
Multimedia Systems
Lecture notes (2024)

Luka Čehovin Zajc

Material provided as is, only basic spell-checking was performed, some factual errors may
also be lurking around (you are encouraged to report them).

Introduction
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 1, 1.1 - 1.2

The word “multimedia” has origins in latin words “multum”, meaning many and “medium”,
originally meaning “center, middle”, but later also used for “channel for communication”. In
modern world the term “multimedia” is used in various contexts:

●​ Computer salesman: “This is a multimedia computer!”
●​ Entertainment industry - multimedia performance/experience, video-on-demand
●​ Computer science student - application that uses multiple modalities + interactivity

All of the claims above are essentially correct at different levels because multimedia is an
interdisciplinary field that is defined by convergence:

●​ Convergence of research and development fields that have been separated in the past.
●​ Convergence of technologies/hardware (PC, tablet, phone) into a unified product

The types of content that are most frequently associated with multimedia are video and audio,
but the list also includes still images, text, animation, as well as the option of having the
content delivered in an interactive manner. Due to the obvious commercial context, the term
multimedia is not often associated associated with communicating with other human senses,
such as touch (haptics) or smell where the technology still only exists in research laboratories.

Conceptually a multimedia system is a collection of components and their structure needed to
capture, process, store, transmit, and reproduce multimedia data such as text, images, audio,
and video.

Perhaps the most widely used, but almost ubiquitous multimedia system nowadays is the
World-Wide-Web. The idea originates in hypermedia, an extension of hypertext term, coined
by Ted Nelson in 1965 which uses a non-linear text (multiple documents, connected by links)
together with images, video and sound.

In terms of research we have three main branches, all of them are very interdisciplinary in their
own research direction:

●​ Multimedia processing and storage: content acquisition, analysis, compression,
security

●​ Multimedia tools, applications: manipulation, interactivity, user interfaces, collaboration
●​ System support and networking: content delivery, quality of service, networks, storage

Images
This section of class is dedicated to digital images. Digitalization is one of the key aspects of
multimedia as it allows us to process information using (digital) computers. We must also be
able to present digitized visual information back to users in an understandable way, therefore we
will first talk about image acquisition or formation.

Image acquisition
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 4

Image is essentially a snapshot of light that passes a given point in space and falls to an
image or sensor plane in a given interval in time. If we want to acquire this light in a digital form
we have to digitize it, convert it to a matrix of values that denote how much of light has fallen
to a specific region. We can then display this information back to the user as is or processed in
the form of a digital image on a digital screen.

The entire process is a bit more complicated. To understand it we have to start with light and
how we humans perceive it.

Human perception of light
Light is an electromagnetic radiation, consisting of photons. Different wavelengths are
perceived as different colors. Most light that we see is a mixture of wavelengths, but a laser is a
light with a single wavelength. We do not see the entire spectrum, only waves in range from 400
to 700 nm, below is infrared, then heat, above is ultraviolet.

Our eyes that detect the light are not all that different from our cameras, there is a lens and a
“sensor” called retina composed of two types of cells that are sensitive to different wavelengths
of light:

●​ Cones - perceive higher intensity, sensitive to colors
●​ Rods - perceive low intensity, not good with color, there are more rods in an eye

We are called trichromatic because our cones are sensitive to three different wavelength
spectra that roughly correspond to red, green and blue color (at least the peaks of sensitivity).
There are three types of rod cells with different response spectrum. It is not yet entirely clear
how these responses are then combined into the final color, but the neurons seem to be
sensitive to differences between their three primaries. All three channels are also combined into
achromatic information.

The eye is the most sensitive in the middle of the light spectrum, the distribution of rod cells is
40:20:1 (RGB)

These are the sensitivity curves for cone sensitivity, the response of each cone neuron is
equal to the integral of the product of the light spectrum and sensitivity curve. To achieve the
same perceived light we do not have to reproduce its complete spectrum, we only have to
stimulate the cones to match the responses. We call this effect metamerism, which means that
two light sources with different spectrums are perceived as of equal color because they
stimulate the cone cells in the same way.

If we want to simulate a color we have to stimulate cone receptors. We do this by producing a
light that matches their high-sensitivity interval. We call the lights color primaries and they
differ in different color system standards. This means that different combinations of values in
different standards may be perceived as the same color. The side effect of this is that exact
color reproduction between two standards (even devices) may require additional calibration.

The standard experiment to establish a relationship between primaries and perceived color is by
a tristimulus colorimeter experiment. A person is asked to reproduce a reference color by
controlling the intensity of the three primary colors. Since some colors cannot be reproduced
due to the overlap of the cone type response curves, a light has to be subtracted from the
reference color, we call this negative light. Since the color perception changes with the field of
view due to non-uniform distribution of cone receptors, a standard observer is introduced to
eliminate this variable. The standard observer specifies what is the angle of observation, i.e. the
widely used CIE 1931 2° Standard Observer specifies a maximum of 2 degree angle of
observation.

This is how the CIE sensitivity curves were established by the International Committee on
Illumination (CIE); these curves are the first quantitative link between human color perception
and visible spectrum wavelengths. The values were determined with a colorimeter experiment
with a negative light with three color primaries, R/S (short), G/M (medium), and B/L (long).

Since responses to the CIE SML/RGB primaries have negative values (people were not able to
reproduce it with three primaries), it had to be transformed with a linear transformation to match
the overall sensitivity. The non-negative curves, denoted as X, Y and Z are used to reproduce
an arbitrary color visible to an average human. We call this the CIE XYZ color space. The three
components, X, Y, and Z are defined based on human perception - when judging the relative
luminance (brightness) of different colors in well-lit situations, humans tend to perceive light
within the green parts of the spectrum as brighter, therefore the Y curve is denoted as
luminance and roughly matches the curve of the G/M curve. The X roughly matches the R/S
curve and Z the L/B curve.

The CIE XYZ color space can be visualized with the CIE xy chromatic diagram, it is a 2D
representation of all colors that are visible to an average human in terms of chroma. The
diagram visualizes the CIE xyY color space, a transformation from the CIE XYZ where the first
two components are normalized X and Y components and the third component (Y) is fixed,
usually to the maximum value. The colors in the diagram are more saturated on the outside, the
brightness component is not visualized. The colors outside of the locus are called imaginary
colors (some can be seen by dogs, bees, “non-standard” humans).

Digital camera
A digital camera also has a sensor, but its composition is a bit different. As we know, a digital
image is a proper 2D array of values/pixels, but in many cases the technology behind getting
these values is not as simple. It is technically challenging to measure three color components at
the same spot, so many sensor layouts were invented that simulate this with
post-processing. The most well known is the Bayer pattern that has twice as many green
pixel sensors (chroma + luminosity) as red and blue (chromatic components). If you want to get
a full image with colors for every pixel, you have to interpolate red, green and blue values for
missing pixels. This leads to some artifacts where colors change rapidly. A recent alternative is
a Foveon X3 sensor that can retrieve all three components at every pixel sensor because of a
completely different sensor structure where sensors are placed one upon the other.

CIE XYZ color space is not used in technology because of cost and technical issues. Different
standards are used for different purposes, they can reproduce different subsets of visible
colors. Based on the medium used we classify color models into additive or subtractive.

●​ Additive models start with black, then colors are added by mixing primaries. Most digital
devices use this approach, e.g. monitors, TVs, projectors. The most known additive color
space is RGB.

●​ Subtractive models start with white color and then add components that absorb light
with a particular wavelength, pigments. They are primarily used in printing and other
analogue image recreations (photography, crayons). In printing the color space that is
most known is CMY or CMYK. K stands for black pigment because true black is hard to
achieve just by mixing CMY components.

The RGB color space is perhaps the most known because it is used in display hardware. Its
foundations are in cathode television. There are different RGB standards with different color
primaries and therefore cover different subsets of the CIE XYZ color space.

The coverage of CIE XYZ color space differs between different RGB and CMYK. This means
that some loss can be caused when converting between spaces (some colors cannot be
reproduced, arithmetic loss).

Besides RGB we also know other color spaces, these are primarily re-interpretations or
re-projections of the RGB color space with a specific purpose and have a 1:1 mapping of
colors (if we do not consider rounding during conversion).

●​ CIE Lab color space mimics color perception, this means that similar colors are close in
the color space. It has a separate luminosity component and two chroma components.
The space is represented as a cylinder.

●​ The HSV color space has a more psychological motivation, it separates color into hue,
saturation and value so it is understandable what you will get if you change one of the
components.

Image processing
Source material: Gonzalez and Woods: Digital Image Processing

With an image acquired we may want to process it, change it in a meaningful way. This requires
knowledge of some image processing algorithms. The core concept in image processing is a
digital image which is represented as a multi-channel 2D matrix, or a 3D matrix. The first two
dimensions denote width and height while the number of channels or the third dimension
denotes the individual color components (e.g. red, green and blue). Another important aspect
is the sampling resolution - how many colors can we represent with a single value. The most
frequent size in this case is 8-bit, we can represent values from 0 to 255, but other sizes are
also common (e.g. 16 bit).

The other view on the image is a signal-processing one, an image is a discrete function from
two dimensional space into a 1 or 3 dimensional one. This view allows us to operate with
mathematical operations, such as convolution

Image processing is a very broad field that mostly includes low-level pixel operations, but also
high level algorithms that lead to computer vision and computational photography. Some
concepts are frequently used in multimedia. The simplest class of operations is called per-pixel
operations because they operate on each pixel independently.

●​ Grayscale - many image processing techniques work only on single channel images, to
obtain a single channel image from a color one, we have to convert it to grayscale - most
commonly by averaging the three channels and with that approximating luminosity
information. This works for the RGB color space, not for HSV, in that case we can only
use the value component because luminosity is already separated.

●​ Inversion - Inversion means that we “invert” every value in an image by subtracting the
pixel value from its potential maximum value. In the case of 8 bit images this means 255.

●​ Thresholding - Thresholding compares each pixel to a value called threshold. There
can be many outcomes of the comparison, but generally the result is different if the value
of the pixel is greater or lower than the threshold.

●​ Brightness change - Brightness is intensity of a pixel relative to another pixel. Changing
brightness means offsetting all pixels by a given value

●​ Contrast change - Contrast is a difference between minimum and maximum pixel.
Changing contrast means scaling all values by a given scaling factor.

●​ Non-linear mapping - Values can be also mapped with a nonlinear function. This allows
us to, for example, change the contrast of the image.

Histogram
Histogram is a statistical structure that describes the distribution of values. In image
processing we use it to see how many times a certain value appears in an image. An image
histogram is constructed by counting individual values or intervals of values, the counters are
known as cells or buckets. We can use this information to describe the content of an image in
a way that is invariant to the position of individual images and thus also rotation, translation or
scale.

Histograms can tell us if the image quality is poor, e.g. if only an interval of all pixel values is
taken, which means that the image probably has low contrast. The simplest way of adjusting the
contrast is by “stretching” the histogram of an image. The operation does not actually work on
a histogram, but is again a per-pixel operation that is dependent on the minimum and maximum
value in the image (which can be obtained from an image directly, but also from a histogram).

A more complex contrast adjustment technique is called histogram equalization. In this case
we want to convert the distribution of values in an image in a non-linear manner so that the

resulting histogram will be (approximately) uniform. This is not always possible since we cannot
change half of the pixels with the same value differently than another half.

Applying contrast adjustment operations to color images has to be done correctly, otherwise the
results may not be desired. Since contrast is a luminosity property, we have to first transform the
image into a color space where luminosity is separated in its own channel, adjust it, and
transform the image back, leaving the chroma channels intact.

We will talk about histograms in the future, for now let’s just look at how we can describe color
with a histogram. Since color images have multiple channels, we have to take this into
account.

●​ 3 histograms - Each channel is treated separately, producing three histograms. This
way the joint information is not included.

●​ 3D histogram - Each channel is a dimension in a 3D index into a 3D histogram. This
way joint information is preserved, but this histogram uses more space (for equal size
bins).

Image filtering
Image filtering is a class of operations where the result of a single pixel depends on the values
of its neighborhood in the input image. We know two types of filters:

●​ Linear filters - An operation over the source pixel values is a linear operation (weighted
sum). This enables us to use the mathematical concept of convolution which is an
associative and in some cases separable operation to speed up computation.

●​ Non-linear filters - An operation is an arbitrary nonlinear operation on pixels, e.g. max,

min, median. These kinds of filters do not have nice properties like separability and
associativity.

A linear filter can be interpreted as a weighted sum. What therefore defines the operation are
the weights in a matrix that is called a kernel. We multiply corresponding pixels together and
sum up the numbers to get a filter response for a pixel, we do this for all the pixels. Some
examples of frequently used kernels:

●​ Uniform kernel - all weights are equal, smoothing (averaging)
●​ Identity kernel - only copies original center value, image is preserved
●​ Shift kernel - only shifts image in one direction
●​ Gaussian kernel - achieves better smoothing effect without artifacts, low-pass filter

The important property of kernels in image processing is that the sum of all their elements is 1,
otherwise the result will be scaled up or down.

Convolution is defined on an infinite interval, so another question in case of finite images is what
to do when we come to a border. There are multiple strategies (names of these strategies are
not standardized):

●​ Crop border - resulting image is smaller than original
●​ Constant value - missing values are replaced with a constant, produces a vignetting

effect
●​ Edge values - copy border values
●​ Warp - copy values from the other side of the image
●​ Reflect - mirror image values

Some other operations that can be done with linear filters:

●​ Detecting edges - image is a discrete signal that can be derived, this means that we get
high values where the image value changes significantly. Since an image is a 2D signal
we have to compute partial derivatives by convolution and computing magnitude.

●​ Sharpening - We can amplify high frequencies in an image by first removing low
frequencies (blurred image) and combining low and high frequencies back together
(weighted).

The most well known nonlinear filters are:

●​ Median: take median value in the neighborhood
●​ Max: take maximum value in the neighborhood
●​ Min: take minimum value in the neighborhood
●​ Bilateral filter: weighted sum where weights are re-calculated for each neighborhood

based on intensity similarity with the center pixel. Preserves edges because only values
that are close together are smoothed.

One simple use case for image filters is noise removal. Noise is a random signal added to the
image information. The two most common noise profiles are Gaussian noise and
salt-and-pepper noise.

In case of Gaussian noise the per-pixel values are sampled from a zero-mean Gaussian
distribution. Since the error for each pixel is sampled independently, this results in a
high-frequency signal addition. A Gaussian filter is a low-pass filter, it removes the high
frequencies from the signal. However, an image can also contain high frequencies by itself and
a filtering with a Gaussian filter will result in a blurred image. This is where a bilateral filter is
useful since it preserves edges (in most cases). In case of salt-and-pepper noise, median filter
is more effective: large deviations in a local neighborhood are filtered out.

Salt-and pepper

Image transformations
Pixel-wise and filtering operations are intensity operations. Geometry information, on the other
hand, changes the geometry of the image, they move pixels around and modify the
dimensions.

