ Cylinder C extenalon
Tuepd 5 RA-CES-"
T4
Sf=cl "_|II_| ——
[T caned

Cylinder I exten=ion
F B T

R EIP SR

Cylinder D retraction

R ["F4-D+/-"
| Sﬁ Cylinder & retriaction
Braps R [Ti-kes-

5?_ _______ Cylindsr B retraction
::::: R l"'?:_s.;_,-'_"

mgg-gn”_ | 0000 | q eememmeeaa. —
1 £

=g53-no"_|

SFC: TwinCAT

e SFC can only be used in a program or function
block, not in a function.

* Conditions for transitions (transition) can be
written in any IEC language and included as calls
or written directly inline in the ST language.

* States

e Perform actions when the state is active:
* by the IEC standard — action association
e extension of the standard — step main action
* On entry (extension — step entry action)
e On exit (extension — step exit action)

Init

Step0 N ES
+ TransO
Stepl —{ N IMl

JTSI
>Stepl

)02 SFC.Trans0 & X

SO

SFC: qualifiers for actions in a state (IEC standard)
Qualifir | Name __[Meaning

N
RO
SO

SD

DS

SL

Non-stored
Overriding reset

Set/stored

Time-limited

Time-delayed

Pulse

Stored and time-
delayed

Delayed and
stored

Stored and time-
limited

The action is active as long as the state is active.
The action is reset, meaning it is deactivated.

The action is executed as soon as the state becomes active and continues executing even
when the state is no longer active—until the action is reset.

The action begins executing as soon as the state is active and continues for the entire time
the state is active or until the timer runs out.

The action begins executing after a timer expires upon entering the state and continues as
long as the state is active.

The action is executed exactly twice: once when the state becomes active and once in the
following program cycle.

The action begins executing after a timer expires upon entering the state and continues
until reset.

The action begins after the timer expires and continues executing as long as the state
remains active. It is active until reset.

The action begins as soon as the state becomes active and continues until the timer runs
out or a reset occurs.

Instruction List: standard

* Low-Level Programming Language
* Similar to Assembly Language:
* The instruction list language is comparable to assembly language, which operates at a very low level, close to the hardware.
e User-Unfriendly:

* The codeis unstructured, making it hard to follow or maintain.

. :t has weak semantics, meaning the meaning and behavior of the commands can be less clear compared to higher-level
anguages.

* Itisdependent on the specific programmable logic controller (PLC), which limits portability.
* Obsolescence:

* Inthe 2012 third edition of the IEC 61131-3 standard, instruction list (IL) was considered obsolete. The argument presented by
the committee was that assembly language is no longer suitable for modern development environments.

* Majority Opinion

e Basic Language for PLCs: IL was historically considered the base language that should be supported by all
programmable logic controllers.

* Undefined Standards: The standard for the basic language (IL) has not been clearly defined, which leaves
some ambiguity in its implementation.

* Intended for Experienced Programmers

* Creating Efficient Code: It is targeted at experienced programmers for writing time- and space-efficient code.

e Translation of Higher-Level Languages: All higher-level programming languages should theoretically be
translatable into this language, although the standard does not mandate this.

Instruction List: standard

e Each instruction begins on a new line and contains the following:
* Label:
* Placed at the start of the line, ending with a colon (:).
* Operation Code (Operator / Mnemonic):
 The operation or instruction to be performed, such as arithmetic or logical operations.
* Operands:

* Operands follow the operation code and are separated by commas. These are the inputs or
targets of the instruction.

e Comment:

A comment can be placed at the end of the line to describe the instruction, which is helpful
for documentation and understanding the code.

e Additional Notes:

* Blank lines are allowed, or lines with just parentheses can also be used to enhance
readability or structure in the instruction list.

