ORGANIZACIJA RACUNALNIKOV

Povzetki predavanj

3. Mikroarhitekturni nivo racunalnika

(3.2 MiMo Model Mikroprogramirane CPE)

OR - 3 — Povzetki predavanj 1 © 2025, Rozman, FRI

B Predavanje V blatu: Dejan Crnila - Code optimization on modern
processors

objavljeno
25. oktober 2017

Zelite izboljzati delovanje svojih programov? Ce je odgovor da, ne smete zamud
optimizacije kode »Code optimization on modern processors« v okviru serije Ce
oktobra ob 18. uri na FRI.

Z Dejanom Crnilo, programskim inZenirjem iz podjetja Dewesoft, ki se bo na predavanju
skrivnosti optimiziranja kode, smo na kratko spregovorili o tem, zakaj in kdaj se lotiti op
nas ¢aka na predavanju.

,-.. tUdi 64-kratna
pohitritev po
optimizaciji kode...“

OR - 3 — Povzetki predavanj > M) 007/653

Space shuttle Atlantis launch monitoring with Dewesoft software

" N

3. Mikroarhitekturni nivo rac¢unalnika

Namen in cilji 3. poglavja:

Razumevanje :
m pomembnost urinega signala, sinhronskosti v digitalnih vezjih

m delovanja CPE in njenih sestavnih delov skozi prakti¢ni primer:
[0 od nivoja logicnih vrat do delujoCega modela CPE
m MiMo model mikroprogramske CPE (veCperiodni, cevovodni)

[0 realizacija/izvedba strojnih ukazov z zaporedji mikro-ukazov
m razumevanje delovanja CPE (ukazi, registri, enote, PC, ...)

m ARM — pregled (mikro) arhitektur

OR - 3 — Povzetki predavanj 3 © 2025, Rozman, FRI

3. Mikro-arhitekturni nivo racunalnika

e
=

© 2025, Rozman, FRI

4

OR — 3 — Povzetki predavan;j

3. Mikroarhitekturni nivo raCcunalnika — logiCna vezja

Kombinatori€na logiCna vezja:

Vhodi Izhodi - -
Kombinatori¢no E LR

':> digitalno vezje

LL

o
Ep —

Sekvencna logiCna vezja:

Vhodi |zhodi

C——> Kombinatorino F——
—

digitalno vezje |)
e kombinatorién e
] Tfl'p—flop

e 15" TENEa

o

Informacija o
notranjem stanju

ura

Pomnilnik |

OR - 3 — Povzetki predavanj © 2025, Rozman, FRI

3. Mikroarhitekturni nivo raCunalnika — asinhronska vezja

Asinhronska digitalna vezja :

O[O

} | LL
A

Slabosti:
m razlicne zakasnitve
m zapleteno reSevanje problema razl. zakasnitev

Prednosti:
m hitrost
m poraba

OR - 3 — Povzetki predavanj 6 © 2025, Rozman, FRI

[
ﬁw

B3

&

RS

3. Mikroarhitekturni nivo raéunalnika- asinhronska vezja™~ & o,
2 of ’"w.u,.,.v,%

Asinhronska digitalna vezja :

Prikaz razlik med sinhronsko in asinhronsko CLK

m Sinhronska :>

R1 R2 CL3 | R3 R4

U

Req [L
Ack __l__l_

. Kks:
3 ithout Cloc .
Computing W cessor
. ARM Pro Dat
. l' l“g the ata
Micropipelin ; .
sect g Asinhronska 4
Ack
The Design of an Asynchronous CTL CTL o~ CTL CTL
MIPS R3000 Microprocessor] Req |] |
Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystrom v v v V
Paul Penzes, Robert Southworth, Uri Cummings, Tak Kwan Lee C C
Department of Computer Science — L3 L4
California Institute of Technology R1 |Data R2 > R3 > R4 >
Pasadena CA 91125, USA 7

Asynchronous circuits are fundamentally different; they also assume bi-
nary signals, but there is no common and discrete time. Instead the circuits
use handshaking between their components in order to perform the necessary