The geometric transformations are parametric, meaning that all pixel locations are transformed
in the same manner with a parameterized transformation function or non-parametric, where the
transformation cannot be described by a parameterized function and only exist as a
pixel-to-pixel mapping. We will only cover parametric transformations.

Parametric transformations can be linear, meaning that we can describe them with a projection
matrix or nonlinear. There are several types of basic linear transformations that can be arbitrarily
combined by multiplying their matrices:

●​ Translation
●​ Rotation - rotation around origin
●​ Scaling - either uniform or non-uniform

●​ Euclidean - translation + rotation
●​ Similarity - translation + rotation + uniform scaling
●​ Affine - translation, rotation, scaling, shear (preserves parallel lines)
●​ Projective / homography - projects points from one surface in 3D space to another

Linear transformations are usually specified with a matrix that transforms points in
homogeneous coordinates. This means that a 2D position is specified as a 3D vector where
the last coordinate is always 1. A 2D linear transformation matrix is therefore also a 3x3 matrix.

Warping is the process of applying a geometric transformation to a digital image. The naive
process is simple, for every pixel in the original image compute the location in the transformed
image based on transformation and copy the value there. But there is a problem with this
approach, we visit all pixels in the source image, but we do not visit all pixels in the destination
image. This means that some pixels in the destination image remain unassigned, while others
get overwritten multiple times.

To avoid the problem we have to ensure that we visit all pixels in the destination image exactly
once. This means that we have to reverse the process and calculate inverse transformation
for all pixels in the destination image to their corresponding source pixel. Still, we encounter a
problem that the location of where the color in the source image should be taken is not a
coordinate of a single pixel, but a real value somewhere between multiple pixels. The simplest
strategy for determining the value is by using the closest pixel, i.e. finding the nearest
neighbor. This simple strategy is fast, but produces an aliasing effect. The interpolation effects
are most visible when we are resizing an image, i.e. increasing the resolution. In case we are
increasing the size of an image, the need for interpolation is clear, we want more data than it is
available. Better strategies involve interpolation, using multiple neighborhood pixels to
determine the color based on their proximity. It is easiest to first look at the interpolation in one
dimension. A nearest neighborhood strategy takes the closest neighbor value. We can use
linear interpolation that fits a linear function to the two neighbors and samples it at the desired
location. The cubic interpolation does a similar thing, but uses four points to fit a third-degree
polynomial. In a digital image, we have two dimensional signals, therefore the interpolation
strategies have to be adapted. We still have the nearest neighbor strategy for four pixels, we
have bilinear interpolation that uses four pixels to fit a plane and we have bicubic
interpolation that uses sixteen pixels to fit a polynomial surface.

Lanczos sampling is used when resizing or rotating an image, it is used to smoothly interpolate
between values, avoiding aliasing. It is done by convolution of the signal with a Lanczos kernel,
a finite approximation of the Sinc kernel that is theoretically the best low-pass filter. Lanczos
sampling is also the slowest among the mentioned approaches.

In the case of decimation (reducing the size of an image), we also have to take special care. If
the details in the image are small (e.g. thin white lines on black background), they will get lost
when using a naive approach, e.g. nearest neighbor because we are essentially sampling the

image with a too low sampling rate (Nyquist–Shannon sampling theorem). To produce a result
that contains at least some of the details, we have to first remove high frequencies (e.g. by
convolution with a Gaussian kernel) and then use nearest neighbor sampling.

Non-linear transformations are image transformations where the mapping between pixels is
not determined by a linear function. There are multiple options, e.g. in camera image
rectification we try to remove the effect of a lens distortion. For this we have to know the lens
distortion model that we obtain with camera calibration. This model is not linear. Another
use-case is to use locally-linear transformation to perform image morphing.

Image morphing is a process of gradually changing one image into another. The simplest way
to do this is by weighted averaging of corresponding pixels with gradually changing weights,
however, this does not really produce good results, because it is not content sensitive. We can
obtain a more realistic effect if we gradually geometrically transform one image into the other.
The transformation that we are trying to achieve is non-parametric, specified by a dense
deformation field. The field tells us where every pixel in the image moves to. Of course
specifying the entire field is time-consuming and not very intuitive. We can achieve a good
approximation using locally linear transformation on a set of correspondences or control
points, those are pairs of pixels that have to move one into another. The transformation for
other pixels can be computed either by linear interpolation or by dividing image into triangular
mesh using Delaunay triangulation algorithm and then compute affine transformation for all
triangles.

The image morphing algorithm is the following:

●​ Input: two images, A and B, correspondence pairs
●​ Repeat for time steps t = 0 … 1
●​ Interpolate correspondence to position t
●​ Warp image A from 0 to t and image B to t from 1
●​ Blend warped images using factor t

Content-aware image resizing
If we want to resize an image, the traditional approach using linear transformation will modify
values of all the pixels. In some more advanced cases this would want to be avoided, e.g. there
are some regions in the image that are semantically more relevant. Content-aware resizing will
change the size of an image while preserving important structures and reducing unrealistic
artifacts. Knowing what is important is a weakly conditioned problem and is in the scope of
multimedia connected to human perception. A fast approximation of importance are image
edges, fast changes in image intensity. Using first order derivatives, we can estimate the energy
or importance of each pixel.

In a simple case that can be generalized easily we want to remove unimportant pixels in a
single direction (reduce width or height). To preserve structure we have to use an algorithm

called seam carving that is based on dynamic programming to determine a path of pixels from
one side of an image to the other that has the lowest cumulative energy. A path or a seam is
determined by greedily computing the minimum possible path for each end pixel and then
backtracking from the pixel with minimum cumulative energy back to the source.

Image merging
Image morphing is a good introduction to image merging, we are back to per-pixel operations
where we would like to combine two images, taking some regions from one image and some
from another, or merge the color of some pixels with different weights. When merging color
images we are simply applying the merging operation to all color channels individually.

The simplest form of image merging is merging with a binary mask. We have two images and a
mask, all of the same size. The mask only has zero and non-zero values that signify which
image should the corresponding pixel value be taken from.

Binary masks produce unrealistic results in many cases, it is hard to define a clear pixel-wise
boundary between objects. Alpha blending is an extension of the binary mask approach where
images are blended using an alpha mask. In this case values between 0 and 1 in the alpha
channel signify the degree of pixel value from the first and the second image taken when
computing the value of the corresponding pixel. Alpha blending helps us when merging images
with the same content, but different contrast, e.g. when merging well aligned panorama images
we can ensure that the contrast change is not too sharp.

Alpha blending can produce smooth transitions, but the degree of smoothing is hard to define
for a general use case. If the transitions in the mask are too sharp the merging becomes a
binary cutoff, if they are too smooth, we end up with a ghosting effect.
The problem with a smooth alpha mask is that not all image frequencies respond to it equally. It
is much more natural to merge low-frequencies with a smooth mask, but high image frequencies
should be blended in sharper transitions, otherwise they get lost. This is how frequency-aware
blending works. It decomposes the image into several frequency bands and blends each of
them with its own alpha mask. Then all the bands are combined to form the final image.

To decompose an image into bands we have to use image pyramids. They are multi-scale
image representations. The Gaussian pyramid is used to decompose the image into layers
where each higher layer only includes lower frequencies, with a specific frequency band
removed. This is achieved by convolving lower layer images with a Gaussian (low pass) filter.

The other pyramid that we have to know is the Laplacian pyramid. This pyramid is obtained
from the Gaussian pyramid by subtracting subsequent layers, except for the last layer that is
the same as in the Gaussian pyramid. This means that each layer will only contain the
frequencies that are included in the lower layer and not in the one above it. A nice property of

the Laplacian pyramid is that we can reconstruct the original image if we sum together all
layers, all frequency bands, together.

The frequency-aware blending algorithm is as follows:

●​ Input: Two images and a (binary) mask
●​ Do the following steps for all color channels:

○​ Construct Laplacian pyramids for both images and a Gaussian pyramid for the
mask

○​ Combine corresponding image pyramid layers with layers from the mask pyramid
○​ Collapse resulting merged Laplacian pyramid into the merged image channel

Image segmentation
Image merging assumes that the mask of the foreground is known in advance. Sometimes this
is not true and determining a good segmentation mask is time consuming. A semi-automatic
approach that requires coarse input and produces a detailed mask of the desired object is called
GrabCut. It is based on the observation that segmentation labels are highly structured. This
means that two pixels that are similar in color (data similarity) and/or near one another
(smoothness) are also likely to share segmentation labels.

The problem of segmentation in GrabCut is formalized using the Markov random field. It uses
Gaussian Mixture Model to model a generalized color probability and Graph Cut to improve
segmentation in iterations. The initial segmentation has to be provided by an outside source.

The iterative algorithm uses a current mask to build models of foreground and background.
Then, it estimates the likelihood that each pixel belongs to each model using Bayes’ theorem.
This probability serves as the data similarity estimate, the smoothness is usually determined
using image derivatives. Using these estimates, a Graph cut algorithm is used to determine
maximum flow through a network of pixels. The resulting cut determines a new segmentation
estimate which is used in a new iteration. The process is repeated until the changes are not
noticeable (convergence) or for a limited number of times.

Video
Digital video is in a nutshell a sequence of digital images that can be displayed one after
another with sufficient speed to create an illusion of motion. Video is frequently accompanied by
sound, therefore we can say that video is a digital medium for the recording, copying, playback,
broadcasting, and display of moving visual (and audio) media.

Acquisition and reproduction
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 5, 5.1 - 5.3

While digital video acquisition is similar to image acquisition, the display of video requires some
technical details. Human perception can perceive about 10 to 12 individual images in a second
as individual images, for rates that go above 20 frames per second individual frames are
integrated into motion. We call this persistence of vision and it is related to how long the
image stays in the visual cortex, for how long the neurons stay saturated.

The first video projection technologies were film projectors, they displayed individual images by
illuminating a frame from a film reel for a fraction of a second and then moving to another
image, with shutter closed in between. Without a shutter the images would move in a blur.
Original projectors used display rates at about 25 frames per second, which should be enough
for an illusion of motion, however, the rapid changes between bright image and dark period
between the changes introduced a flickering effect. It turns out that the brighter the images, the
shorter is the interval required for persistence of vision effect. Since the time without an image is
also longer than the period of persistence of vision, it is registered by the brain. This is why the
frame rates of displays were increased, showing a single image multiple times for shorter
intervals. This way the image was less bright, with the same light source, but the projection did
not flicker.

The other well known technology that has been used for decades is cathode television. In this
case beams of electrons are flying in a vacuum tube and hitting phosphorus particles on the
other side that glow when excited (fluorescence). In color television there are groups of three
types of phosphorus that glow in red, green and blue (color primaries). To maintain an illusion of
motion, the image has to be refreshed fast enough. Typical refresh rates are 50 or 60 Hz, which
should be enough for most people, but since some individuals still perceive flicker at this rate,
there exist also 75 or 100 Hz systems, especially as computer monitors. The reason for flicker is
similar to projectors, the phosphorus quickly starts losing its brightness before it is excited again.

The cathode displays are now more or less obsolete, replaced by flat-panel technologies, most
prominently the LCD displays. The principle of these displays is that the backlight is blocked or
passed through certain liquid crystal pixels and is then filtered through color filters to produce
pixel colors. These displays became thiner and thiner as the backlight technology became
smaller, e.g. using LED lights. The liquid crystals do not flicker themselves, older LCD displays
flickered because of the fluorescent backlights.

Video interlacing
The interlacing in video means that the odd and even lines of a frame are taken at slightly
different times. This approach was used to double the perceived framerate at no cost of
bandwidth, but was also used in CRT displays to reduce flickering. The downside of interlaced
video is that half of the data is really missing, which introduces artifacts (combing effect) when
a video contains fast horizontal movement.
The opposite option is to use progressive encoding, which essentially means that each frame
is encoded in its full resolution, doubling the video size at the same framerate. Despite being

introduced during the analog television era, many digital video formats also support it, although
support is slowly being dropped (e.g. HEVC family of codecs does not support interlacing
anymore).

Color in video
In analog video color information can be encoded in two ways. In component video, each color
channel is transmitted over separate lines with separate signals. This reduces channel
cross-talk and therefore results in better image quality, but requires more bandwidth.

Traditionally, color in video was encoded as a separate component, next to the luminosity. All
components were mixed in a common signal. This approach is called composite video and is
suitable for lower bandwidths.

In digital video the separation of color information is also used to preserve bandwidth or space.
Although chroma separation formats were already known in analog video, e.g. YUV and YIQ an
alternative format, called YCrCb, is used in digital video. The main reason for reduced bitrate is
that we can subsample chroma channels without a noticeable degradation in image quality.
This is due to the nature of human sight, we are less sensitive to changes in chromaticity than
changes in luminance. A standard notation for types of subsampling is J:A:B

●​ J - horizontal sampling frequency, number of luminance values in a row
●​ A - number of chroma values in odd rows
●​ B - number of chroma values in even rows

Television formats
Video is strongly related to television, therefore we should say a few words about television
formats. In the analog era, several analog formats were preferred in different regions of the
world. PAL in Europe, NTSC in North America, SECAM in Russia. They are a bit different, but
also quite similar in terms of resolution and other characteristics. PAL, for example, was
developed to address problems that NTSC would have in Europe because of more difficult
terrain and unpredictable weather.

Nowadays, a lot of countries have transitioned to digital television. The advantages of digital
video are numerous, direct manipulation, ability to include video in applications, easier access,
better error correction, no degradation in quality when copying. There are also multiple
standards in this case, e.g. DVB-T, ATSC, …

Video stabilization
The need for video stabilization is caused by the fact that a lot of video is recorded with
unwanted motion of the camera (shaking) or is unable to follow an object in a smooth manner.
There are many techniques for stabilization during video acquisition, we call those approaches

mechanical stabilization. A camera can have a lens that detects unwanted vibrations and
moves to counteract them or shifts the sensor, we call this optical stabilization. We also have
special equipment like Steadicam or tripods to make camera motion more smooth or stable.

We can also stabilize video after it is acquired, we call these approaches digital stabilization, it
is a post-processing step to improve the quality of the video. Individual images may be
geometrically transformed to fulfill certain requirements and filters can be applied to reduce
motion blur. We know two types of digital stabilization, object-centric, or local stabilization,
where the camera is making a manually selected object or a point stationary in a video, and
global stabilization where the overall movement of the camera is made smooth.

Stabilization by alignment
The simplest approach to global stabilization is to match individual frames and shift / translate
one of them to match the other one as much as possible. This does not work if the scene
changes too much or if the motion is not only translative.

Stabilization by feature tracking
Similar effect can be obtained by using a specific point, a feature point, in the image and
tracking it over multiple frames. The change in point’s position can be used to negate the
translation and keep the point stationary. Feature points are tracked using feature point trackers.
A commonly used feature point tracker uses normalized cross correlation to find the best
match for a patch around feature point in the following frames. This approach is robust to
changes in illumination because the similarity function is normalized to the value variations
within the patches. Feature point trackers cannot be positioned on arbitrary locations, usually
corners or blobs work best, the feature also has to be visible for the entire duration of the
stabilization. Locality of motion helps too, if multiple candidates are detected in a new frame,
the one closest to the previous position of the feature point is usually taken.

