
Process automation
Programmable Logic Controllers (PLCs)

Programming – part 2

BS UNI studies, Fall semester 2025/2026

Octavian M. Machidon

octavian.machidon@fri.uni-lj.si

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

Outline

• Function Block Diagrams (FBD)

• Sequential Function Charts (SFC)

• Instruction Lists (IL)

• Structured Text (ST)

• Programming Techniques

TwinCAT – shortcuts for ease of use

• Tools → Customize → Commands → Keyboard…

Function Block Diagram: Standard

• Function Block Diagram is one of the standard graphical languages
• It visually displays the interconnection of functions and function blocks.

• It resembles electrical and block diagrams from analog and digital
technologies
• Each block has inputs and outputs.
• The connections represent the flow of electrical current in proper circuits.

• Blocks usually represent combinatorial functions (decision logic) but can
also have memory (sequential logic)
• Some blocks are combinational, meaning they make decisions based on inputs.

Others include memory, allowing for sequential operations.

• The standard also allows for feedback connections
• The standard prescribes defining the order of execution for blocks with feedback but

does not prescribe how.

Function Block Diagrams: standard

• A function block is defined by:
• Interface:

• Specifies the number and types of inputs and
outputs.

• Black box functionality:
• The operation of the block is described graphically,

with a table, formula, or description.

• Connection Rules:
• Every signal is connected to exactly one source.

• The source, sink, and connection must all be of
the same data type.

Example:

Example:

parameters

reference

measurement

Function Block Diagrams: program

• Program Execution:
• The program is executed in

a specific order:
• From top to bottom

• From left to right

• Exceptions are backward
connections (e.g., feedback
loops)

• Example: ABB
development environment

Function Block Diagrams: program

• Example: Motor control
in Siemens TIA Portal.

Function Block Diagrams: program

• Elementary block:
• Microcode, Assembler, Structured Text (ST)

• Composite block:
• Connects multiple elementary blocks into a whole.

• Function block diagram (FBD) where multiple
functions work together.

Function Block Diagrams: program

• Segmentation:
• For better clarity, the functional

plan is divided into several
segments.

• Inside each segment, the
connections are represented
graphically.

• Temporary variables connect the
segments to each other.

Function Block Diagrams: TwinCAT

• Example: Basic Operations:

• Negation can be accessed via the context menu (right-
click) in the program.

• Switching Between Views:

• Switching from LD to FBD: You can switch between Ladder
Diagram (LD), Function Block Diagram (FBD), and
Instruction List (IL) views through:

• Extensions → FBD/LD/IL → View.

• Key Concepts:
• Rungs (network):
• The concept of “rungs” (networks) is borrowed from ladder diagrams.
• The program is executed sequentially, one “rung” after another, from left to right.

• Best Practices:
• Input Definition:

• All inputs should be defined to avoid unwanted behavior.
• Output Handling:

• Each output (denoted as %Q) should only appear once in the program for
clarity and control.

Assigning values

Negation

Logical AND and OR

Memory cell (SET has priority)

Sequential Function Chart (SFC): standard

• The SFC is a method to represent the sequence of
operations and interactions between parallel processes.

• Sequential operations: It describes how various processes follow a
sequence of operations.

• Parallel interactions: It also illustrates how processes interact when
multiple operations occur simultaneously.

• Mathematical basis: The mathematical foundation of SFC is based
on Petri nets, which are used to model and analyze systems where
parallelism, concurrency, and synchronization are essential.

• States and Transitions: In SFC, the system states are connected with
transitions that move the process from one state to another.

• Token:
• Active State: A state is considered active if it holds a token.

• Transition: The token leaves the current state when the transition
condition is met. This means the system moves to the next state
based on specific conditions.

• One transition at a time: Only one transition can occur at any given
time.

• Initial token placement: At the beginning of the program, the token
is placed in the initial state to start the process.

states

transitions

token

condition for transition

example: state Sc is active,
S0, Sa, Sb are not active

Sequential Function Chart: standard
• Program Execution:

• Token traverses the first active transition:
• The token moves through the first active transition. If

both transitions Ea and Eb are active, the system will
either follow a set priority or randomly choose between
the two transitions.

• When condition Ee is met, the token is split across
two states:
• Upon the fulfillment of the Ee condition, the token

splits into two parts, moving into both connected
states.

• When all divided tokens are present, and condition
Ef is met, the token continues as one:
• Once the tokens reach all relevant states and Ef

condition is satisfied, the tokens merge back into one,
continuing in the flow.