3 . M | kro a rh Ite ktu I’nl n |VO ra éu n al N | ka > synchronization, communication, and sequencing of operations. Expressed in

‘synchronous terms’ this results in a behaviour that is similar to systematic

Asinhronska d |q italna Vezia . fine-grain clock gating and local clocks that are not in phase and whose period

is determined by actual circuit delays — registers are only clocked where and
when needed.

m Low power consumption, [102, 104, 32, 35, 73, 76] Asynchronous circuit design
[0 ... due to fine-grain clock gating and zero standby power consumption. A Tutorial

m High operating speed, [119, 120, 63]
1 ...operating speed is determined by actual local latencies rather than Jens Sparsg
global worst-case latency. Technical University of Denmark

m Less emission of electro-magnetic noise, [102, 83]
1 ...the local clocks tend to tick at random points in time.

m Robustness towards variations in supply voltage,
temperature, and fabrication process parameters, [62, 72,
74]

1 ...timing is based on matched delays (and can even be insensitive to
circuit and wire delays).

m Better composability and modularity, [67, 57, 108, 97, 94]

1 ...because of the simple handshake interfaces and the local timing.

m No clock distribution and clock skew problems,

0 ...thereis no global signal that needs to be distributed with minimal
phase skew across the circuit.

OR - 3 — Povzetki predavanj 8 © 2025, Rozman, FRI

3.1 Sinhronska digitalna vezja

| tCPE [
. _) ;
3.1 Ur!n Slgnal. Visoko stanje (1)
Odvisen : \
O Hitrosti vezij Nizko stanje (0) —\ v
0 Zakasnitev v povezavah Negativna fronta
Pozitivna fronta

0 Stevila vezij
Aktivna fronta (poz. ali neq.) sprozi spremembo noftr. stanja

3.1.2 Sprememba stanja:

CPE

— urin signal

0 t,.: za spremembo FF
O tomb: KOMbinacijsko vezje

kombinatori¢na
logika

UR

LR

LL

uL

O ty,p0st Stabilnosti vhodov v FF "
ura
tCPE > tzak + tkomb + tvzpos
signal se signal mora signal se | tzak_| _tkombinatorigna | tyzpos_ |
lahko spreminja | biti stabilen| lahko spreminja | ’
|
Sial J=
=
I t ~1
CPE
s LW 9 © 2025, Rozman, FRI

Figure 1.27: Vzpostavitveni (tg) in drzalni éas (fz5).

MiMo - Microprogrammed CPU Model vo.saor evo Debug con—(eon]

Reset cyu[@>@mn] siopl@>@ee] Instruction: .
Sysuk Instr.- (avgins| Addr[co0o>adar] pro
Address BUS [eosop~{adar] -—00 mo MO

Data BUS

0

reset

Address, Data Bus

- 'Address 0000 Data' 0000 -

[ocaress] [aata

continue

(=] Registers

br_cycle

RO 0000 =
R1' 0000 =

br_instr
br_addr_on

3.2 MiMo -

Mikroprogramiran RAM

R2/ 0000 = br_addr:
R30000 ucounter Spec. Registers
0000 = pereg
imioad, Re PCreg ' 0000 M

R50000 = Debug Unit

- IR 0000 ={irreg|
R6 0000 ALU 1 @000)={ermred]