More points can be added to get a more complex linear transformation. With two feature points,
rotation or scale can be estimated and stabilized. With three points affine transformation can
be modeled. Even more complex linear transformations, such as perspective transforms,
assume that the content of the image is planar, this can destroy the illusion of depth.

Stabilization with keypoints
Feature points have to be manually initialized, but we can achieve a similar effect automatically
by detecting keypoints in every image and matching them across image pairs. There are
multiple algorithms for keypoint detection and description of their neighborhood, the most known
being SIFT (Scale Invariant Feature Transform). Despite additional precautions that we can
take, this approach does not guarantee that all matches will be correct. Therefore, a robust
fitting algorithm, such as RANSAC (RAndom SAmple Consensus) has to be used to fit a
reasonable transform to each set of correspondences.

Stabilization with optical flow
Another option for getting even more correspondences between two frames is optical flow.
Optical flow algorithms estimate dense pixel motion between two consecutive frames. Optical
flow cannot be estimated for all pixels, some areas disappear or appear during two frames, but
generally the optical flow yields a much denser vector field than keypoints. The density depends
on the algorithm used, the well known algorithm by Lucas and Kanade is fast, but cannot
provide a globally optimal solution (some regions do not contain enough information in them for
estimation of optical flow). The algorithm by Horn and Schunk, is slow, but also enforces global
constraints.

Stabilization in space
All methods so far were operating in 2D. While the methods can produce good stabilization, the
result does not look professional, it looks like the camera is wandering aimlessly. This is
because the stabilization algorithm is not actually aware of the position of the camera and
therefore cannot improve it directly.

3D stabilization, on the other hand, operates on 3D camera trajectory. The trajectory can be
obtained from a video sequence using the SfM (Structure from Motion) algorithm. This family of
algorithms simultaneously produces a sparse 3D reconstruction of the observed scene and
recovers camera position in it. Using this information, a more stable trajectory can be fitted,
e.g. a straight line or a parabola. These kinds of trajectories are usually achieved using props
such as a dolly or a Stedicam.

The challenge of 3D stabilization is that we are essentially moving the camera in space and
every change in viewpoint will cause small non-linear changes in observed scenes because the
information is usually not planar. Simply using a projective transform will destroy the illusion of
depth. But since the changes are small, a satisfying result can be obtained using non-linear
warping. This will produce small non-linear distortions based on the content of the image that
will preserve the depth information. One way to obtain such a transformation is to project points
from the SfM sparse reconstruction back into the pairs of images and observe how they move
between two frames. Points close to the camera will move more than those further away. Based
on these correspondences, we fit a quad mesh that generalizes the transformation and ensures
its local smoothness.

Missing regions and mosaicking
One of the problems with stabilization is that transformation of image produces missing border
regions. For a given frame, the information can be shifted in relation to the initial frame so we
end up with some excess information on one side and missing regions on the other. There are
several techniques to limit or remove this effect. If the missing regions are not too big, we can
simply crop the video to the region that is visible in all frames, essentially zooming in.

Trajectory smoothing is also used to limit the size of missing regions. The process involves a
low-pass filter that processes the transformation to allow slow movement, but suppress
high-frequency jerky movement that is the most problematic part of the camera movement. In
some cases smoothing is even preferred to complete stabilization as it appears more real.

The more advanced option is to use video mosaicking to fill in the missing regions based on
information from the previous frames. Video mosaicking is a technique that fuses multiple
frames together into a larger image, similar to panorama stitching. The requirement is that the
content of the video does not change a lot because all images are projected into the same
image space. The base technique is similar to stabilization, key-points or optical flow may be
used to calculate transformations. In its simplest form, the mosaic can then be used to fill in
information for the current frame from the past (or future) frames that have the information for
that part of the scene. A more advanced approach uses optical flow to estimate how individual
parts of the image move and take this into account when filling in the missing information (this
way also moving objects will appear at more accurate positions).

Local stabilization
Local stabilization or image re-centering produces a video cut-out of a single object focused in
the center of the video. The object trajectory is obtained using an object tracking algorithm. The
trajectory is used to cut out regions of the image. Object tracking works by remembering the
appearance of an object (e.g. color, texture) in the initial frame and finding it in the frames of the
sequence. In case the object comes too close to the border of the image frame, we again have
problems with undefined regions. We can mitigate this problem with image extrapolation or
clamping the coordinates of the crop region.

The trajectory can also be smoothed for better effect as the center of the object is usually poorly
defined and the trajectory will be pretty shaky. A low-pass filter will remove these high
frequencies.

Background removal
TODO

Detecting transitions
Between production, a video is usually combined from multiple shots that form multiple scenes.
In multimedia applications, it is sometimes good to know that we are observing a new video shot
or even a new scene, however, this information is typically not available anymore in a video
stream. We will look at some simple techniques to detect transitions that are the basis for
detecting boundaries of individual shots.

There are multiple primitive transition types:

●​ Cut - a clear cut between two frames
●​ Fade-out - gradual fade to a color
●​ Fade-in - gradual transition from a color
●​ Dissolve - alpha fade from one shot to another
●​ Wipe - gradual spatial replacement with a rolling binary mask

Detecting transition depends on transition type. Generally a transition causes a rapid change in
distribution or presence of low level image features, e.g. a change in color distribution, edges,
etc. For cut transitions observing only two frames is enough, in crossfades observing more
frames is needed. Sometimes setting a fixed threshold is enough, while in the case of more
dynamic shots, the threshold should be set adaptively. We are essentially talking about two
steps - (change) scoring and decision.

One of the most simple forms of shot detection is by comparing color histograms of consecutive
frames. Adaptive threshold means that we are observing differences between multiple frames
before and after the current frame and setting the threshold to the higher of the two means
increased by a portion of variances for the previous and after frame intervals.

In case of gradual changes, shot detection can be improved by averaging features over
several frames and comparing two intervals. Another option is to look at partial changes, i.e.
changes in only part of an image. An image is divided into a grid and each cell is checked for a
large change. If enough cells are triggered, then we can say that the shot has changed.

Besides color, edges can also be used for shot detection. In this case we do not use
histograms, but compare edges spatially, how many edge pixels are common to both frames
and how many not.

Detecting fades can also be detected using a dual threshold approach. Since the change is not
as apparent in case of fades, it cannot be detected with a single high threshold, however, we
can start monitoring change if the change exceeds the low threshold. We compare all following
frames against the potential start frame and call this cumulative difference. We do this until the
cumulative difference is increasing, if it is not, we compare the difference to the high threshold
which tells us if the fade actually occurred.

Audio
Besides images and video, sound is the most important and best studied medium in multimedia
environments. When a sound is recorded or stored on a digital device it is commonly referred to
as audio, which is a technical term for the digital sound. There are many specifics about how
audio is recorded, processed and stored, some of which we will discuss in this chapter.

Audio acquisition
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 6

Sound is a physical phenomenon caused by waves of pressure in the medium. These waves
are longitudinal waves in which particles of the medium are compressed and expanded. A
typical medium for sound is air and water, without it, the sound will not be perceived (e.g. in
space). As a wave phenomenon, sound is subjected to several effects that occur in complex
spaces with multiple different materials.

●​ Reflection: caused when sound hits a surface and bounces back, causing an echo.
●​ Refraction: when the sound enters a different medium with different density, its angle

may change.
●​ Diffraction: the sound bends around an obstacle

To record a sound, one must first know its physical properties and how to measure them. The
main properties of sound are frequency and amplitude. Frequency tells us how many medium
contractions occur in a unit of time. It is measured with Herz (Hz), the number of contractions in
a second. Amplitude tells us how large the changes in pressure are, i.e. the largest change in
pressure caused by the sound. In the physical medium it is measured in Watt per square meter
(W/m2). An observed sound also has duration (what is the total length of the observation),
direction (in which direction do the waves travel), and the speed of the waves, which is based
on the medium that we are observing the sound in. In air the speed of sound is approximately
331 meters per second.

Human auditory perception
In multimedia, the acquisition and presentation of audio is strongly motivated by the good
human experience and perception. It is therefore important to understand how we perceive
sound.

The human organ that is responsible for perception of sound is called an ear. Ear is not only the
visible part of the head but a system of canals and bones inside the skull that process the
sound. The sound travels through the ear canal to the eardrum, a membrane that transmits the
vibration to ossicle bones, where vibrations are amplified and are transmitted to the liquid
inside the cochlea. Inside the cochlea there are hair cells that are sensitive to different
frequencies, their activation is then transmitted to the auditory nerve and then to the brain.

Humans cannot hear just any frequency of sound, a rough general estimate is that we can
perceive vibrations between 20Hz and 20kHz as sound. Below the 20Hz we have infrasound,
which is used in investigations of Earth’s crust among other things. Above 20kHz we have
ultrasound which is used in sonars and medicine, bats also use ultrasound frequencies in
echolocation.

For a sound to be heard, we do not only need the right frequency, but also sufficient power or
amplitude. The amplitude required to perceive a certain frequency depends on the frequency,
we need more energy in frequencies towards the ends of the hearing interval. The amplitude at
which at least half of the tones were perceived by test subjects is called threshold of hearing.
The threshold changes with years, it is well known that young people hear high frequencies
(above 2 kHz) better, while older people may require louder sounds in this range.

At the high level humans do not perceive the sound as frequencies, we assign it perceptual
qualities, which are the effect of a combination of physical properties of the sound. A pitch of a
sound can be low or high, it is primarily related to the frequency of a sound, but also to other
aspects, such as intensity and waveform. Loudness is primarily related to sound intensity, but
also related to frequency. Timbre, or the color of a tone, is primarily related to the waveform,
the presence of different frequencies in the sound. In relation to this humans perceive sonic
texture when a sound is coming from multiple sources. A sonic texture can be perceived as
euphonic sensations, such as unison, polyphony, and homophony, or as cacophony (harsh,
discordant sound). Since the sound is perceived with two ears, we can also perceive an
approximate spatial location.

Signal and noise
One of the characteristics of sound is how well we can separate it from the unwanted
fluctuations of the environment that we call noise. In practice the loudness of a sound is not
described by its amplitude, but by the relative loudness in comparison to the noise. The factor is
measured in tenths of a bel, or decibels (dB). Most commonly the loudness is specified by
comparing signal to the sound of a just audible 1 kHz noise.

Digital audio
The advantage of digital sound is of course easier processing and storage with compression.
Sound is an analog signal that can be measured as a changed air pressure with time resulting
in vibration of the recording membrane that is transferred to mechanical motion and then to
electrical signal is measured. To digitize it, we have to sample the signal at fixed intervals and
quantize the real values to a fixed resolution. Improper digitalization corrupts the signal in
several ways, making it less real. The two main sources of corruption are aliasing and
quantization noise.

Signal is sampled at uniform time intervals, the frequency of sampling is also known as
sampling rate. According to the Nyquist-Shannon theorem the sampling rate should be at
least twice as high as the highest frequency in the signal. If this is not true, the signal will
contain aliasing due to insufficient number of samples that produce ambiguous results. To
ensure that the signal only contains suitable frequencies, it is usually passed through an analog
low-pass filter before it is sampled.

The quantization occurs after sampling. Each measured value in the interval of perceivable
amplitudes is assigned an integer value. This involves rounding which produces
quantization noise. Quantization noise is measured with signal-to-quantization-noise ratio
(SQNR), higher value is better since this means that the signal is stronger in comparison to the
noise. A rule of thumb is that 12 bits are already enough for adequate sound reproduction.
Additionally, the quantization errors can be made more statistically independent and therefore
less noticeable if a small amount of noise is added to the signal, making rounding errors more
random.

The term Pulse Code Modulation (PCM) is a formal term for the combination of sampling and
quantization. The PCM approaches vary in the type of quantization used. Linear quantization
maps analog values to a linear interval. This may not be desirable in some applications, for
example in telephony. The reason is that low-amplitude signals are encoded with a larger error
than high amplitude ones. This affects the clarity of human speech, which is more efficiently
encoded (higher SQNR) using non-linear resolution schemes, such as A-law and μ-law. The
idea of non-linear compounding is that lower amplitudes are represented with more resolution
than high-amplitude ones - this idea mimics human perception. Other quantization approaches
are Differential PCM, which encodes difference to previous value or the difference to a
predicted value is encoded, and Adaptive Differential PCM where the quantization levels
change with time.

Frequency spectrum
One of the basic concepts in sound analysis is a frequency spectrum. It shows how strongly
(with how much amplitude) are certain frequencies present in the sound waveform. Frequencies
are represented by sinusoidal functions, each of them is assigned a coefficient that signifies
their strength. Spectrum can be shown for a long signal by cutting it into fixed intervals and
analyzing each interval separately.

The method that decomposes continuous signals in a set of basis sinusoids is called Fourier
transform. Working with frequency distribution simplifies certain operations, like noise removal.
A frequency spectrum can be transformed back to a time-domain with inverse Fourier
transform. In digital signal the Fourier transform has a counterpart method called Discrete
Fourier Transform (DFT), it is a linear transformation of a n-point time-domain signal to a
n-point frequency spectrum. The DFT can be efficiently calculated using an algorithm called
Fast Fourier Transform, which takes O(n log n) time for a signal of n points.

Audio processing
Source material: J. O. Smith III, Introduction to Digital Filters

Audio signal processing is a subfield of general signal processing. Audio processing can be
done with analog audio signals, represented by continuous functions in the form of changing

electrical current or voltage. In this case the properties of the signal are changed using
electronic components, like capacitors, resistors, inductors, transistors, etc.

Digital audio processing is performed by algorithms that run general purpose computers and
manipulate a digital signal (sampled and quantized). This approach is more general and
powerful, and usually also more efficient. Digital filers also generally have better
signal-to-noise ratio because noise only occurs during conversion from analog signal and back
and potentially due to quantization. In analog filters every component is a potential source of
noise, the more complex the filter, the greater the noise.

Digital filters can be characterized in multiple ways, knowing where a filter belongs to is
important because filter classes have different properties and limitations. A filter is linear if it can
be written as a linear difference equation, otherwise it is non-linear. If a filter only uses past
signal values for computing the output, it is considered causal, if it also uses future values, it is
considered non-causal. If the filter returns the same signal no matter when the input is fed into
it, it is considered time-invariant, if the output varies with time, it is considered time-variant.

The filters with nicest properties are linear time-invariant filters (LTI), which have the property of
additivity (sum of filtered signals is the same as filtered sum of signals) and homogeneity
(scaling input signal equals scaling output signal). These properties are also used for analysis;
we can observe how a primitive sinusoid signal is transformed by a filter in terms of its
parameters (amplitude, phase, frequency). This kind of analysis is called frequency analysis.

