Assignment 3

Solve the following three exercises. Each exercise is worth five points. Solutions must be submitted by 5.5.2024. Use the link on e-ucilnica to turn in your work. The submission must be in pdf format.

Exercise 1: Amortization

You are working on an algorithm that adds rows and columns to a matrix. Each call to an $a d d()$ function costs $i+c$ where i is the i-th call of the $a d d()$ function, and c is some constant. Every call where $i=k^{2}$ for some k costs i^{2}. Meaning the cost function is :

$$
c_{i}=\left\{\begin{array}{lll}
i+c & ; & i \neq k^{2}, k \in \mathbb{N} \\
i^{2} & ; & i=k^{2}, k \in \mathbb{N}
\end{array}\right.
$$

what is the amortized cost of $a d d()$ function?

Exercise 2: Amortization

You are developing a dynamic table that will only support insertions. Rather than doubling table size of the table when it becomes full, you decide to increase it by only 10%. Is the amortized cost of the insert still constant? Prove using the potential method.

Exercise 3: Approximation

Suppose you are working with a symmetric 4-SAT formula, described by 4-CNF formula F with n clauses, where each clause consists of 4 literals. For example: $F=\left(x_{1} \vee x_{2} \vee \neg x_{4} \vee x_{5}\right) \wedge\left(x_{4} \vee \neg x_{2} \vee \neg x_{1} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{2} \vee \neg x_{5} \vee x_{1}\right)$.

In 4-SAT, we accept each clause if it evaluates to 1 . In symmetric 4-SAT, we accept a clause if it evaluates to 1 and the clause in which we negate each literal also evaluates to 1 . In other words, symmetric 4-SAT accepts each clause if it has one literal that assigns to 0 and one that assigns to 1 .

A symmetric MAX 4-SAT is an NP-complete problem where we try to satisfy as many clauses as possible. We will use a simple approximation algorithm to solve the problem by setting each variable to 0 with a probability of 0.5 and to 1 with probability of 0.5 .

Your task is to find the approximation factor for this algorithm.
Note: In 4-CNF, each clause can not have the same literal twice or have a variable x_{i} and its negation $\neg x_{i}$.