-CLK R7 0000 =
M I F E e Tm ALUOut 0000 = alusout]
OF - -
o9 i Flags
4 (datawrie] S c
(pored] tregs #0000
[rose] [sege [wr}e ! 00—
o]] Q = ' Bk e e
o< | [oatasel (1]
0 Status
New_CMD.
Quick tips: ICycles 0 Cycles' 0 Cmds' 0
Use ctrl+t to manually toggle global clock signal
Use Simulate->Ticks Enabled for automatic clock signal m
Mlcrgco:ie Iclg gtl\ltrIOI Unit Micro Instruction
ontro
Adcress of third uinstruction is "opcode+2" :lu;“] MicroPC Micro_instr - 00002000 Next_instr 0101
A ROMSEx 22 datawrite swrite] datasel [indexsel] cond| [regsrc]imioad|[iroad][dwrite | acioad|[oc sei adar sel] datawrite | [apzse/|[aiop)
S co00z0mm s L‘-L,-II_'_L:ﬂ L‘_L‘_I [E2 O
02/00011000 r w—r 00 00 00 0o oo 00 0000
cioad
durite] Frame Buffer LED 16x16 TTY
0a 00000000 0DDD000D Jrioad]
imioad 0
e |aata)
CROM| cond
indexsel|
datasel| Clear_Screer
s swrite]
Decision ROM
" ROM 256 x 16 01
0202 0000 0000) 1
0000 0000|
of
0c 0000 0000 D000 0000 |
10/0000 0000 DODO 0000) [cLx] Ulciear
14/0000 0000 DODD 0000| ﬂ

ucounter [Icycles
reset . [oogjcycles
[EZoalemds

CycleCounter

Based on: http:i/iminnie.tuhs.org/Programs/UcodeCPU/index. html|

v05: Migration to EVO, Debug, Counters, InmReg Units
v05a: norz instead of corz @

OR - 3 — Povzetki predavanj 10 © 2025, Rozman, FRI

https://github.com/LAPSyLAB/MiMo Student Release

https://github.com/LAPSyLAB/MiMo_Student_Release

. —-— The ALU
alunit: alu port map |
A => alu_a,

https://web.microsoftstream.com/video/590d652e-7171-4e91-9fab-fe537f55ae7b B => alu b,

3.2 MiMo — Mikro-programiran Model CPE AEsvrnns aluoce,

» ZERO => zero,
Multiplexor into the second ALU input, and first ALU input g,

FPGA realizacija Ny - G = cocty,

alu_b <= treg when op2sel="00" elss

e s »
immed cut when opZssl="01" else S, Ay);
X one o, ;
%"0000" when op2sel="10" else 2t g op
%x"0001" when op2sel="11" slss a g e
(others => '2'); B : ';,p’th ¢
n
- :;“EUOp fdn :ttd\l’ﬂgi
By, |4 q <
Urp, *2 ~dog, ~Vs
; 5 IER, . oup Sty 1o Tie ve t/:,r{ .
L i ~ o P2
1 s LZLRR‘y Qug td\l,:, g.Jw\ Ve~ °r [§27) A\WIDT
29 o, VG oup Tty e L TFerg, 72 Wrpm 1
% g SgieT Scr < doy, T, O,
Heleome Toemsae, Ot o Llog,© “E (Dagy "t o 1 ds o)
ty Lo, 0, Wn
~Tgi.,) ~"Top, [
<) =1
. oy,
OPTIONS: 1180 Wng

Compiled on Jon 1 2014, 17:..
Port fdov/LiylsBl, 10:37:40

Prousn CIRL-N 2 Tor help on specioal keyn

Here o "I

.I XL IN.?L

ﬁ > [ﬁ

E
i il

&
E
el
-

Serial output
display

r.l- I|l- 1‘-— ¥

https://minnie.tuhs.org/Programs/UcodeCPU/nexys4 install.html

OR - 3 — Povzetki predavanj 11 © 2025, Rozman, FRI

https://minnie.tuhs.org/Programs/UcodeCPU/nexys4_install.html
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b
https://web.microsoftstream.com/video/590d652e-717f-4e91-9fa5-fe537f55ae7b

3.2 MiMo - Mikro-programiran Model CPE

Mnenja (19/20)

Izvedba MiMo modela na nivoju logiénih vrat v Logisimu je bila zanimiva in koristna

28 responses

@ Spioh se ne strinjam
% @ Sene sirinjam

@ Se strinjam

@ Z=lo se strinjam

Izvedba MiMo modela na nivoju mikro zbirnika (micro-assembler) je bila zanimiva in koristna

2B responses

@ Sploh se ne strinjam
@ Sena sinnjam

@ Sestrinjam

@ Z=lo =& strinjam

Izvadba MiMo modela na nivoju zbirnika (assembler) je bila zanimiva in koristna

28 responses

@ Sploh s& ne strinjam
® Sene sirinjam

@ Se strinjam

@ Z=lo =e strinjam

Osebno sem potreboval kar nekaj ¢asa, da sem razumel, kako to¢no
deluje mikrozbirnik oz. posamezna kontrola vrstica. Ko sem enkrat
povezal stvari mi pa niso vec predstavljale problema ...