Linear filters
Most audio filters can be implemented or approximated as linear filters, meaning that the new
output value is a result of a linear combination of a finite number of past values in the signal.
The most general LTI filters are called subband filters that only pass frequencies in a certain
interval (passband) of the spectrum and suppress others frequencies (stopband). The most
common filters of this class are:

●​ Low-pass - passes only frequencies below a threshold
●​ High-pass - passes only frequencies above a threshold
●​ Band-pass - passes frequencies in an interval
●​ Band-stop - blocks frequencies in an interval

All subband filters can be implemented with a single prototype filter, e.g. we can get a
high-pass filter by subtracting low-pass signal from an unfiltered signal.

Implementing good subband filters is challenging. An ideal low-pass filter, for example, should
pass all frequencies in passband up to the cutoff frequency with a constant gain and completely
stop all frequencies above that. Obtaining a low-pass filter with ideal properties is not possible
since you would need to consider an infinite signal. But there are many finite approximations
with different advantages and disadvantages:

●​ Butterworth - frequency response as flat as possible in the passband (uniform gain)
●​ Chebyshev - minimize the error between the idealized and the actual filter characteristic

over the range of the filter, but with ripples in the passband (non-uniform gain) in case of
Type 1 filter or or stopband in case of Type 2 filters

●​ Elliptic - equalized ripple behavior in both passband and stopband

Equalization
A classical case for using subband filters is multi-band equalization. A signal is divided into
multiple bands which are then gained with different factors and combined back together. This
allows us to boost bass frequencies or treble frequency range.

Comb filters
A comb filter is a building block of many real effects. It is called this way because it produces a
comb-like pattern when observing the amplitude response in frequency analysis. A general
comb filter combines a signal with a past input sample and a past output sample, each of them
weighted with its corresponding factor.

 𝑦(𝑡) = 𝑥(𝑡) + α𝑥(𝑡 − 𝑎) + β𝑦(𝑡 − 𝑏)
The two cases where either past input or past output samples are weighted with zero are called
feedback and feedforward comb filters.

One of the more easy-to-understand comb filter applications is delay. The delay filter
propagates the same signal with a given time difference and sums it with the original signal.

Echo filter is an extension of the delay filter with the aim of simulating acoustic properties of
real rooms. In a room, sound bounces off multiple walls potentially multiple times, creating a
unique effect that is perceived as listening in a large or small space. An acoustic fingerprint of
a room is divided into early reflections, individually perceived delayed signal copies with
decreased gain and subsequent reverberation, a random noise that is the result of multiple
echo signals joining together.

Flanger is another derived delay effect. The delay time difference varies with low frequency in
this case, which produces a bouncing effect. Because of the additional time component, the
flanger filter is not time-invariant, but is an example of linear, time-variant filter.

Chorus is technically similar to flanger, but the delays are longer in this case, the pitch of the
duplicated signal can also be shifted a bit. The effect that chorus is trying to achieve is that of
multiple instruments being played together, each with a bit different timing (and/or pitch).
Naturally, the effect appears in orchestra or choir. The resulting sound is more rich than the
input.

Non-linear filters
Non-linear filters are generally all filters that cannot be formulated as a linear equation. There
are many applications for non-linear filters. The first example is noise removal using a median
filter, which is a non-linear operation. Other examples are dynamic range compression filters
which apply a dynamic scaling of signal amplitude based on its value. Dynamic range
compression is used to efficiently utilize available range on magnetic recording tapes
(companding) or to clip high amplitudes (clipping).

A classical example of non-linear clipping filters in audio processing is distortion or overdrive
effect. This effect was usually achieved by overloading vacuum tubes that were used in
amplifiers, pushing them beyond their maximum. This resulted in soft amplitude clipping. This
clipping resulted in the presence of new frequencies in the output signal, which makes the
distortion a non-linear filter.

Digitally, distortion is implemented as a non-linear amplitude scaling function, the low
amplitudes are mostly left as they are, while high values are significantly scaled. Based on the
function used, we call the output either soft or hard clipping (thresholding).

Spectrum Analysis
An efficient way to implement FIR filters on a long signal is using spectrum modification
techniques. This approach assumes that a signal can be split into multiple segments that can be
processed individually in frequency space using DFT and then recombined back.

These signal segments are obtained by multiplying the signal with an offsetted window
function. The definition of a window function is that it is zero outside of the area of interest, it is
also symmetrical. The most basic window function is a rectangular window, but it has a
disadvantage of having a lot of spectral leakage, i.e. cross-talk between segments. Better
window functions with different properties include: triangular, Hann, Hamming, etc.

The segments can be processed in Fourier space and then re-combined using Overlap-Add or
Overlap-Save methods. These methods assume that parts of segments overlap and are
summed together (in case of Overlap-Add).

TODO

Compression
Multimedia data takes up a lot of storage and bandwidth, compression is therefore a crucial
component of many multimedia applications and is used when data is either stored or
transmitted. Fortunately sensory data (e.g. visual and auditory data) lends itself very well to the

compression process. The first observation is that a lot of data is strongly correlated and part
of it is therefore redundant. This is a fact exploited by lossless compression, a type of
compression that only reduces the size of the data, but retains its content intact. In terms of
visual information we talk about spatial correlation where color in neighborhood pixels is
unlikely to change a lot for the majority of pixels and channel correlation where information in
the three color channels are also correlated. In the video we also know motion correlation,
which means that for most pairs of consecutive frames most pixels do not change a lot.

On the other hand, the primary goal of multimedia data is to be enjoyed by humans and is
therefore considered useful as long as this goal is achieved. Since human perception has
certain properties that make us less sensitive to some local aspects of data, this fact can be
exploited by lossy compression algorithms. Human perceptual system is differently sensitive
to different types of information, e.g. it is more sensitive to changes in intensity than in
chroma. This fact can be exploited by using the same chroma information for multiple intensity
samples (pixels), effectively saving a lot of space.

Compression basics
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 7

A typical compression process is performed in several stages. The first stage is the
transformation of data to a form that is more suitable for compression. The transformation may
be done so that it reduces correlation in data or to change statistical properties. Typical
transformations in image compression are predictive coding that transforms signal to an offset of
predicted value at a given time, color conversion and representation of a part of an image in
frequency domain.

The second stage of compression is mapping where data is mapped to symbols that are more
efficient to encode. Data can be split into smaller chunks at this stage, e.g. an image is split into
blocks. Another well known mapping technique is Run-length-encoding (RLE), which partitions
the data into repetitions of the same data values. In RLE each symbol is composed of a data
value and the number of times it is repeated in a sequence.

Transformation and symbol mapping are considered preprocessing steps, most data
compression occurs in the final, symbol encoding step where each symbol is assigned a binary
code word. The encoding dictionary, i.e. the mapping of symbols to words, can be either formed
online or offline. The main goal of lossless compression is to minimize the number of bits
without losing any information. There are two general approaches to achieve this. The first one
uses symbol statistics to code more frequent symbols with shorter words and less frequent with
longer words. This approach is also called variable length coding (VLC). The statistics can be
computed for a part of the data or for the entire stream. The most well known representative of
this family is the Huffman coding algorithm. The second family of approaches builds a
dictionary of frequent subsequences of symbols and uses it to shorten the final representation

by only referencing the subsequences from the dictionary where possible. The dictionary is
generated dynamically without using any symbol frequency statistics. The representatives of
this family are derivatives of the Lempel-Ziv algorithm.

The reverse process of compression is called decompression and is performed in reverse order
with the inverse operations: decoding, reverse mapping and inverse transformation.

When designing a data compression solution for an application, one has to consider multiple
aspects that define which compression approach is the best.

●​ Efficiency - what is the ratio between raw data size and the size of a compressed
message.

●​ Delay - time required to compress (or decompress) the data, also the amount of data
that is processed at once.

●​ Implementation complexity - how complex is the implementation, also memory usage.
●​ Robustness - can a corrupted compressed stream be corrected.
●​ Scalability - support for different compression profiles.

Statistical encoding methods
The Huffman encoding is the most well known statistical compression algorithm. It is based on
the phenomenon of information entropy, which tells us how many bits are needed to encode a
single character based on the probability of its appearance in a sequence of symbols. The naive
way of coding each symbol with one of the N equally long words is not optimal, unless all
symbols appear with equal frequency.

The Huffman algorithm is a type of optimal prefix coding that determines code words that
minimize the average length of words and satisfy additional requirements:

●​ Regular – different symbols are assigned different words
●​ Unique – message can be understood in only one way
●​ Instantaneous – each word can be decoded as soon as it is read

The algorithm first sorts symbols by decreasing probability of occurrence. It then iteratively
merges the two symbols with the lowest probability and combines their probabilities. It also
assigns them one bit in the final word to distinguish them. This process is repeated until all
symbols have been merged. The more frequent symbols will therefore have less bits in their
code words.

The lower bound of coding is one bit for a symbol in case we have a very frequent symbol -
each symbol separately requires a non-zero integer number of bits. The Huffman algorithm is
optimal when we have to encode each symbol separately. This constraint is avoided in an
improved statistical coding method called arithmetic coding. Another problem of Huffman coding
is that a deviation of symbol frequency statistics will make coding sub-optimal. Since updating
the code words online can be computationally expensive, some improvements to the original

algorithm limit the maximum possible size of the code word, making a compromise between the
initially optimal encoding which then deviates and the always suboptimal equal-length code
words.

Dictionary encoding methods
The problem of statistical coding is that it requires knowing symbol distribution in advance,
which may not be desirable in some cases. The distribution may also change over the sequence
and the mapping dictionary has to be re-generated.

Dictionary coding algorithms use a dynamic dictionary generation for variable length sequences
of symbols. Code words are of fixed length and tell us which subsequence from the processed
message to use. This makes dictionary algorithms suitable for on-the-fly compression and
decompression, however, this compression technique is not suitable for short data sequences
and may even result in longer encoded messages in this case.

The fundamental algorithm for dictionary compression is Lempel-Ziv, or LZ77 (the algorithm was
presented in 1977). The algorithm uses a sliding-window, a buffer of the uncompressed
processed data that is used as a dictionary for new data. The dictionary is therefore dynamic, it
changes with the data stream. It also means that the data can be decompressed from the
beginning as some later code words may refer to the previous symbol subsequences. The
code-words in LZ encoding are triplets that tell us the offset and length of the repeated
subsequence as well as a single symbol that follows this repeated segment. The length of the
repeated subsequence may also include symbols that will be written by the current command.
This makes several repetitions of the same string encoded in an even more compact manner.

The main problem of LZ77 encoding is the limited dictionary size that corresponds to the buffer.
The buffer can be increased, but this leads to high CPU load. An alternative algorithm, called
LZ78 was proposed by the same authors. In this case the dictionary is explicitly built over the
entire sequence or subsequence. The code-words are simply indices in the dictionary. This also
allows partial decompression as long as we have the dictionary available. Another improvement
is the LZW algorithm in which the dictionary is pre-initialized with all possible symbols. When a
match is not found, the current symbol is assumed to be the first symbol of an existing string in
the dictionary.

Based on the data at hand sometimes the statistical approach is better and sometimes the
dictionary approach provides shorter encoding. Both approaches can also be combined, e.g. in
case of the DEFLATE algorithm, where LZ77 is first used to eliminate duplicate subsequences
of symbols. The resulting code-words are also encoded with prefix codes using Huffman
algorithm. The DEFLATE encoding is scalable, we can set the time that can be spent searching
for substrings. The algorithm is used in well-known file-compression formats, such as PKZIP
and gzip.

Image compression
We know of many image compression approaches, some lossless and other lossy. We will look
at the key properties of the lossless PNG format and the lossy JPEG format.

Portable Network Graphics
The Portable Network Graphics (PNG) format was introduced in 1996 as a substitute for
another format, the Graphics Interchange Format (GIF) that was burdened by patents and had
several limitations (limited transparency, only limited palette) that were limiting its use-cases in
the World-Wide-Web. The PNG format provides full alpha channel transparency and supports
full RGB as well as indexed palette modes. To achieve an acceptable compression ratio for
lossless use-cases, the PNG uses two-stage compression. In the first stage, the pixel values are
filtered using predictive filtering, the value of the pixel is predicted using previous values and
only the difference (error) is preserved. In the second stage the differences are compressed
using the DEFLATE algorithm.

The predictive filtering is a common approach for compressing sequential data that can be at
least partially modeled. In case of images, the predictive filtering usually works per-row. There
are multiple models that can be used, they use different combinations of past (already
processed) values to determine prediction. The PNG format uses several approaches that can
be switched on per-row basis (a heuristic algorithm is used to determine the most suitable
approach for the current row):

●​ Unaltered value - each value is encoded without prediction
●​ Use value of previous pixel in a row
●​ Use value of previous pixel in a column
●​ Use mean value of previous pixels in row and column (round down)
●​ Use a combination of several previous values

The important aspect of compression that will be also visible later on in other compression
approaches is that the choice of prediction model is up to the compression algorithm
implementation and does not influence the ability of the decompression algorithm. Some
compression algorithms can be more successful in choosing the suitable model, but the format
is PNG even if it is not optimally compressed.

Block truncation coding
The main motivation in lossy compression of image data is to exploit spatial correlation. This
means that local pixel neighborhoods are usually very similar. This can be exploited by dividing
images in small regions and encode each region in a way that some information is discarded
(the lossy component).

Block truncation coding (BTC) is a simple example of lossy encoding for images. Each block
of 4x4 pixels is encoded only with two intensities: the mean value plus or minus a standard
deviation weighted by the ratio of pixels above and below standard value. The encoded size of
each block for 8-bit pixels is therefore 4 bytes (1 byte for mean, 1 byte for deviation, 2 bytes for
4x4 bit array), while the uncompressed size is 16 bytes. The BTC compression, although very
simple, was used in real life, e.g. on NASA Mars Pathfinder mission in 1997.

The JPEG format
Source material: Li and Drew, Fundamentals of Multimedia, Chapter 9

The JPEG is an abbreviation for Joint Photographic Experts Group which proposed the
format in 1992. Until then it has become the most popular standard for lossy image
compression. The standard primarily defines lossy compression, lossless compression was
added as a late addendum and is rarely used. The encoding and decoding was designed so
that it does not have high computational requirements. This means that it can be used also on
embedded devices, such as cameras. The format is suitable for any type of images, it supports
color depths between 8 and 12 bits per channel. The format supports sequential and
progressive encodings. In sequential encoding, the image is encoded in single resolution, while
the progressive encoding means that the image is first encoded at a lower resolution and then
more details are added progressively. The main difference is in loading the image when not all
data is yet available. Progressive image can be shown whole at lower resolution, while
sequential image can only be shown partially in this case.

The JPEG file format contains image data as well as some metadata. The format is also known
as JPEG File Interchange Format (JFIF). A version of the format with additional metadata
about a digital camera it was created on is known as Exchangeable Image File Format (EXIF).
Since only more metadata is available in EXIF, both containers are compatible with regards to
the image content.

The lossless compression is similar to PNG, it uses predictive coding, followed by Huffman
coding. It is not frequently used, the more popular option is the lossy mode. The main properties
of the lossy JPEG compression are used also in video coding. The idea is to take into account
the human perception system and discard information that is less relevant to humans. The less
relevant information in this case are essentially higher frequencies within local regions.