Instruction List: standard

Nr. Operator Modifier Operand | Definition

] 2 1 b 1 d | I d 1 LD N Note 1 Sets the actual result of the operand
aSIc com ma n S a re ISte * 2 ST N Note 1 Stores the actual result in the operand
. address
Y h I f h p 3] Note 2 BOOL Set Boolean operator to 1
T e re S u tS O t e Se O e ra tl O n S R Note 2 BOOL Reset Boolean operator to 0
. 4 AND N, (BOOL Boolean AND
are stored in the RLO (Resultof |5 | N
L - - - (3} OR N, (BOOL Boolean OR
O 7 XOR N, (BOOL Boolean Exclusive-OR
OogiCc Upe ratlon) reglster. e : BOOL___{Boolean
9 SUB (Note 1 Subtraction
° M Od ifi ers: 10 |MUL (Note. 1 | Multiplication
° 11 DIV (Note 1 Division
. 12 GT (Note 1 Comparison: >
¢ N - Negathn Of the resu It. 13 GE (Note 1 Comparison: >=
.. . 14 EQ (Note 1 Comparison: =
* C— Conditional execution. 5 |Ne (Noto 1| Comparison: <>
16 LE (Note 1 Comparison: <=
17 LT (Note 1 Comparison: <
e (— Delayed result. s WP Jon MARK | Jump to the Mark
19 CAL C.,N NAME Call function block (Note 3)
20 RET C.N Return to a function or a function block
21) Processing reset operations

Note 1: The operations must be either loaded or given with a type.

The actual result and the operand must have the same type.
Note 2: The operations are only executed when the value of the actual result is a Boolean 1.
Note 3: A list of arguments in parenthesis follow the name of the function block

Instruction List: standard

 Examples:
AND %$IX1 (* Result := Result AND %IX1 ¥*)

AND ($IX1
ORN $IX2
) (* Result := Result AND ($IX1 OR NOT $IX2) *)

LD 15

ST C10.PV
LD $IX10
ST C10.CU

CAL C10 (* Function call: CAL Cl10(CU:=%IX10, PV:=15) *)

Instruction List; TwinCAT

* Enabling IL in TwinCAT:

* Navigate to: Tools - Options - TwinCAT - PLC Environment - FBD, LD and IL - IL
* In the settings, check the box that says “Enable IL” to activate the Instruction List programming mode in

TwinCAT.
Options ? X
Search Options (Ctrl+E L General FBD LD IL Print
View Behavior
4 PLC Environment A

CFC editor Enable IL Default network content ~ |Empty ¥
Declaration editor After insertion select Network adl
FBD, LD and IL editor
Libraries

e Showing Operand Comments:

* |f you want to display comments for each instruction line, go to:
* General - Show operand comment

e Check the option “Show operand comment” to display comments associated with operands, making the
code easier to urg)glterstand.

ions ? X
Search Options (Ctrl+E Jeo) General FBD LD IL Print
: View Behavior
CFC editor A
Dedaration editor |:] Show network title Placeholder for new operands
FBD. LD and IL editor Show network comment D Empty operands for function block pins
? i