Model MiMo gledano v celoti je pripomogel k izbolj$anju mojega poklicnega (strokovnega)
znanja.

20 responses

@ Sploh se ne strinjam
@ Se ne strinjam

@ Se strinjam

@ Zelo se strinjam

Splogna ocena koristnosti MiMo modela pri predmetu - od 1do 5 (najvisja ocena)

29 responses

15
14 (48 3%)

7 (24.1%)
5 6 (20.7%)

12

© 2025, Rozman, FRI

3.2 MiMo - Mikro-programiran Model CPE

Mnenja (21/22)

Izvedba MiMo modela na nivoju logiénih vrat v Logisimu je bila zanimiva in koristna

2Zresponses

@ Splch e ne strinjam
i 5= ne stinam

@ Se crinjam

@ Z=lo se strnjam

Izvedoa MiMeo medela na nivoju mikro zbirnika (micre-assembler) je bila zanimiva in

karistna

22 responses

@ Soloh == ne strinjam
W Z=ne stinam

@ S =trinjam

@ Zelo se strinjam

Izvedba MiMo modela na nivoju zbirnika (assembler) je bila zanimiva in koristna

22 responses

@ Soich == ne stinjam
i 5= ne stinam

& Se stinjam

@ Zelo ze strinam

Osebno sem potreboval kar nekaj ¢asa, da sem razumel, kako to¢no
deluje mikrozbirnik oz. posamezna kontrola vrstica. Ko sem enkrat
povezal stvari mi pa niso vec predstavljale problema ...

Model MiMo gledano v celoti je pripomogel k izbolj$anju mojega poklicnega (strokovnega) znanja.

22 responses

‘

@ Sploh se ne strinjam
@ Se ne strinjam

@ Se strinjam

@ Zelo se strinjam

Splosna ocena koristnosti MiMo modela pri predmetu - od 1 do 5 (najvisja ocena)

22 responses

16 (72.7%)

5 (22.7%)
5%)

20
15
10
5
0 (0%) 0 (0%)
0 | \
1 2

OR - 3 — Povzetki predavanj

13

© 2025, Rozman, FRI

3.2 MiMo - Mikro-programiran Model CPE

- Delo v logisimu oz. simulatorju digitalnih vezij je bila zdale¢ najvecja pomoc pri
M ne nj a (22/ 23) vizualizaciji same sestave racunalnika od digitalnega vezja pa do organizacije.

|lzvedba MiMo modela na nivoju logi¢nih vrat v Logisimu je bila zanimiva in koristn:

6 responses MiMo ali kaksen lazji manj kompleksen model, bi lahko v sklopu seminarske
. naloge pri predmetu vsak Student sestavil sam, z tem da bi vsak imel morda
Sploh se ne strinjam o pev . . Ve . . .
® e st specificen problem, ki bi ga moral resiti v svetu vgrajenih sistemov.
@ Se strinjam

@ Zelo se strinjam

Model MiMo gledano v celoti je pripomogel k razumevanju delovanja CPE

6 responses

@ Sploh se ne strinjam
@ Se ne strinjam
@ Se strinjam

@ Zelo se strinjam
Izvedba MiMo modela na nivoju mikro zbirnika (micro-assembler) je bila zanimiva i

koristna

6 responses

@ Sploh se ne strinjam
@ Se ne strinjam

® Se strinjam

@ Zelo se strinjam

Sploéna ocena koristnosti MiMo modela pri predmetu - od 1 do 5 (najvi§ja ocena)