The image is decomposed into 8 x 8 pixel blocks. If the image dimensions are not divisible by
8, extra data is added. Each block is then transformed to frequency domain using Discrete
Cosine Transform (DCT). The DCT is similar to the Discrete Fourier transform, but is more
suitable for compression as it describes the majority of the signal with less basis functions,
which we call spectral compaction. The DCT decomposes 64 bytes into a direct current term
(DC) which is essentially the mean value of the block and 63 alternating current terms (AC)
which are coefficients of different cosine basis functions. The coefficients are quantized based

on the quantization table, which is based on psychophysical tests and quantizes higher
frequencies more coarsely. The exact level of quantization can be controlled with an input
parameter which makes the format scalable and allows choice between final size and image
quality.

The quntized DC coefficients are then encoded using predictive coding as differences to the
DC of the previous block. The quantized AC components for each block are ordered using a
zig-zag pattern and then represented as an RLE sequence (the reason for this is that a lot of
coefficients will be zero after quantization). All symbols are then encoded using Huffman
encoding, which can use predefined code words or calculate them on-the-fly.

The JPEG format also supports chroma subsampling as another measure of lossy size
reduction. Since the human eye is less sensitive to changes in chroma than to changes in
luminance, we can use chroma-separated color format, in case of JPEG this is YCrCb, and
downsample chroma channels with a specific factor (usually 2). The quantization table used for
chroma data is also different from the one for luminance.

Video compression
Source material: Li and Drew, Fundamentals of Multimedia, Chapters 10, 11, 12

Video data is even more demanding than single image data because the size is multiplied by its
temporal length. Exploiting only inter frame correlation (spatial, chroma) is one option, a
practical example of this is Motion JPEG codec which essentially encoded each frame as a
JPEG image. Since JPEG is designed to be implemented efficiently, encoding and decoding can
be done in real time, but the resulting bitstream has low compression ratios, e.g. 1:10 or 1:20,
which are unacceptable for modern streaming and other multimedia use-cases.

Exploiting temporal correlation is therefore necessary. A typical widely-used approach to
temporal encoding is using block matching. An image is divided into blocks that are then
searched for their match in the previous frame . Usually a perfect match is not found, but the 1

idea is to find the most similar patch. The block can then be encoded using translation
vectors and the differences to the reference block. More sophisticated techniques, such as
grouping blocks together into macroblocks with shared compression parameters can also be
used this way.

The video compression and decompression standard is usually referred to as video codec.
Choosing the right video codec for a specific use case can be difficult and depends on multiple
parameters.

1 The block matching technique can be simple or more complex, the cost function depends on
the encoder and is not needed during decoding.

●​ Compression level
●​ Transfer speed (bit-rate) vs. distortion/loss
●​ Algorithm complexity
●​ Communication channel characteristics (delay, errors)
●​ Fixed / variable bit rate
●​ Standard compatibility
●​ Losing information during compression

In the past video codecs were developed by various companies who defended their market
shares also by restricting access to their decoders which resulted in poor interoperability.
Nowadays, most well-known and used video codecs are proposed by the Motion Picture Expert
Group (MPEG), a working group, a joint working group by ISO and IEC, established in 1988,
that proposes standards for video, audio and other multimedia forms. Some notable standards
are:

●​ Video and audio on digital devices (MPEG-1, MPEG-2)
●​ Video, audio, 3D graphics, Web, ... (MPEG-4)
●​ Storage and retrieval in video (MPEG-7)
●​ Interaction with multimedia applications (MPEG-21)

MPEG-1
The MPEG-1 is the first standard, published by the workgroup that included video and audio
compression specifications. The entire standard has five parts: video, audio, compliance,
reference implementation, system. The aim was to achieve storage and playback for
VHS-quality video and audio and enable real-time transmission at bandwidths at around
1.5Mbit/s. The compression aim was therefore 1:26 for video and 1:6 for audio without
excessive loss of quality. The intended use is asymmetric, the content is compressed once and
decompressed many times, therefore the encoder can be complex and encoding slow, but the
decoding process should be simple and fast and should run on various hardware configurations.
The video codec of the MPEG-1 meets several requirements, set by the proponents:

●​ Normal playback with random access
●​ Support for video editing
●​ Reverse playback and fast playback
●​ Different resolution, frame rate
●​ Cheap hardware implementation of decoders

Each frame in a MPEG-1 video sequence is represented using YCrCb color space. The
standard supports 2:1:1 subsampling, meaning that a block of four pixels has a shared chroma
information. This is shown in block division, luminance Y channel is divided in 16x16 pixel
blocks, while Cr and Cb channels are divided into 8x8 pixel blocks. Blocks are combined in
groups, called macroblocks, which are then joint into sequences, called slices. Each slice can

have different compression parameters that can adjust the size of the slice versus the quality.
Additionally, since each slice is encoded separately this makes error recovery easier.

To account for temporal redundancy, there are three main frame types in video codec, the I
frame, the P frame and the B frame. There are also D-frames, which are low-resolution
representations of key-frames and can be used for faster navigation, however, they are rarely
used.

The I frames are inter frames, each frame is self-contained and can be decoded completely in
a similar manner to a JPEG image, although using a bit different quantization tables. The frames
have their chroma subsampled and are organized in strides of macroblocks. These frames are
also called keyframes for the purpose of decompression because they allow random access to
the video content - they do not require any additional information to decode them.

The P frames are predicted frames that depend on the previous P or I frame for data and only
encode differences to it. The data for each macroblock is encoded as a motion vector, usually
computed using the similarity of the Y channel and the difference to the corresponding data from
the previous frame. Only if the differences in the macroblock are too big and would require too
much space, the macroblock is encoded as is and not as difference.

The B frames are bi-directional predicted frames that are encoded using previous and next I
or P frames. In this case an average of patch from previous and patch from the next reference
frames is used as the basis for difference calculation. B frames require prior decoding of
multiple frames, some from the future of the stream, therefore we also call their decoding
process delayed decoding.

The video sequence datastream of MPEG-1 video is organized hierarchically. A sequence is
composed of multiple groups of pictures (GOP), each picture is composed of multiple slices,
each slice of multiple macroblocks, each macroblock contains five blocks and each block is
represented as DC coefficient and a set of Huffman code words (variable length codes - VLC).

MPEG-2
The second standard, denoted as MPEG-2, was designed with higher frame resolutions
(HDTV) and a bit better transmission bandwidth (4-15 Mb/s) in mind. It is meant to be
suitable for digital TV and introduces support for interlaced video and better robustness
(error correction). The video codec is also designed to be highly scalable and compatible with
MPEG-1 video codec, i.e. MPEG-2 decoders should also decode MPEG-1 streams.

The interlaced video can be encoded in two ways. In frame format odd and even lines are
encoded as a single image, this means that they are encoded using a single header
(parameters). This is also the format used in progressive mode. On the other hand, the field
format encodes odd and even lines separately. Every field encoded as a separate image with

its own header. The encoder can switch between two modes, choosing the one that is more
suitable regarding size and image quality.

The video codec standardizes different profiles for various applications and quality levels (e.g.,
DVD, recordings from two cameras). The scalability aspect of the MPEG-2 standard is
important because some consumers of multimedia content cannot consume content in its full
resolution either because of bandwidth or computational limitations. Since the standard does
not define two-way communication, the video has to be separated into multiple layers, a base
layer that is self-contained with only coarse information and enhancement layers that
gradually improve the quality. The transmission of layers is separated and a client can simply
only retrieve and decode some layers and still get a decent quality. There are multiple types of
scalability:

●​ Spatial scalability (image size), base layer provides frames with lower resolution,
resolution is improved with enhancement layers.

●​ Frequency scalability - base layer provides only DC coefficients and motion vectors,
enhancement layers provide more and more AC coefficients.

●​ SNR scalability (signal-to-noise ratio) - base layer provides heavily quantized intensity,
coded in original resolution, enhancement layers provide residual information

●​ Temporal scalability - base layer provides images with lower frame-rate (e.g. only I
frames), enhancement layers provide missing frames in between, using motion
prediction to reconstruct them (e.g. B frames)

MPEG-4
While the MPEG-1 was primarily a VHS digital substitute and MPEG-2 addressed digital
television, the focus of MPEG-4 is interactive multimedia content. The video codecs that are
part of this standard have even better compression rates with higher throughput (bitrates). They
are robust in environments with frequent errors. One of the aspects of the standard is also the
definition of a media object and how multiple media objects can be randomly accessed and
used together to form an interactive experience.

Media objects have different sources, they can be real or synthetic images, sounds, vector
graphics, video. The key idea is that individual objects can be interacted with and
manipulated, but they can also be indexed and retrieved. Media objects are separated into
multiple channels and encoded separately, they are transferred in separate streams. The
objects can then be organized hierarchically to form a scene when decoded on the render
device. The standard defines a scene description language, BInary Format for Scenes (BIFS).
The BIFS defines the following hierarchy

●​ Video-object Sequence (VS) - Complete visual scene
●​ Video Object (VO) - Arbitrary non-rectangular shape
●​ Video Object Layer (VOL) - Scalable coding support for video objects

●​ Video Object Plane (VOP) - Snapshot of VO at a given point in time, in MPEG-1 and
MPEG-2 the entire frame is a VOP

●​ Group of Video Object Planes (GOV) - Optional group of VOPs

In terms of video compression, MPEG-4 defines two video codecs. The first video codec in
MPEG-4 standard is MPEG 4 Part 2, better known as H.263. It defines 21 video profiles
designed for various applications. The main improvements in comparison to MPEG-2 video
codecs are quarter-pixel motion compensation (Qpel), an ability to define motion vectors
down to a quarter of a pixel. This requires interpolation of blocks, but can improve image quality.
The other improvement is global motion compensation (GMC) which encodes the global
motion of a scene using an affine transformation. This can be useful in case of camera motion
or zooming. Each macroblock can be encoded using GMC or by using a local motion vector.
The most notable implementations of the H.263 are known as DivX and Xvid video codecs.

The second video codec in the MPEG-4 standard is called H.264 or Advanced Video Coding
(AVC). The first finished version of the coded specification was published in 2003, the coded
was initially intended to be used in high-definition video (Blu-Ray), but its adoption has since
then grown to be the most widely used video codec, also used for HD terrestrial television, it is
included in Adobe Flash Player and Microsoft Silverlight, and more importantly, it is a de-facto
standard for video in HTML5. The codec offers an increased compression ratio (up to 1:50) and
specifies a number of profiles, suitable for anything between video-conferencing and
high-resolution stereoscopic streams. The main advantages of the H.264 are:

●​ New VLC techniques, the context-adaptive variable length coding (CAVLC) and
context-adaptive binary arithmetic coding (CABAC), both offer an efficient way of
encoding data using entropy coding. The CABAC can achieve better results, but
requires more computational power.

●​ Variable block sizes - macroblock can contain blocks of different sizes.
●​ More accurate motion compensation by enabling more than one motion vector per

macroblock.
●​ The H.264 also introduces intra-frame prediction, an ability to predict values of entire

blocks using neighboring blocks (encoding difference to the block).
●​ Since compressing blocks individually can produce artifacts at the borders of blocks that

makes them noticeable (the effect is also called blocking), the codec introduces
signal-adaptive deblocking filters that smooth edges around the blocks, making them
less noticeable and thus increases the subjective quality of the resulting video (even
though the result of the filtering will not necessarily be a more accurate representation of
the source video). Unlike in MPEG-1 and MPEG-2 the deblocking filter is not an optional
addition of the decoder, but a feature in both the decoder and encoder. The in-loop
effects of the filter are taken into account during encoding and when a stream is
encoded, the filter strength can be selected and sent to the decoder.

Newer video coding standards
The next generation video codec is not part of MPEG-4, but rather of a standard MPEG-H (H
stands for heterogeneous environments), it is also referred to as H.265 and is considered a next
generation codec that could replace H.264. It’s intended use case is video streaming. The
goal is therefore to reduce the size of the video stream and improve its quality.

One of the main improvements is a variable block size, more specifically, a frame is divided
into coding tree units (CTU), each of them is divided using a quadtree partitioning, each end
node is a block of size 32x32, 16x16 or 8x8 pixels called a coding unit (CU). H.265 also
improves intra-frame and inter-frame prediction. Due to increased complexity, the datastream in
H.265 video codec is organized in a way that it supports parallel decoding of parts of the
frame. All these improvements result in up to 50% smaller streams than H.264, but at the cost of
significantly higher computational requirements (around 10x better hardware is required).

An upcoming improvement to H.265 is H.266 (expected to be standardized in 2020). The
standard is also referred to as Versatile Video Coding (VVC) or MPEG-I and introduces the
following new aspects:

●​ Resolutions from 4K to 16K
●​ Support for omnidirectional videos
●​ High dynamic range support
●​ Auxiliary channels (depth, transparency)
●​ Variable frame rate (0 to 120 Hz)

Expected encoding complexity of H.266 is up to ten times that of H.265. It is also expected that
the compression rate will be 30% to 50% better.

Image and video compression evaluation
Developing new compression techniques for multimedia is challenging, compared to lossless
compression where the decoded data has to exactly match encoded one, the result of lossy
compression has to only match good enough that the audience does not notice it. But qualitative
evaluation with real people is time consuming and costly.
Because of this, quantitative evaluation is often employed to objectively evaluate progress of
compression algorithms. Quantitative evaluation requires consistent use of the testing material
(datasets) and evaluation measures that compare input and output and assess their similarity.
Most frequently used evaluation measures are PNSR (Peak signal to noise ratio) and SSIM
(Structural similarity index). The first one compares images pixel-to-pixel, the second one tries
to compare more high-level properties and compares all pixels in a window of selected size.

Audio compression
Source material: Li and Drew, Fundamentals of Multimedia, Chapters 13 and 14

Sound is a one dimensional signal, therefore some techniques that are used to encode images
and videos do not apply here. But there is still a lot of redundancy in realistic sounds, so there
are a lot of options that can be used to compress raw audio data.

Lossless audio compression
Lossless audio codecs are not well known to an average music listener. They are important in
case where saving a loss-free signal is important (saving for post-processing, data analysis) or
to people that are distracted by lossy perceptual models that are suitable for a majority of
people, or simply audiophiles, i.e. people who are interested in high-fidelity sound reproduction
and seek to reproduce the sound of a live musical performance.

One of modern lossless audio codecs is Free Lossless Audio Codec (FLAC). It offers size
reduction from 50% up to 80% (in some cases). The compression uses model prediction of the
signal based on past values, followed by encoding residuals (difference between prediction
and real signal using Golomb-Rice codes. This is then followed by run-length encoding. In
case of stereo signal inter-channel correlation is also taken into account. The data is encoded in
multiple frames that are divided into subframes that contain short chunks of audio data.
Subframes share some encoding parameters, while the parameters can change completely
between individual frames. The coded supports several prediction models

●​ Zero - encoding digital silence, constant value predicted, encoded with RLE
●​ Verbatim - zero-order predictor, residual is signal itself, used when no model is suitable
●​ Fixed Linear - fitting p-order polynomial to p points, efficient algorithm
●​ FIR Linear - linear combination of previous samples, slower, diminishing returns

Golomb coding is a hybrid encoding technique that is efficient if small values dominate
distribution. Each value is split in two parts (divided by parameter M), the quotient is encoded
using unary coding (number Q is encoded by Q ones followed by a zero), the remainder using
truncated binary encoding, a type of entropy coding suitable for uniform probability
distributions (generalized way of coding a set of 2N numbers). Rice coding is an efficient
version of Golomb coding where M is 2N, meaning that division can be run efficiently on digital
computers.