[/] Show box icon

Libraries
I Show operand comment |

OnlineView

Instruction List; TwinCAT

* Rung Concept: The term “rung” refers to a section in a ladder logic diagram that executes specific
operations, which TwinCAT has adopted from ladder diagrams.
* Functional Block Example: It shows how a functional block (FB) performs basic logical operations and how
the FB is called from a program.
Scope Name Data type Initialization Comment Attributes
1 # VAR S0 BOOL
Scope Name Address Datatype Initialization Comment Attributes 2 % yap 51 BOOL
b] VAR_INPUT X1 BOOL % WAR s2 BOOL
*# VAR_INPUT X2 BOOL # VAR LD BOOL
" VAR_OUTPUT yNot BOOL # VAR L1 BOOL
K@ VAR_OUTPUT YOI‘ BOOL 2 # VAR L2 BOOL
VAR yAnd BOOL 7 @ VAR logicalOperation p03_IL_logOperation
b S - -
Basiec logiecal operations in Instruction List (IL): Negation 1 Conditional call of function block (only if 52 is false)
LDN x1 Liocad negated x1. RLO = NOT x1 LD 52 Iivad 52 to RLO
ST yNot Store RLO into yNot JMPC JUMP Conditional jump to JUMP (only if RLO is true, otherwvise function ecall)
CAL logicalOperation(€all function "logicalOperation"”
2 Logical AND x1l:= S0, Assign S50 to x1
LD x1 RLO = x1 x2:= 51, Assign 51 to x2
AND x2 RLO = RLO AND x2 yNot=> LO, Assign result of yNot to LO
ST yBAnd Store yAnd = RLO vAnd=> L1, Assign result of yaAnd to Ll
yor=> L2) Assign result of yOr to L2
Logical OR
LD x1 RLO = x1
OR x2 RLO = RLO OR =x2 2 The jump occurs at 1 (JUMP), which is assigned to a specific jump point in the program.
ST yOr Store yOr = RLO JUMP

Structured text: standard

A language similar to Pascal
Suitable for complex data processing

Expressions define values based on
variable and constant values

It is necessary to use the required data
types
e Conversion between types with functions
e Example: REAL TO_INT(...)

An expression is composed of operators
and operands
 Calculations follow operator precedence

* If precedence is equal, evaluation is from left
to right

* Example: X :=

(A +B - C) * ABS(D);

IiiluiiiiiiiﬁillllllllIiiiiiiIIIIIIIIIIIIIIIIiiiiiiil

N

O 00 N o U &~ W

11
12
13
14
15
16

Brackets

Function call

Exponentiation
Sign

Negation
Multiplication
Division
Modulo
Addition
Subtraction
Comparison
Equality
Inequality
Logical AND
Exclusive OR (XOR)
Logical OR

(expression) Visoka

FunName(arguments)
e.g., LN(A), MAX(X,Y)

EXPT

NOT

MOD

<, >, <=, >=

<>

AND, AND_THEN

XOR

OR, OR_THEN Nizka

Structured text: standard - statements

Assignment

Function block call

Exit from function or
function block

IF statement

CASE statement

e= CV + 1g
C := SIN (X) ;
CMD_TIMER(IN 1= %IX5,
PT := T#300ms) ;
A := CMD_TIMER.Q;
RETURN;

IF D < 0.0 THEN

NROOTS := 0;
ELSIF D = 0.0 THEN
NROOTS := 1;
ELSE
NROOTS := 2;
END IF;
TW := BCD TO INT(THUMBWHEEL); CASE
TW OF
1: DISPLAY := OVEN TEMP;
2,3: DISPLAY := MOTOR SPEED;
ELSE
DISPLAY := 0;

END CASE;

FOR loop

WHILE loop

REPEAT loop

EXIT

Empty statement

FOR I := l TO 100 BY 2 DO
IF WORDS[I] = 'KEY' THEN
J = I;
EXIT;
END IF;
END FOR;

J := 1;

WHILE J <= 100 DO
J = J + 2;

END WHILE;

J := -1;
REPEAT

J :=J + 2;
UNTIL J = 101
END REPEAT;

EXIT;

Structured text: examples

IF switch = TEUE THEN
light := TRUE;
END IF;

TE + +
IF =stat

A/ If the condition is false, the light does not change state, i.e., the state is retained. Explicitly written:
IF switch = TRUE THEN
light := TEUE;
ELSE
light := light;
END IF;
A/ Is this what we wanted? Or should the 1light turn off when the switch is turned off?
IF switch = TRUE THEN
light := TEUE;
ELSE
light := FALSE;
END IF;
Do we even need a conditiconal statement for this? No

Structured text: examples

23 IF buttonl THEN

26 light := TRUE;
27 ELSE

: light := FAL
29 END IF
30 ELSE

31 light := button2;
32| END_IF

iy

E;

34 A4 Sams as

36

37 // Positive edge detection on the button

38 IF button AND NOT oldButtonState THEN

39 W?? On the positive edge, invert the light state
40 light := NOT light;

41 // We skip ELSE to aveoid memorization issues

42 END IF

43

44 // Update the previcus state of the button

45 oldButtonState := button;

?