Sequential Function Chart: standard

• Dangers of Complex Diagrams
• Deadlock

• Uncontrolled Handling of Tokens

• Solutions
• Editor Restrictions

• Editor Functions

Sequential Function Chart: standard

• Writing the diagram into a more transparent,
structured form
• Use duplication of states

• Work with exceptional events
• Interlock

• If the given condition is met, the actions in the state are
interrupted

• A transition to a new state is possible
• Control errors

• When an error occurs, transition to the next state is not
possible

• The automaton stops

Sequential Function Chart: comparison

Function Block Diagram, FBD:
• Continuous control, regulation

Sequential Function Chart, SFC:
• Stepwise/sequential control, management

Often, the best choice is a combination of both, so
communication between them must be possible:

integration at the functional block level.

Sequential Function Chart: comparison

Example:
 Functional Block Diagram Sequential Function Chart

Sequential Function Chart: comparison

Example:
 Functional Block Diagram Sequential Function Chart

Sequential Function Chart: Siemens Graph example

SFC: TwinCAT

• SFC can only be used in a program or function
block, not in a function.

• Conditions for transitions (transition) can be
written in any IEC language and included as calls
or written directly inline in the ST language.

• States
• Perform actions when the state is active:

• by the IEC standard – action association
• extension of the standard – step main action
• On entry (extension – step entry action)
• On exit (extension – step exit action)

SFC: qualifiers for actions in a state (IEC standard)
Qualifier Name Meaning

N Non-stored The action is active as long as the state is active.

R0 Overriding reset The action is reset, meaning it is deactivated.

S0 Set/stored The action is executed as soon as the state becomes active and continues executing even
when the state is no longer active—until the action is reset.

L Time-limited The action begins executing as soon as the state is active and continues for the entire time
the state is active or until the timer runs out.

D Time-delayed The action begins executing after a timer expires upon entering the state and continues as
long as the state is active.

P Pulse The action is executed exactly twice: once when the state becomes active and once in the
following program cycle.

SD Stored and time-
delayed

The action begins executing after a timer expires upon entering the state and continues
until reset.

DS Delayed and
stored

The action begins after the timer expires and continues executing as long as the state
remains active. It is active until reset.

SL Stored and time-
limited

The action begins as soon as the state becomes active and continues until the timer runs
out or a reset occurs.

Instruction List: standard

• Low-Level Programming Language
• Similar to Assembly Language:

• The instruction list language is comparable to assembly language, which operates at a very low level, close to the hardware.

• User-Unfriendly:
• The code is unstructured, making it hard to follow or maintain.
• It has weak semantics, meaning the meaning and behavior of the commands can be less clear compared to higher-level

languages.
• It is dependent on the specific programmable logic controller (PLC), which limits portability.

• Obsolescence:
• In the 2012 third edition of the IEC 61131-3 standard, instruction list (IL) was considered obsolete. The argument presented by

the committee was that assembly language is no longer suitable for modern development environments.

• Majority Opinion
• Basic Language for PLCs: IL was historically considered the base language that should be supported by all

programmable logic controllers.
• Undefined Standards: The standard for the basic language (IL) has not been clearly defined, which leaves

some ambiguity in its implementation.

• Intended for Experienced Programmers
• Creating Efficient Code: It is targeted at experienced programmers for writing time- and space-efficient code.
• Translation of Higher-Level Languages: All higher-level programming languages should theoretically be

translatable into this language, although the standard does not mandate this.

Instruction List: standard

• Each instruction begins on a new line and contains the following:
• Label:

• Placed at the start of the line, ending with a colon (:).
• Operation Code (Operator / Mnemonic):

• The operation or instruction to be performed, such as arithmetic or logical operations.
• Operands:

• Operands follow the operation code and are separated by commas. These are the inputs or
targets of the instruction.

• Comment:
• A comment can be placed at the end of the line to describe the instruction, which is helpful

for documentation and understanding the code.

• Additional Notes:
• Blank lines are allowed, or lines with just parentheses can also be used to enhance

readability or structure in the instruction list.

Instruction List: standard

• 21 basic commands are listed.

• The results of these operations
are stored in the RLO (Result of
Logic Operation) register.

• Modifiers:
• N – Negation of the result.

• C – Conditional execution.

• (– Delayed result.

Instruction List: standard

• Examples:

AND %IX1 (* Result := Result AND %IX1 *)

AND(%IX1

ORN %IX2

) (* Result := Result AND (%IX1 OR NOT %IX2) *)

LD 15

ST C10.PV

LD %IX10

ST C10.CU

CAL C10 (* Function call: CAL C10(CU:=%IX10, PV:=15) *)

Instruction List: TwinCAT
• Enabling IL in TwinCAT:

• Navigate to: Tools → Options → TwinCAT → PLC Environment → FBD, LD and IL → IL
• In the settings, check the box that says “Enable IL” to activate the Instruction List programming mode in

TwinCAT.