Speech compression
There are several techniques designed especially for coding human speech and relying on its
characteristics. Non-linear signal quantization takes into account that speech signals have a
non-uniform amplitude distribution, i.e. small signal amplitudes are more likely than higher ones.

Similarly, a multi-channel encoding encodes different frequency bands with different
resolution, allocating more space for the frequency spectrum of human speech.

More sophisticated encodings model the speech using a source-filter model. Human speech is
formed by air traveling from lungs to mouth, the vibration (excitation signal) is added by vocal
fold opening and closing, and is molded by the vocal tract shape, e.g. mouth opening and
closing, tongue moving. The configuration of the vocal tract changes the spectral shape of the
excitation signal. Encoder for speech signal is also called a vocoder (voice + encoder). We will
look at two examples of vocoders used in telephony.

The Linear Predictive Coding (LPC) vocoder encodes frames (parts of the signal, usually we
use 30 to 50 frames per second) as parameters of a time-varying model of a vocal tract.
Transmitted data is not a waveform, but rather a set of parameters (LP coefficients, signal gain,
pitch and if a sound is voiced or unvoiced). Additionally, the model coefficients change slowly so
they are predicted using a linear model of the previous coefficients (this is where the name LPC
comes from, a LPC-10 vocoder uses 10 past coefficients). Thus, the actual size of the data
transmitted is low, but the model assumes that the waveform is speech of a single person,
anything else will be encoded poorly. Voiced and unvoiced phonemes are encoded differently,
for voiced phonemes the source signal is a periodic function, while unvoiced phonemes use a
noise wide-band noise generator. This signal is then shaped using model parameters. The
LPC-10 is intended for bandwidths of about 2.4 kbps, which is suitable for GPS mobile
telephony.

The Code-excited Linear Prediction (CELP) vocoder is a more complex vocoder, its primary
purpose is still encoding of single-person speech, but it also performs well if the input sound
signal is multiple people talking or arbitrary signal. The signal is encoded using LPC (short time
prediction) as well as an adaptive codebook searching (long time prediction) that uses code
books of waveforms. The closed loop process of optimizing the encoded form to be a
perceptually best representation of input signal is called analysis by synthesis. The CELP
vocoder is a part of MPEG-4 audio compression standard, it is intended for bandwidths of
about 4.8 kbps.

MPEG-1 audio compression
The MPEG-1 defines three audio codecs, also referred to as layers because they offer
downwards compatibility (e.g. layer 1 stream can be decoded with a layer 3 decoder). Each
layer requires a more complex encoder. The quality of the final audio depends on the available
space (bitrate), this dictates the bit allocation and the resulting perceptual quality. Higher layer
codecs will have a better perceptual quality at the same bitrate, but require more complex
decoders.

Main compression concepts introduced by the MPEG-1 codec are tuned to exploit imperfections
in the human auditory system to reduce the amount of encoded information. The core

compression mechanism is called frequency masking. This psychoacoustic phenomenon
arises when two close frequencies are registered at the same time. If one of them is louder it will
mask the other one. The masking is more likely to be caused by a lower frequency that masks a
higher one. Frequency masking is combined with non-uniform quantization, more precisely,
the separation of frequency spectrum into critical bands. The bands are the result of grouping
of hair cells in our auditory system that respond to a certain frequency range. Within a single
band a strong frequency overwhelms cells and masks other frequencies within the same band.
If a sound spans two or more bands it will be perceived as louder. Based on experiments it was
determined that a human has about 24 to 25 critical bands. They are not distributed uniformly
across the spectrum, we call this phenomenon perceptual non-uniformity. Below 500 Hz critical
bands have approximately equal width of 100 Hz, above this threshold the bandwidth increases
linearly.

Another psychoacoustic phenomenon that is taken into account is temporal masking. After a
loud sound it takes time to hear a quieter sound because hair cells need a time-out as they are
saturated. The duration depends on time and frequency similarity.

The most important aspect of lossy audio compression is how many bits are allocated to specific
bands so that it will not impact the perceived quality of the signal. Bit allocation algorithm is not
part of the MPEG-1 standard and may be done in several possible ways, depending on the
encoder. Typically, the observations described in the previous paragraphs were measured in
psychological experiments and are combined in a psychoacoustical model. Based on the input
signal the model computes masking levels for different frequencies. The frequency masking
threshold computed by the model is combined by absolute hearing threshold into global
masking threshold (GMT). The encoder then computes Signal-to-Mask Ratio (SMR) as the
difference of Signal and GMT and Mask-to-Noise Ratio as difference of Signal to Noise Ratio
(SNR) and SMR. These values are then used to determine how many bits can be used for a
certain band. The SNR depends on the quantization level used for the band and therefore the
number of bits used. We would like to get SNR that would be below GMT, however, this is not
always possible. The distribution algorithm iteratively selects the band with the lowest difference
between SNR and SMR and increases its bit allocation.

The MPEG-1 Layer 1 audio codec uses 32 filters to separate signals into uniformly distributed
bands. The frequency spectrum is obtained using a FFT on 8 ms blocks of the signal (for 48
kHz signal). Each frame contains 384 samples, 12 samples from each of the 32 filtered
sub-bands. Samples are scaled and quantized using a simple perceptual model that uses only
frequency masking. The Layer 1 codec was intended to be used for stored audio and is the
simplest of the three layers. Perceptual tests have shown that Layer 1 achieves excellent
performance at a stereo bit rate of 384 kbit/s.

The MPEG-1 Layer 2 was designed for digital audio broadcast, it adds some improvements to
reduce bitrate and improve quality at the cost of a more complex algorithm. It uses three sample
groups together (3 times 12 samples), groups can share scaling factors and can be skipped if

they do not contain information. The perceptual model also uses basic temporal masking in
addition to frequency masking.

The MPEG-1 Layer 3 was initially intended to be used for audio transmission over ISDN lines,
but is nowadays primarily used for music storage (MP3 format). MP3 format has a
near-universal hardware and software support, primarily because MP3 was the format of choice
during the crucial first few years of widespread music file-sharing evolution. The main
improvements of Layer 3 are the introduction of non-uniform critical bands, which makes the
frequency spectrum more perceptually segmented. The frequency spectrum is obtained using a
Modified DCT, which addresses the problem of boundaries that are caused by windowing the
signal. The codec uses a perceptual model with both frequency and temporal masking and also
takes into account redundancy of the stereo signal (either as joint signal with different intensities
or by coding average signal and differences separately). The data is further compressed using
Huffman coding. Layer 3 is the only layer that also supports variable bitrate encoding (VBR)
which means that more bits can be allocated to the more complex segments of the signal and
less for simpler segments in contrast to constant bitrate encoding (CBR) which is the only
option in the Layer 1 and Layer 2 which limits the bitrate for all encoded signal blocks.

Stereo audio also offers a lot of opportunities for additional compression, the two channels are
usually highly correlated. A simpler approach to stereo compression only encodes an average
intensity signal together with scaling factors for both channels (same signal, different
loudness). Better reproduction is achieved by compressing separately the middle channel
(average) and the side (difference between channels). Since the difference is usually small, it
can be compressed efficiently.

MPEG-2 audio compression
The MPEG-2 introduces two audio coding specifications. In Part 3 the MPEG-1 audio codecs
are extended in a backwards compatible way to provide support for up to 5.1 channel audio
(5 + subwoofer), up to 7 additional language channels and standard support for lower
sampling frequencies.

Advanced Audio Coding (AAC), which is a part of Part 7 is aimed at transparent sound
reproduction in theaters. It is not backwards compatible, the algorithm changes some parts of
Layer 3 encoder that were considered ad-hoc with more clean implementations (e.g. using pure
MDCT). The final algorithm is more complex, but in general provides a better perceivable quality
at the same bitrate than MPEG-1 Layer 3. AAC is used in DVD and related media.

Information retrieval
Multimedia data is acquired, processed and stored, but with the expansion of various
multimedia archives, efficient access of it has also become of paramount importance. The field
that deals with efficient access to data is called information retrieval and it primarily deals with

querying text documents based on their content. We will therefore first explore this topic and
then move on to retrieval of visual data, which bears some conceptual similarities with text.
Lastly, we will look at how retrieval systems are evaluated.

Text retrieval
Source material: Manning et al., Introduction to information retrieval, Chapters 1 - 4, 6, 8, 9

The goal of text retrieval is to return relevant textual documents based on a search query. In
most retrieval scenarios the textual data is not structured in any specific way (apart from the
grammar of the specific language) and is therefore not suitable for direct retrieval using
languages like SQL. The query can be based on simple expressions, e.g. which words should
and should not be included in the documents or may be more complex. Information retrieval
addresses the following questions:

●​ How to use language to specify what we are looking for? What do queries look like?
There are multiple ways to look for the same content.

●​ How to match a query with documents in the database? How to efficiently match
documents with a query as documents can be very large and numerous?

●​ How to optimize the query results for better experience? How to first return the most
relevant results? How to iteratively improve results quality?

Since the key question in information retrieval is how to search large quantities (of data and also
queries), we have to efficiently store relevant information so that we can quickly interpret
queries. Besides the process of querying the dataset we therefore also have the process of
indexing the documents, i.e. organizing them in a way that access to a subset of documents
based on a given query is efficient and fast. The central component of information retrieval is
called a query engine. The engine is a program that takes care of indexing documents, parsing
user queries, matching documents to query specifications, ranking matched documents by
relevance and returning results to the user.

Boolean expressions
The basic query scenario is that the user searches for documents that contain some words and
does not contain other words. These kinds of queries are called Boolean expressions.
Searching all documents would be time consuming even for such simple query setups. In order
to efficiently index documents we have to keep a record of which documents contain which
words. This information is stored in a binary matrix called the incidence matrix. Using the matrix
we can simply check which columns (documents) match all required criteria words (rows) and
return the list. However, this indexing approach is nonoptimal and requires a lot of memory.
Since there are many rare words that do not appear in many documents, the incidence matrix is
very sparse. It is therefore much better to only keep lists of documents that contain a certain
word. A list of document IDs for a word is called an inverted index for that word.

Boolean expressions are combined with two main relations. The AND relation requires
expressions at both its sides to be valid in order to keep the document as a valid result. In terms
of inverted indices this means that we have to compute an intersection for both words. The OR
relation requires that at least one of the sides is valid, which means that a union of inverse
indices is computed. The execution of queries can be significantly optimized if we know the
length of individual indices and execute their merging in the right sequence. Combining multiple
AND relations is more optimal if we start with the two shortest indices as there is a large chance
that the result will also be short. In case of nested OR relation, its length can be approximated
with a sum of lengths of all included term inverted indices.

Documents and dictionaries
The capabilities of a search engine are largely dependent on how the documents are chosen
and how they are indexed. The document unit choice influences the granularity of our search.
Fine-grained search (small document units) will result in poor recall as we may lose important
information that will not be retrieved by the query. Coarse-grained search will have good recall
(desired information will be almost certainly in the retrieved documents), but since the
documents are huge, these results will not be useful to a user. Document unit selection depends
on the use case, sometimes indexing and searching at multiple granularity levels is also an
option.

During indexing, i.e. the construction of inverted indices, each document is first split into a list of
tokens, then linguistic processing and tokens normalization reduces the number of different
words by mapping them to their common semantic root. Then, a list of normalized tokens is
combined with document indices and the pairs are sorted alphabetically by token and grouped
into lists for individual tokens, i.e. an inverted index. We also remember how many documents a
term appears in as this will be useful when estimating its relevance.

Tokenization transforms text, which is represented as a sequence of bytes into individual atomic
units called tokens. Tokenization has to deal with different encoding schemes, direction of text,
etc. Some words can be written in various ways, e.g. with punctuations (e.g. abbreviations),
some words are connected with hyphens or even merged together. Some languages do not
even separate individual words so tokens have to be extracted using different means.

Words that occur very often in all the documents and do not carry any specific meaning are
called stop words. These words are removed at the very beginning of the processing pipeline
to save processing time, space and to improve accuracy. Lists of stop words are language
specific. A good search engine takes care that in some cases stop words may also appear in
phrases where the entire sequence is important and where stop words have retrieval value. This
is why not all search engines use stop word lists.

Token normalization is another pre-processing step that is language specific. Same words can
appear in different forms, lowercase or uppercase, accent marks, language variations and

number or date formatting conventions. The task of normalization is to reduce the variations by
identifying these similarities and replacing all equal tokens with a single representative. Related
to normalization are also the processes of lemmatization and stemming. Lemmatization is a
normalization process based on language rules, while stemming is a heuristic approach to
normalization based on cutting parts of words that is faster but less accurate.

Word relationships
Searching for individual words can be useful, but many times we are interested in a sequence of
words. How can only documents where words appear in a certain order be returned? There are
two approaches to encode relationships into the index structure. The first one is called bi-word
index and essentially means that pairs of tokens are indexed together instead of individual
tokens. This approach is simple to implement, but it increases the size of the index with more
terms and offers only limited relationships between terms in documents. The other option is
called positional index. In this case each document index in a list for a term also contains a list
of term positions where the term appears in the document. This approach is more complex,
increases the size of individual inverted indices and final query execution time, but can support
more complex relationships. In some cases both approaches are used in tandem, bi-word index
is used for simple and common phrases, while positional index is used for other relationships.

Error tolerance and incompleteness
One of the main usability features in information retrieval is tolerance to query errors, e.g.
spelling mistakes or incomplete queries. Incomplete queries are usually recognized by the
wildcard symbol which denotes that anything can replace it so the terms are a combination of
specified subsequence of letters and parts that can contain arbitrary letters. Normal indexes use
a hash table, which is not suitable for wildcard queries. In some cases, e.g. searching for words
with the same prefix, an ordered data-structure, e.g. a tree, can be used. Other techniques, like
Permuterm or K-gram index can be used, however, processing wildcard queries is generally
slower than processing simple Boolean queries.

●​ Permuterm: index contains all shifts of specific terms with a special symbol that denotes
end of the word. With permuterm index we can only process single wildcard queries, this
is done by adding the end symbol to the query term and shifting it so that the wildcard is
at the end. Then the lookup is essentially a prefix matching operation.

●​ K-gram index: dictionary contains all substrings of length K, special sign is used to
denote start and stop. Each substring is connected to the terms that include this
substring. A query term is split in chunks of length K based on wildcard symbols, then
each substring is searched for in the index. Finally, post-processing joins these results
together. In cases where subsequences longer than K symbols are present in the query,
an extra step has to check that the matched terms actually match all of them (brute-force
string matching).