Scope Mame Address Datatype Initialization Comment Attributes
I % var timerForward TOF
% VAR blockBackward BOOL
2 # VAR blockForward BOOL
o 3 % VAR timerBackward TOF
Structured text: exam | ‘= min
B % VAR rotateBackward BOOL
7 % VAR_INPUT forward BOOL
% VAR_INPUT blockTime TIME
t. B % VAR_INPUT backward BOOL
* Function al block 19| "% VAR OUTPUT movement sooL

) AL L J 11 i1 T LI LITT
for ContrOIllng a 2 timerForward (IN:=forward, PT:=klockTime, QO=rklockForward):;

° 3 timerBackward(IN:=backward, PT:=klockTime, C¢=*blockBackward);
motor with ;

. . o . 5 4 Caloulation of whether the motor can rotate forward or backward
dlreCtlon SWItChlng & rotateForward := forward AND NOT blockForward;
o BIOCk to prevent 7 rotateBackward := backward AND NOT blockBackward;
1 1 1] A/ Motor movement cutput
r?]pld SWI'tChIng Of 10 movemsent := rotateForward OR rotateBackward;
the rotation '—'—
direction 13| 7/ so we will remember the state of the direstion. |
. 14 IF rotateForward THEN
* Protecting relays - direction := TRUE;
(specific to 6| ELSIF rotateBackvard THEN
educational 15 ELSE
19 direction := direction; // Retain current stats
models) 20| mwo 1r

23 IF movemsnt THEN
4 direction := rotateBackward;
25 END _IF

Programming Techniques: Introduction of States

* Reasons

* Certain parts of the program can only be executed under specific conditions
* The need for locking rungs or parts of the program code

* Dividing the program into logical states

. Sta'gjes and transitions between them must be clearly defined in both manual and automatic
modes

States are determined based on system actions and values of measurement systems
* Easier programming of complex systems
* Easier reverse engineering

* Code for each state is simpler

* Conditions for transitions between states are much more apparent
e Every programmer writes in their own style

* Advantages

* Reducing system startup errors in the program by 85%
* Mostly due to simpler conditions for locking rungs
* In atypical ladder diagram, a large portion of the code is dedicated to locking rungs

* 35% in process control (continuous processes, regulation)
* 60% in sequential process

Programming Techniques: Introduction of States

 Imitating concepts of the Sequential Function Chart (SFC) language:

e When the condition for the transition to a new state is met:
* The corresponding variable (token) for the new state is activated (set).

* The variable for the current state is deactivated (reset).

* If multiple states can be active at the same time, care must be taken to deactivate all current states
when transitioning to a new common state.

 State Marking:
e Using bits: one bit corresponds to one state (known as "one hot encoding").
 Numerical: using whole number variables (and comparators).

* System Startup Logic:
* |dentify the state in which the system was stopped.
e Skipping states and not executing them sequentially can be very dangerous!
e Set the system to its initial state or
. Prleve_nt)its operation if it's not in the correct state, and raise an alarm (the easiest
solution).

Programming Techniques: Material Tracking

* Creating a composite data type — structure
(DUT, data unit type), which represents a
logical image of a single workpiece/material:

Add DUT

@
? Create a new data untt type

Name:

* Material data: barcode (ID), physical dimensions, Locaton

defects, etc. v
* Target location 0 extens:
* Processing instructions (recipe) - Frumerstn
* Functions at the current location: occupancy, O hias

movement, etc.

* TwinCAT:
* PLC - <Project>—> DUTs - Add - DUT...
* We create a new structure
* We can also use arrays (ARRAY) for help.