• Showing Operand Comments:
• If you want to display comments for each instruction line, go to:

• General → Show operand comment

• Check the option “Show operand comment” to display comments associated with operands, making the
code easier to understand.

Instruction List: TwinCAT

• Rung Concept: The term “rung” refers to a section in a ladder logic diagram that executes specific
operations, which TwinCAT has adopted from ladder diagrams.

• Functional Block Example: It shows how a functional block (FB) performs basic logical operations and how
the FB is called from a program.

Structured text: standard

• A language similar to Pascal

• Suitable for complex data processing

• Expressions define values based on
variable and constant values

• It is necessary to use the required data
types
• Conversion between types with functions
• Example: REAL_TO_INT(…)

• An expression is composed of operators
and operands
• Calculations follow operator precedence
• If precedence is equal, evaluation is from left

to right
• Example: X := (A + B - C) * ABS(D);

Nr. Operacija Oznaka Prioritet
a

1 Brackets (expression) Visoka

2 Function call FunName(arguments)
e.g., LN(A), MAX(X,Y)

3 Exponentiation EXPT

4 Sign -

5 Negation NOT

6 Multiplication *

7 Division /

8 Modulo MOD

9 Addition +

10 Subtraction -

11 Comparison <, >, <=, >=

12 Equality =

13 Inequality <>

14 Logical AND AND, AND_THEN

15 Exclusive OR (XOR) XOR

16 Logical OR OR, OR_THEN Nizka

Structured text: standard - statements

Statement Example

Assignment CV := CV + 1;

C := SIN(X);

Function block call CMD_TIMER(IN := %IX5,

 PT := T#300ms);

A := CMD_TIMER.Q;

Exit from function or
function block

RETURN;

IF statement IF D < 0.0 THEN

 NROOTS := 0;

ELSIF D = 0.0 THEN

 NROOTS := 1;

ELSE

 NROOTS := 2;

END_IF;

CASE statement TW := BCD_TO_INT(THUMBWHEEL); CASE

TW OF

 1: DISPLAY := OVEN_TEMP;

 2,3: DISPLAY := MOTOR_SPEED;

ELSE

 DISPLAY := 0;

END_CASE;

Statement Example

FOR loop J := 101;

FOR I := 1 TO 100 BY 2 DO

 IF WORDS[I] = 'KEY' THEN

 J := I;

 EXIT;

 END_IF;

END_FOR;

WHILE loop J := 1;

WHILE J <= 100 DO

 J := J + 2;

END_WHILE;

REPEAT loop J := -1;

REPEAT

 J := J + 2;

UNTIL J = 101

END_REPEAT;

EXIT EXIT;

Empty statement ;

Structured text: examples

Structured text: examples

Structured text: examples

• Functional block
for controlling a
motor with
direction switching
• Block to prevent

rapid switching of
the rotation
direction

• Protecting relays
(specific to
educational
models)

Programming Techniques: Introduction of States

• Reasons
• Certain parts of the program can only be executed under specific conditions
• The need for locking rungs or parts of the program code

• Dividing the program into logical states
• States and transitions between them must be clearly defined in both manual and automatic

modes
• States are determined based on system actions and values of measurement systems

• Easier programming of complex systems
• Easier reverse engineering

• Code for each state is simpler
• Conditions for transitions between states are much more apparent
• Every programmer writes in their own style

• Advantages
• Reducing system startup errors in the program by 85%

• Mostly due to simpler conditions for locking rungs
• In a typical ladder diagram, a large portion of the code is dedicated to locking rungs

• 35% in process control (continuous processes, regulation)
• 60% in sequential process

Programming Techniques: Introduction of States

• Imitating concepts of the Sequential Function Chart (SFC) language:
• When the condition for the transition to a new state is met:

• The corresponding variable (token) for the new state is activated (set).
• The variable for the current state is deactivated (reset).

• If multiple states can be active at the same time, care must be taken to deactivate all current states
when transitioning to a new common state.

• State Marking:
• Using bits: one bit corresponds to one state (known as "one hot encoding").
• Numerical: using whole number variables (and comparators).

• System Startup Logic:
• Identify the state in which the system was stopped.

• Skipping states and not executing them sequentially can be very dangerous!
• Set the system to its initial state or
• Prevent its operation if it's not in the correct state, and raise an alarm (the easiest

solution).