Error correction can be done based on each term separately. In this case words that are not in
the dictionary are searched for the most similar words in the dictionary. Levenshtein distance or

phonetic distance can be used to compute most similar terms. Additionally, context can be used
for phrases, e.g. using grammar or frequently used phrases.

Ranking and comparing documents
Boolean queries can only determine if a document matches the query or not, this still generates
a large list of documents that have to be assessed by the user. It is more convenient to rank the
documents by their relevance to the query.

The basic idea of relevance ranking is that documents that include a queried term multiple
times should be more relevant than those that include it less, we call this term frequency
ranking. Collection of all words in the dictionary defines a vector space, every document is
represented in this space as a point based on the number of times terms appear in it. This
approach does not take into account the context of individual words (we call it a bag-of-words
model), but can still give pretty good results in an efficient manner. To make the vector
description even more robust to very frequent terms that are not informative, their influence is
reduced by taking into account the term frequency in all documents, the document frequency.
This way we get the “term frequency inverse document frequency” (tf-idf) scores, we multiply the
frequency of a term with its inverse document frequency (logarithm of number of all documents
divided by the number of documents that the term appears in). This way the weight of the term
is high if the term is frequent only in a small number of documents, and low if it is rare in a lot of
documents or if it appears in almost all documents. The composite weight for a document that
was matched by a query that includes multiple terms can be simply term weights for terms in a
query summed together.

Comparison of documents can be then represented as a distance between points in the vector
space. A frequent and efficient distance measure for comparing sparse description vectors
(each point is essentially a vector) in a high-dimensional space is cosine distance, which is a
dot product of normalized vectors (using Euclidean distance). This way, documents can be
compared between themselves or to a query and ordered by their distance. To perform this kind
of ranking in a retrieval system we have to store document frequency for each term as well as
its term frequency for each document.

Relevance feedback
From the perspective of interaction with a query engine and the document corpus behind it, it is
unlikely that the user will be familiar with all the documents in the dataset, therefore he/she does
will not know how to specify a specific enough query (e.g. using synonyms, hypernyms, or even
spelling errors). There are two approaches of making the database more accessible:

●​ Global: Expand query to as many possibilities with as many possible terms with error
correction, synonyms, etc.

●​ Local: Based on interaction between the user and the system, the user is given a result
and an option to select relevant and irrelevant documents from the list and improve the

query this way. This approach is also called relevance feedback and is based on vector
space similarities between documents.

In relevance feedback all documents are represented in a vector space, we know the query as
well as which returned documents are relevant and which not. The task of the improvement
algorithm is to find documents that are maximally similar to relevant results and minimally similar
to irrelevant results. This estimate can then be improved in a feedback loop with several
iterations. An example of an algorithm that does this is Rocchio algorithm. The algorithm is
actually just a formula that takes a vector of the original query, a sum of vectors of relevant and
sum of irrelevant documents and sums them together with predefined weights. The result is
then used as a new query vector.

Relevance feedback loop can also be used to improve queries without user interaction, we
call this pseudo or blind relevance feedback. In this scenario we use the default retrieval
method method to find the most relevant documents, we assume that the K highest ranked
documents are relevant and mark them as such, then we compute relevance feedback (e.g.
with Rocchio algorithm) and improve the query results. Entire process can be repeated several
times. Experiments have shown that this approach improves the relevance of the results even
though the user is not involved in the process at all.

Evaluating retrieval systems
Objective evaluation of retrieval systems helps in understanding which approaches work and
which do not. The main question that we are trying to answer in evaluation is how many of the
retrieved documents are relevant? To evaluate a retrieval system we need a representative
dataset that is annotated, i.e. we already know which answers we want for which query. For
each query we can therefore look at results and count the number of documents among the
returned documents that were expected (True Positives) and ones that were not (False
Positives). We can also look at the remaining documents and check which documents were not
returned, but should be (False Negatives) and which are correctly left behind (True Negatives).
With this in mind we define two main measures:

●​ Precision: Percentage of relevant documents among retrieved documents, i.e. TP / (TP
+ FP)

●​ Recall: Percentage of returned relevant documents with respect to all relevant
documents, i.e. TP / (TP + TN)

Precision and recall are related measures, without a significant improvement to the retrieval
algorithm, we cannot improve both, but usually sacrifice one aspect for the other. Precision
typically falls if the number of retrieved documents is increased, while recall increases if the
number of retrieved documents is increased. To summarize both measures in a single score we
use an F-measure (also called F1 score) which is a harmonic mean of both quantities (2 *
Precision * Recall / (Precision + Recall)).

To extend the evaluation from unordered query results to relevance ranked query results we
introduce a threshold on document similarity. This threshold decides how similar a document
must be to a query to consider it relevant. Depending on the threshold we get different precision
and recall values which can then be plotted as a plot in 2D space, a precision-recall curve. We
can also compute Average Precision (AP) as an average of precision over multiple thresholds
and Mean Average Precision (MAP) as an average of AP for multiple queries.

Another way to look at the performance of a retrieval system is using a Receiver operating
characteristic curve (ROC) with respect to acceptance threshold. The curve displays true
positive rate (sensitivity, TP / (TP + FN)) in relation to false positive rate (negative specificity, FP
/ (FP + TN)). The best operation point for the system (best compromise for a threshold) is the
point on the curve with the minimum distance to point (0, 1). As an overall performance we can
compute the area under the curve (AUC) which gives us an average over all thresholds.

Image retrieval
In comparison to text documents, where most tokens can be reasonably easily extracted from a
text, images (as well as video and audio) are more challenging because extraction of
meaningful atomic units is not an easy task. Many image retrieval systems therefore resort to
either text metadata accompanying the image (which is often incomplete) or user annotations
(which are unreliable and scarce). Describing image content directly from the image requires not
only decomposition of individual objects, represented by the image, but also their individual
actions and relationships. A big problem is also perceptual relevance, In reality images are still
described using simple low-level descriptions, e.g. color distribution, texture, or shape, while
semantic approaches are still largely in the domain of academic research.

Before we review some primitive description techniques, let's review the basic idea of an image
retrieval system. The concept is largely inspired by text retrieval. For each image that is entered
to the database we extract a high-dimensional feature vector of its features, either basic or more
complex. A query is also represented as an image and is also reduced to a vector description.
Then all images in the database are compared to the query vector and ranked according to
similarity, the best N of them are returned as a result. This is of course the most basic idea, a
more complex system would also use indexed terms, which requires a more sparse semantic
representation of content to work efficiently.

Primitive image descriptors
Source material: A. del Bimbo, Visual Information Retrieval

Primitive descriptions of image content are very close to pixels that compose it, we are talking
about color of individual pixels, local texture, shape. The goal is to bring these low-level
modalities to a vector space so that individual documents can be compared.

One of the simplest low-level representations is a distribution of color. Color of an image can be
described as a distribution in color space, but more generally it is described with a color
histogram, a non-parametric representation of the distribution that can be easily interpreted as a
vector by normalizing the histogram (so that it is not dependent on the size of the image). Color
histograms are also robust, they are invariant to change in size or rotation as well as partial
occlusions. The downside of color histograms is that they do not contain any spatial
information which makes them useless to encode relationships. Color histograms are also
sensitive to illumination changes. This can be to some degree addressed by using a color
space where chroma is separated from the luminosity and only comparing the chromatic
components.

The texture is another property that can be easily converted to a vector description. Because of
a lack of exact definition of texture there are many ways to describe it. We know that texture is
loosely a description of the spatial arrangement of colors or intensities in an image or a selected
region of an image, which means that a texture descriptor has to reflect this arrangement in
some way. Another question regarding texture is the level-of-detail. Looking close enough in
the scene we can find that most attributes that are considered texture are in fact shape
properties. Texture can be described using spatial relationships of individual pixels, using
frequency analysis and using “high level” perceptual properties, such as periodicity, coarseness,
dominant orientation, and complexity.

●​ Cooccurence matrix is a matrix that encodes how many times does pixel of value V1
appear next to pixel of value V2 in a specific pre-defined relationship. This matrix can be
computed for regions of different sizes which means that an image is in fact a collection
of cooccurence matrices. These matrices can be quite big so images are usually first
quantized to a lower number of values per pixel. Various features can be computed for
each matrix, e.g. energy, entropy, contrast, homogeneity, correlation. These quantities,
taken from multiple matrices, then compose a description vector.

●​ Local Binary Patterns are another low-level texture descriptor. In this case each pixel
gets a LBP value based on which of its eight neighbor pixels has a higher or lower value
than itself (having eight neighbors means that the binary value obtained by comparison
is again 8-bit). These LBP values are then summarized similar to a color, using a
histogram.

●​ Autocorrelation is a measure of self similarity of an image patch, shifting pixels and
comparing them to the original patch using normalized scalar product results in a
response that can clearly show if the patch contains a repetitive structure as
self-similarity of shifted patches results in multiple strong peaks.

●​ Fourier transform encodes image as a set of sinusoidal basis functions. In texture
descriptors we are primarily interested in the energy of the frequency spectrum. The
features that are extracted from the spectrum are usually sums of areas in frequency
space, i.e. features are sensitive to certain parts of the spectrum.

Shape of objects is tightly connected to the concept of texture. Shapes are initially edges or
binary masks that are encoded with a numeric representation, such as moments or differential
codes. In some cases shape descriptors can be compared using normal vector similarity,
another option is to compare it using transformation distance, e.g. the amount of transformation
required to convert query shape to the given shape.

Since low-level representations, usually encoded as a histogram, do not convey spatial
information well enough, the image is divided into multiple regions, a local histogram is
computed for each region alone and the histograms are combined together using
concatenation. A more advanced form of this technique is called spatial pyramid, a full image
histogram description is concatenated by multiple levels of sub-divided image histogram
descriptions. This is a compromise that encodes spatial information as well as the global
location-invariant one.

Towards semantic description
A big step towards more sparse and semantic description of images came with the introduction
of sparse local features that are clustered to combine their appearance variance with fixed
dictionary size. The approach is generally called bag-of-words, local features are detected and
assigned to their corresponding words. Then the frequency of these words in the image gives us
a descriptor vector that can be used similarly to the one in text retrieval. The advantage of this
approach over primitive low-level features is that the process of acquiring (learning) the visual
words gives us basic semantic information, some basic frequent parts emerge (e.g. wheels on a
car) because they appear in the training images so often.

One of the early bag-of-words approaches used to detect stable regions, e.g. corners and blobs
and describe their normalized (invariant to rotation and scale) local neighborhood with a Scale
invariant feature transform (SIFT) descriptor. This descriptor divides the region into 16
sub-regions and computes histograms of quantized edge histograms in each of them for 8
orientations; a joint histogram has a standard size of 128 bins (16 x 8) and is normalized. An
unsupervised approach is used to get a dictionary of words, descriptors are acquired from a
set of training images and clustered using K-means clustering. This results in K word
prototypes, when an image is presented to the system, the features are acquired and matched
to the closest word. Then the words are counted in a form of a K-dimensional histogram.

Another approach to the construction of semantic features is to hierarchically combine edge
features, detected using Gabor filters. These features are learned using their cooccurence in a
training dataset. This way a multi-layer hierarchy is established that can (at top layer) describe
very complex parts. Because the number of parts is again finite, a histogram of these features
can be computed at top or multiple layers.

The last large conceptual jump in semantic image retrieval came in the form of end-to-end
learning, which means that both the feature and a classifier are trained at once in a single

framework that directly processes image pixels and outputs a high level decision about an
image. This kind of learning required conceptual improvements, large quantities of data, and
sufficiently powerful hardware. The conceptual improvements that were required for this leap
came in the form of advanced and efficient artificial neural networks that were a well known
method since the 1960s with their roots in biological systems. Recently these methods were
upgraded with a convolutional approach to neuron weight sharing that improved performance in
image classification tasks due to spatial invariance and reduction of the number of parameters.
A convolutional neural network consists of a set of layers, each of them is processing the
responses from the previous layer, the top layer is subjected to a cost function that compares its
responses with the desired values that usually present a high-level concept, e.g. a category. The
training of such a network is reduced to backpropagation of cost function errors down the layers,
correcting the weights so that they would produce a response that is closer to the desired one.
To make the learning process efficient, there are multiple additional layers that process
responses in other ways, e.g. max-pooling, dropout, due to the brevity of this description we will
not talk about them. The configuration and ordering of these layers is called a network
architecture. Once such a network is trained for a sufficient amount of time, the weights start
resembling local semantic parts.

The first use case for convolutional neural networks was object categorization and detection,
however, high-level feature responses can also be used as vectors in retrieval systems.
Additionally, a multi-object detector network can be used to index images using semantic words
based on visual categories, e.g. by detecting objects on an image and use them in Boolean
search scenario to speed up search, the index of categories provides an initial subset of
candidate images that are then ranked based on vector similarity. Recently deep-learning
approaches have also been used in even more ambitious retrieval scenarios, e.g. describing
spatial relationships of objects and describing scenes as a whole.

Segmentation in retrieval
One of the important aspects of semantic image retrieval is correct decomposition of images. If
we are searching for images with a certain semantic category, describing an entire image with a
single descriptor makes this task hard due to the noise in the descriptor (background, other
objects). We can describe only parts of an image, but we do not know in advance the number or
shape of the regions. As we have mentioned in the previous section, we can use object
detectors to detect objects of specific categories, but this can only be used for pre-trained
categories.

Segmentation decomposes images into a set of regions. The division of regions can be based
on simple low-level properties or can have some semantic qualities. The classical approach to
segmentation uses unsupervised learning techniques to establish division, and the image is
considered a set of elements with different properties that are clustered together. The key idea
is to describe pixels or patches with attribute vectors that can then be used in clustering. These
features can be very simple, e.g. color of a pixel or more complex descriptors of local texture.

●​ Color - each pixel is represented as a point in a color space, colors are then clustered.
●​ Cooccurence - cooccurence matrix was already described in previous section, the local

vectors of matrix properties can also be used
●​ Textons - textons are descriptors that are learned from data, each pixel described with

responses to a bank of filters (e.g. 24 filters). Then response vectors are clustered, the
clusters are then representing individual textons (similar to words in bag-of-words idea).
A local texture can be described with a histogram of textons - these histograms are
descriptions that are clustered for segmentation.

When working with appearance information clusters will unlikely be spatially coherent, if this is
desired then location information has to be encoded as a part of the description. This is the
case in over-segmentation, i.e. superpixels, where the idea is to divide an image to small local
units of multiple pixels that follow the structure of an image and can then be used for high-level
processing (e.g. segmentation) instead of raw pixels.

For clustering features for segmentation, multiple methods can be employed. Generally the
question is if we know the number of clusters in advance or if the method should decide on their
count based on some kind of similarity threshold parameter. Some notable methods are:

●​ K-means: fixed number of clusters, defined with K. Cluster centers are randomly
initialized, feature vectors are assigned to the closest cluster. Then the centers are
computed again as the mean of all assigned feature vectors. This approach converges if
the distance measure is Euclidean.