Programming Techniques: Material Tracking

Sequential Process

Each physical unit (location) also has its own logical representation.

Each unit can perform only one task at a time.

* Example: three conveyor belts

* Simple communication: request, permission,
action, confirmation, (alarm)

Overwriting Structures

 When conditions are met, the entire image is transferred from one location to another:

* The material is physically in a new location.

»

OO0 OCOO OO0

»

* Sensor image matches the future logical image (double check).
* The transfer should NOT be linked to the front of a photocell.

Alarm activation in case the logical and physical diagrams do not match after a

set time.

>

Programming Techniques: Program Organization

1. Reading sensors into structures
* Calibration of sensors, scaling of analog values, conversions Triggering alarms

2. Managing triggered alarms
* Confirming and resetting alarms

3. Preparing data for the human-machine interface
* Conversions, calculations, separate data structures (own FB) for better clarity

4. Main program
* State transition automation

5. Tracking material

6. Safety functions
* Protecting people and equipment
* Due to safety independent of the main program
* Blocking too fast direction changes in motor rotation

7. Activation of execution systems

Programming Techniques: Learning Models

Line with Two Devices and Pneumatic System:

* Definition of locations where the sensor is
laced (photocell or limit switch); "virtual"
ocations (pusher, rotating table, entry onto
the conveyor)

 Automaton for each location or executive
element

* Dependencies (previous, next position)

* Rotating table (control of position, material on
tables)

* Material tracking:
* Barcode (ID)

* Task/recipe
* Input of values at the first location through IDE

Robotic hand:

* Hierarchy of automatons:

Automaton for each axis (rotation, lift,
extension, grip)
Automaton connecting all four axes:

* Move to location

* Move to location and pick up

* Move to location and place down

Automaton executing the "program" of
movements

* Material tracking:

Barcode (ID)
Locations/positions of objects

Process automation

Programmable Logic Controllers (PLCs)
Programming — part 2

BS UNI studies, Fall semester 2025/2026

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

	Slide 1: Process automation Programmable Logic Controllers (PLCs) Programming – part 2
	Slide 2: Outline
	Slide 3: TwinCAT – shortcuts for ease of use
	Slide 4: Function Block Diagram: Standard
	Slide 5: Function Block Diagrams: standard
	Slide 6: Function Block Diagrams: program
	Slide 7: Function Block Diagrams: program
	Slide 8: Function Block Diagrams: program
	Slide 9: Function Block Diagrams: program
	Slide 10: Function Block Diagrams: TwinCAT
	Slide 11: Sequential Function Chart (SFC): standard
	Slide 12: Sequential Function Chart: standard
	Slide 13: Sequential Function Chart: standard
	Slide 14: Sequential Function Chart: standard
	Slide 15: Sequential Function Chart: comparison
	Slide 16: Sequential Function Chart: comparison
	Slide 17: Sequential Function Chart: comparison
	Slide 18: Sequential Function Chart: Siemens Graph example
	Slide 19: SFC: TwinCAT
	Slide 20: SFC: qualifiers for actions in a state (IEC standard)
	Slide 21: Instruction List: standard
	Slide 22: Instruction List: standard
	Slide 23: Instruction List: standard
	Slide 24: Instruction List: standard
	Slide 25: Instruction List: TwinCAT
	Slide 26: Instruction List: TwinCAT
	Slide 27: Structured text: standard
	Slide 28: Structured text: standard - statements
	Slide 29: Structured text: examples
	Slide 30: Structured text: examples
	Slide 31: Structured text: examples
	Slide 32: Programming Techniques: Introduction of States
	Slide 33: Programming Techniques: Introduction of States
	Slide 34: Programming Techniques: Material Tracking
	Slide 35: Programming Techniques: Material Tracking
	Slide 36: Programming Techniques: Program Organization
	Slide 37: Programming Techniques: Learning Models
	Slide 38: Process automation Programmable Logic Controllers (PLCs) Programming – part 2