Programming Techniques: Material Tracking

• Creating a composite data type – structure
(DUT, data unit type), which represents a
logical image of a single workpiece/material:
• Material data: barcode (ID), physical dimensions,

defects, etc.
• Target location
• Processing instructions (recipe)
• Functions at the current location: occupancy,

movement, etc.

• TwinCAT:
• PLC → <Project> → DUTs → Add → DUT...
• We create a new structure
• We can also use arrays (ARRAY) for help.

Programming Techniques: Material Tracking

• Sequential Process

• Each physical unit (location) also has its own logical representation.

• Each unit can perform only one task at a time.
• Example: three conveyor belts
• Simple communication: request, permission,

action, confirmation, (alarm)

• Overwriting Structures
• When conditions are met, the entire image is transferred from one location to another:

• The material is physically in a new location.

• Sensor image matches the future logical image (double check).
• The transfer should NOT be linked to the front of a photocell.

• Alarm activation in case the logical and physical diagrams do not match after a
set time.

Programming Techniques: Program Organization

1. Reading sensors into structures
• Calibration of sensors, scaling of analog values, conversions Triggering alarms

2. Managing triggered alarms
• Confirming and resetting alarms

3. Preparing data for the human-machine interface
• Conversions, calculations, separate data structures (own FB) for better clarity

4. Main program
• State transition automation

5. Tracking material

6. Safety functions
• Protecting people and equipment
• Due to safety independent of the main program
• Blocking too fast direction changes in motor rotation

7. Activation of execution systems

Programming Techniques: Learning Models

Line with Two Devices and Pneumatic System:

• Definition of locations where the sensor is
placed (photocell or limit switch); "virtual"
locations (pusher, rotating table, entry onto
the conveyor)

• Automaton for each location or executive
element

• Dependencies (previous, next position)

• Rotating table (control of position, material on
tables)

• Material tracking:
• Barcode (ID)
• Task/recipe
• Input of values at the first location through IDE

Robotic hand:

• Hierarchy of automatons:
• Automaton for each axis (rotation, lift,

extension, grip)

• Automaton connecting all four axes:
• Move to location

• Move to location and pick up

• Move to location and place down

• Automaton executing the "program" of
movements

• Material tracking:
• Barcode (ID)

• Locations/positions of objects

Process automation
Programmable Logic Controllers (PLCs)

Programming – part 2

BS UNI studies, Fall semester 2025/2026

Octavian M. Machidon

octavian.machidon@fri.uni-lj.si

mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si
mailto:octavian.machidon@fri.uni-lj.si

	Slide 1: Process automation Programmable Logic Controllers (PLCs) Programming – part 2
	Slide 2: Outline
	Slide 3: TwinCAT – shortcuts for ease of use
	Slide 4: Function Block Diagram: Standard
	Slide 5: Function Block Diagrams: standard
	Slide 6: Function Block Diagrams: program
	Slide 7: Function Block Diagrams: program
	Slide 8: Function Block Diagrams: program
	Slide 9: Function Block Diagrams: program
	Slide 10: Function Block Diagrams: TwinCAT
	Slide 11: Sequential Function Chart (SFC): standard
	Slide 12: Sequential Function Chart: standard
	Slide 13: Sequential Function Chart: standard
	Slide 14: Sequential Function Chart: standard
	Slide 15: Sequential Function Chart: comparison
	Slide 16: Sequential Function Chart: comparison
	Slide 17: Sequential Function Chart: comparison
	Slide 18: Sequential Function Chart: Siemens Graph example
	Slide 19: SFC: TwinCAT
	Slide 20: SFC: qualifiers for actions in a state (IEC standard)
	Slide 21: Instruction List: standard
	Slide 22: Instruction List: standard
	Slide 23: Instruction List: standard
	Slide 24: Instruction List: standard
	Slide 25: Instruction List: TwinCAT
	Slide 26: Instruction List: TwinCAT
	Slide 27: Structured text: standard
	Slide 28: Structured text: standard - statements
	Slide 29: Structured text: examples
	Slide 30: Structured text: examples
	Slide 31: Structured text: examples
	Slide 32: Programming Techniques: Introduction of States
	Slide 33: Programming Techniques: Introduction of States
	Slide 34: Programming Techniques: Material Tracking
	Slide 35: Programming Techniques: Material Tracking
	Slide 36: Programming Techniques: Program Organization
	Slide 37: Programming Techniques: Learning Models
	Slide 38: Process automation Programmable Logic Controllers (PLCs) Programming – part 2