●​ Mean-shift: cluster consists of all feature vectors that converge to the same modus
using mean-shift mode-seeking. Cluster number is determined automatically, but kernel
bandwidth and type have to be provided. The kernel defines an attraction field, i.e.
region in space where all points will have the same modus. Unfortunately the algorithm
does not scale well to a high number of dimensions.

●​ Affinity propagation: the key feature of the algorithm is that it can work with an arbitrary
similarity measure (affinity) between features. The affinity does not have to abide triangle
inequality and does not even have to be defined for all feature pairs. The number of
clusters is defined automatically, clusters are defined with exemplary features and not
with mean feature vectors. The algorithm works in an iterative manner with messages
passing between nodes in a graph.

The segmentation described so far could in theory segment images in different objects if their
appearance was different, however, the segments were still just groups of similar pixels. In
semantic segmentation groups are already assigned semantic categories. The most common
view of semantic segmentation is pixel-wise categorization, i.e. each pixel is assigned a
category. A classical example of this is using texton features together with a classifier that is
trained to classify histograms of textons (bag-of-textons) into semantic categories.

As with classical object categorization, semantic segmentation was significantly improved with
the use of convolutional neural networks. Instead of training for a single top-level decision,

these networks are designed for per-pixel classification. The key idea is not to use any fully
connected layers or treat image features as vectors, but to retain the spatial information until the
top of the network. Because of this, segmentation networks are also called fully convolutional.

An issue that has to be addressed with respect to semantic segmentation with convolutional
neural networks is how to obtain a full resolution segmentation if modern network architectures
rely heavily on pooling layers where an entire response field is subsampled (reduced in spatial
resolution) and only a maximum response in a local region is retained. These layers reduce
parameter count and increase spatial robustness. By default the resulting segmentation mask is
therefore very coarse. A simple solution to this is to use interpolation to increase it and
potentially to use post-processing like Markov Random Field to improve local accuracy. Novel
solutions also include dilated convolution layers that do not decrease resolution while still
increasing spatial robustness and deconvolution layers that actually increase the spatial
resolution. Deconvolution layers are used in encoder-decoder architectures where convolutional
layers first encode visual information in high-dimensional, but low resolution vectors;
deconvolutional layers then decode this information from high-dimensional feature space to
per-pixel categorization.

Retrieval in video
Conceptually, retrieval in video can be very similar to retrieval in single images. Each frame is a
document, while the entire video is a corpus. Additionally, video does not only contain still
objects and object categories, but also short term actions and long term temporal relationships
between entities. At the moment this kind of semantic data is still a matter of research and is not
extensively used in retrieval.

Since the video is composed of many quite similar frames, it is much more efficient if we only
index a subset of representative frames that we call keyframes. Keyframes can be detected
based on predetermined shot boundaries, by taking their first, last or middle frame. Or can be
obtained from “raw” video using clustering or subsampling. To ensure temporal consistency,
features detected in keyframes can be tracked over several frames to ensure that they are
consistent. Spatial consistency can also be employed in cases when a specific object is
searched for (features should appear close to one another).

MPEG-7
In contrast to most other MPEG standards, the MPEG-7 does not describe video and audio
codecs, but rather a multimedia content description standard. It is complementary to MPEG-4
and is meant to enable efficient access and manipulation of multimedia content by
standardizing the elements of text-less object retrieval. It therefore standardizes the following
components:

●​ Object descriptors - what and how can be described

●​ Description schemas - structure and semantics of the relations between its
components

●​ Description query - how to search for content

The video and audio content can be described at a level of objects that are in a certain semantic
relationship. The main problem of this idea is that the standard does not address the problem of
semantic-gap, the large divide between low-level visual features and the meaningful high-level
concepts that humans operate with.

Retrieval in audio
TODO

Audio sample music retrieval
Shazam is an audio retrieval system that identifies songs by analyzing a short audio sample
and matching it against a database of music tracks. Its core technology relies on audio
fingerprinting, a technique that transforms audio signals into unique, compact representations.
When a user records a clip through the app, Shazam converts the sound into a spectrogram—a
visual representation of audio frequencies over time. The system then extracts landmark
features, such as prominent peaks in the spectrogram, which serve as robust identifiers.

These landmarks form the basis of Shazam’s audio fingerprints. Each fingerprint is a sparse
representation designed to be resilient to noise, distortion, or variations in the recording
environment. The fingerprints are compared to those in the database using a hash-based
lookup system. By leveraging efficient hashing and indexing methods, Shazam can perform
rapid searches, often identifying songs within seconds. Once a match is found, it retrieves
metadata about the track, such as the title, artist, and album.

This system is highly efficient because it balances robustness with scalability. The use of
spectral peaks as fingerprints ensures the system works well even in noisy or low-quality
recordings. Meanwhile, the compactness of the fingerprints and the hashing mechanism allow
Shazam to handle a massive database without compromising speed or accuracy. This
combination of techniques underpins its widespread success as an audio retrieval tool.

Emerging Trends
In the last chapter we will look at several emerging trends in multiumedia related to interactivity
and other aspects. We will look immersive video as a next generation of video experience.
Next, we will look at augmented reality as a challenging field of recognizing external
environments and presenting additional content in it. We will also look at interactive surfaces
as a way of providing new interactive experiences with display technologies. This overview is by

no means complete, but it highlights several exciting new directions for multimedia systems in
the near future.

Immersive video
TODO

3D Video
3D video has its roots in stereoscopic photography, in both cases the goal is to create an
illusion of depth by presenting the eyes with two slightly different images of the same scene.
The images are taken at two different positions approximately 50 mm to 75 mm apart. The
technology of presenting stereoscopic video has been developing in different directions, either
as a wearable device or using autostereoscopic technology.

There are different 3D video wearable display devices available. The most straightforward is a
binocular HMD, two displays mounted on a head. Other approaches rely on a modified version
of a video that contains both images and a wearable filter that separates the images and
presents them to the corresponding eye. The most simple technology is anaglyph, images are
coded with complementary colors (e.g. cyan and red). The glasses have lenses that filter out
these colors. Another, more expensive option is using polarized light and lenses that pass
through only light of horizontal or vertical polarity. Active shutter glasses are synchronized with
a high frame-rate projector and shutter individual eye when an image for the opposite eye is
shown.

The autostereoscopic devices include eye or head tracking using a camera and adjusting
display or a parallax barrier or a lenticular lens in front of a display that results in showing a
different image at different viewpoints.

The issues that the 3D video is facing are either technological (ensuring resolution and frame
rate, minimize cross-talk) with respect to the limited added value and increased cost of
acquisition and presentation. There have also been numerous health concerns, e.g. motion
sickness, headaches, nausea, disorientation observed when people have been using 3D video
technology for longer periods of time.

Omnidirectional video
One format of recording video that is becoming more and more popular is omnidirectional video,
also known as 360 degree video. Omnidirectional video is recorded using an array of cameras
or using special mirrors. Acquired images are then projected to a common image plane using
one of the projections:

●​ Flat - only used for 180 degree projections

●​ Equirectangular - full sphere, data redundancy at the poles
●​ Stereograph - “tiny planet” effect
●​ Cubemap - useful for texture mapping, better pixel utilization than equirectangular

projection

Omnidirectional videos can be converted to normal video at the desired camera angle using
projective geometry. The limitations are the resolution of the original omnidirectional video and
the camera view angle that should not be too wide, in this case the distortion at the edges
becomes too noticeable.

Omnidirectional video has a lot of potential for interactive viewing experiences in entertainment,
sports, and virtual tourism.

Augmented reality
We perceive the world through our senses: sight, hearing, smell, haptics, balance. Since
influencing sensory information changes our understanding of the world, we can say that reality
is subjective. Augmented reality aims to augment sensory information so that the fused
information is beneficial to our understanding of the world (or that it offers some other value, e.g.
entertainment).

Even though humans possess several senses, we primarily rely on sight, which is perhaps also
why augmentation is most developed in this direction. A basic visual augmented reality system
has to determine the position of the camera and screen in the space in real-time to maintain the
illusion that the augmented information is inserted into that space. There are many options how
to achieve that from a camera alone, from computationally less intensive and more robust to
more complex, but also more general. Additionally, camera positioning systems can also be
aided by other sensors, such as GPS, WiFi positioning, IMU.

To position the camera in space we have to determine its extrinsic parameters: rotation and
translation. This can be achieved by solving a linear equation system that includes reference
data about the points in the world coordinate system and their projections in the image space,
we call these pairs correspondences. Obtaining reliable correspondences can be a difficult task
in general, this is why there exist different approaches that either increase reliability or know
how to handle potentially unreliable correspondences.

Using markers
The simplest form of visual positioning that we will discuss is based on artificially created black
and white markers that can be recognized with some basic image processing. Most commonly,
these markers are square with a black border and an identifying interior that enables their
recognition as well as disambiguates rotation. One such marker is enough to estimate camera
position, but more can be used to improve robustness to occlusion and view direction.

The problem of using markers (besides the fact that they have to be inserted into the scene) is
that the algorithms that are used for their detection are not robust to occlusion.

Using templates
Instead of artificial markers, any textured surface can also be used for camera positioning. The
concept also relies on detection of correspondences, however, the chance of having wrong
correspondences in the set is much larger. Correspondences are detected by matching feature
points (their local area description) from the reference template image to the query camera
frame. To robustly estimate the camera extrinsic parameters from such a set, the RANSAC
algorithm is used.

Building scene map
The most advanced approach for camera positioning that does not require any predefined
markers is to build the 3D reference from the actual scene that we are tracking. This is also
called VSLAM (Visual simultaneous localization and mapping) and can be used in many
scenarios besides augmented reality (mobile robotics, 3D reconstruction). In principle, this kind
of approach is computationally expensive since both camera location and map have to be
updated. The approach is adapted to real-time augmented reality scenarios in the PTAM
(Parallel tracking and mapping) algorithm that uses two threads, one for real-time responsive
camera localization and the second one for slower map updating.

Interactive surfaces
Since the advent of the first iPhone, touch technology has become the de-facto way of
interacting with multimedia systems. We will look at the technologies that make touch interfaces
work and how different setups are applied to different usage scenarios. An interactive surface is
composed of two components: a display and a sensor. These two components can be
integrated together (e.g. smartphones) or placed at appropriate positions (e.g. projector and
depth camera).

Designing a tabletop touch interface presents multiple challenges, from ergonomic issues
(surface size and position, can lead to neck muscle strain or back problems) to usability issues
(visibility and reachability in multi-user scenarios, use-cases, added value).

Resistive sensors
Resistive sensors are made from two clear layers coated with transparent conductive
substances and an insulating layer between the both layers. A force applied to the outer layer
squeezes the insulation and brings it closer to the opposite layer which can be detected as a
changed resistance property of the system. The controller alternates between the layers, driving
electric current on one and measuring the current on the other layer. This way detection of
horizontal and vertical position is then combined into full information. Resistive sensors are
low-cost and have low power consumption, but can reduce the display quality of the overlaid
display.

Capacitive sensors
There are two capacitive sensor approaches. In case of surface capacitive sensors, an
uniform transparent conductive coating is placed on a glass panel, electrodes are positioned in
each corner of the panel. The electrodes generate an uniform electric field across the
conductive layer. When a finger (or other conductive object) touches the surface, electrical
current will flow from the four corners through the finger. Ratio of the electrical current flowing
from the four corners will be measured to detect the touched point. The measured current value
will be inversely proportional to the distance between the touched point and the four corners.
This approach has high positional accuracy, but it is difficult to detect multiple touches.

An alternative approach is called a projected capacitive sensor. In this case the surface is
divided into a sensor grid of electrodes, each electrode covering only a small part of the
surface. This approach enables accurate detection of multiple touch occurrences and has a
high positional accuracy, but it is not suited for large panels because of slower transmission of
electrical current over large distances. It is, however, the dominant technology on modern
mobile phones and touch-capable laptops.

IR cameras
Since sensors based directly on electric phenomena do not scale very well, researchers have
used other means of detecting touch, primarily using optics. A common approach is to use IR
light since it can be detected by a (dedicated) camera and does not interfere with our visual
perception. The diffused Illumination approach is the direct example of this, the
semi-transparent projecting surface is illuminated from the rear with IR light sources. If a finger
(or any other object) is placed on the surface, the IR light is reflected from it and is detected by
the IR camera.

The FTIR (Frustrated Total Internal Reflection) improves touch reliability since it eliminates
wrong touch detections where a finger is only close to the surface. The IR light is applied from
the sides of an acrylic sheet and is trapped in the material due to TIR (total internal reflection).
This effect is interrupted when an object touches the sheet from the side which causes the light
to reflect from the touching object sidewise and is again detected by an IR camera.

Depth cameras
Another approach using optics that is increasingly used for HCI are depth cameras. Most of the
cameras use IR light in some way to estimate depth from the sensor either from a projected
pattern or using time-of-flight. Another option is using a stereo camera. Touch detection using
depth information is more computationally intensive. The algorithm has to detect surfaces,
hands, fingers. However, this approach also offers additional HCI opportunities beyond finger
touch detection, e.g. gesture recognition in 3D space above the interaction surface and object
detection.

	Multimedia Systems
	Introduction
	Images
	Image acquisition
	Human perception of light
	Digital camera

	Image processing
	Histogram
	Image filtering
	Image transformations
	Content-aware image resizing
	Image merging
	Image segmentation

	Video
	Acquisition and reproduction
	Video interlacing
	Color in video
	Television formats

	Video stabilization
	Stabilization by alignment
	Stabilization by feature tracking
	Stabilization with keypoints
	Stabilization with optical flow
	Stabilization in space
	Missing regions and mosaicking
	Local stabilization

	Background removal
	Detecting transitions

	Audio
	Audio acquisition
	Human auditory perception
	Signal and noise
	Digital audio
	Frequency spectrum

	Audio processing
	Linear filters
	Equalization
	Comb filters
	Non-linear filters
	Spectrum Analysis

	Compression
	Compression basics
	Statistical encoding methods
	Dictionary encoding methods

	Image compression
	Portable Network Graphics
	Block truncation coding
	The JPEG format

	Video compression
	MPEG-1
	MPEG-2
	MPEG-4
	Newer video coding standards

	Image and video compression evaluation
	Audio compression
	Lossless audio compression
	Speech compression
	MPEG-1 audio compression
	MPEG-2 audio compression

	Information retrieval
	Text retrieval
	Boolean expressions
	Documents and dictionaries
	Word relationships
	Error tolerance and incompleteness
	Ranking and comparing documents
	Relevance feedback
	Evaluating retrieval systems

	Image retrieval
	Primitive image descriptors
	Towards semantic description
	Segmentation in retrieval

	Retrieval in video
	MPEG-7

	Retrieval in audio
	Audio sample music retrieval

	Emerging Trends
	Immersive video
	3D Video
	Omnidirectional video

	Augmented reality
	Using markers
	Using templates
	Building scene map

	Interactive surfaces
	Resistive sensors
	Capacitive sensors
	IR cameras
	Depth cameras