6 responses

) o o o : 4 4 (66.7%)
Izvedba MiMo modela na nivoju zbirnika (assembler) je bila zanimiva in koristna

6 responses 3

@ Sploh se ne strinjam

@ Se ne strinjam 2
@® Se strinjam

@ Zelo se sirinjam

2 (33.3%)

0 (?%) 0 (0%) 0 (0%)

1 2 3

OR - 3 — Povzetki predavanj 14 © 2025, Rozman, FRI

3.2 MiMo - Mikro-programiran Model CPE
M nenja (23/24) Prednosti (dobre strani) modela MiMo (kaj se vam je zdelo Se posebej dobro, koristno, ...) 5

responses

Kot bodoéi raéunalniki strokovnjak na Ze omenjenih podroéjin (strojni, zbirni in sistemski nivo)
moram podrobno poznati delovanje CPE in ostalih racunalniskih podsistemov. °

9 responses

@ Sploh se ne slinfam
@ Se ne strinfam

Se strinjam
@ Zebo s= stinjs U

Madel MiMo gledano v celoti je pripomogel k razumevanju delovanja CPE

9 responses

@ Sploh se ne slinjam
@ Se ne sirinfam

_ z vsemi potrebnimi datotekami za uprizoritev modela v Logisimu in
sam MiMo model v Logisimu

Da dober vpogled kako se ukazi izvajajo po elementarnih korakih

dober vpogled v delovanje CPU, moznost simulacije brez kakrénekoli iziéne opreme

Na njem je _ (zastavice, kdaj se izvaja nov

ukaz...).
BoljSe razumevanje delovanja procesorja

Slabosti modela MiMo (kaj bi spremenili, dodali, nadgradili, naredili bolje,...)3 responses

popolnoma ni¢

na zacetku se zdi rahlo strasljivo

Na zacetku je celotno delovanje tezko razumeti (ker je cel model na prvi pogled
"kompleksen").

Splosni predlogi za izboljsavo ucinkovitosti uporabe modela MiMo pri predmetu OR (npr. taksni
modeli kot je MiMo so dobrodosli, uporabil bi ga takole, izpustil/dodal bi tole, ...) 9 responses

Koristna bi bila bolj podrobna razlaga prevajanja ukazov v modelu MiMo, to me je najbolj
zmedlo.

Meni se je zdelo vse super, naj ostane tako kot je.

morda kaksen primer vec, mogoce bolj poc¢asen zacetek in bolj podrobna razlaga vseh
delov

Mogoce bi lahko pokazali Se dodajanje kaksne nove naprave (kot je bilo potrebno pri 5.
podnalogi 1. obvezne naloge).

Dodali vec funkcij, znacilnih za moderne CPE, ki se jih ucimo pri OR, npr. cevovodno
razlicico, prediktor...

OR - 3 — Povzetki predavanj 15

© 2025, Rozman, FRI

3.2 MiMo - Mikro-programiran Model CPE

Mnenja (24/25)

Izvedba MiMo modela na nivoju logicnih vrat (Logisim) je bila zanimiva in koristna

P

22 responses

V bodoce bi bilo koristno MiMo modelu v Logisimu dodati Se razli¢ne V/I enote, prikaz organizacije

pomnilnikov, povezavo registrov V/I naprav in podobno...
22 responses

W

@ Sploh se ne strinjam
@ Se ne strinjam

Se strinjam
@ Zelo se strinjam

@ Sploh se ne strinjam

@ Se ne strinjam
Se strinjam
@ Zelo se strinjam

Slabosti modela MiMo (kaj bi spremenili, dodali, nadgradili, naredili boljse,...)

* Boljsa dokumentacija. (verjamem da smo veliko morali "pogruntati" sami)
* Mogoce sprememba ukazov blizje ukazom ARM.

* Pre malo dokumentacije, vsaj za zagon testnega programa

* Kompleksnost, nekaj ¢asa za razumevanje...

Splosni predlogi za izboljSavo ucinkovitosti uporabe modela MiMo pri predmetu OR (npr. taksni
modeli kot je MiMo so dobrodosli, uporabil bi ga takole, izpustil/dodal bi tole, ...)

* mogoce bi dodal da je treba spisati en bolj kompleksen program

* Dodaten cas posvecen kodi assemblerja in micro-assemblerja, dober pregled teh dveh
programov je dosti pripomogel pri razumevanju celega MiMo sistema.

* Relativno tezko se mi je zdelo vezanje I/O naprav, tako da mogoce malo bolj pogljobljeno to?

+ Ceje 7e obvezno vprasanje :)......mogoce kak3na V/I naprava ve¢ (da se lahko $tudenti igrajo s
programi).

* Navodila za uporabo (kako uporabiti program assembler.exe, micro_assembler.exe, kako
pravilno uporabiti debug, itd.) v projektu, za lazje preverjanje in razumevanje postopkov.

* Brez pripomb, se mi zdi, da je bil vsak del modela dobro predstavljen. Pregled izvajanja enega
ukaza po mikroukazih v modelu mi je bil Se najbolj koristen.

* MiMo je odlicen model, mogoce bi se lahko Ze pri predavanji pokazalo prmer delovanja,
namesto da delamo samo teorijo.

* mogoce da bi sli se bolj podrobno v design modela mimo na se bolj elementarnem nivoju
(prikaz komponent v logismu z logicnimi vrati in drugimi elementi)

(kar pomeni da bodo znali pisati efektivnejSe peograme).
* Ma meni se mi ni zdelo za kako izboljsavo, jaz sem bil ze zelo zadovoljen da je vse posneto pa
da si doma pogledam dele ki nisem razumel saj s tem sem se najbolj naucil delovanje.

OR - 3 — Povzetki predavanj

16

© 2025, Rozman, FRI

3.2 MiMo — Mikroprogramiran Model CPE

Znacilnosti :

m pomnilniSka beseda 16 bitov

m pomnilniski naslov 16 bitov

m dolzina ukazov 16 ali 32 bitov (2 formata)

0 Format 1: (primer ADD R1,R2,R3 # R1<-R2+R3, R1=Dreg, R2=Sreg, R3=Treg)
___Opkoda | Treg | Sreg | Dreg |
7 3 3

] 3
0 Format2: (primer LI R1,100 # R1<-100)
ADD R1,R2,R3 # R1<-R2+R3
___Opkoda_ | Treg | Sreg | Dreg | R3: Treg: obit. 2 op. za ALE
3 3 3 R2: Sreg: 1.operand za ALE
16 bitni tak. operand R1: Dreg: ponor ALE operacije
16 POZOR - v formatu ukaza obrnjen
. . vrstni red kot v mnemoniku!
m regqistri _

0 8x 16bitnih sploSno namenskih registrov RO-R7
m operandi (pomnilniski dostopi) so samo 16-bitni
m pomnilniSko preslikan vhod/izhod

MiMo temelji na tem viru: http://minnie.tuhs.org/Programs/UcodeCPU/index.html

OR - 3 — Povzetki predavanj 17 © 2025, Rozman, FRI

http://minnie.tuhs.org/Programs/UcodeCPU/index.html

"
3.2.1 lzvrsevanje ukazov — MiMo

Delovanje CPE:

m branje ukaza iz pomnilnika - FETCH
0 ,ukazno prevzemni cikel”
m izvrSevanje ukaza - EXECUTION

1 ,izvrSilni cikel”

Elementarni koraki (veCperiodna realizacija) :
0 branje ukaza iz pomnilnika
0 dekodiranje (analiza) ukaza
0 prenos operandov v CPE (pomnilnik, takojSnji operandi)
O
O

O obnovitev PC (kaze na
naslov nasl. ukaza)

izvedba operacije (ALE)
shranjevanje rezultata (reqgistri)

OR - 3 — Povzetki predavanj 18 © 2025, Rozman, FRI

" A 2023/24/25
MIMO Podatkovna enota vO oa

MiMo - Mlcroprogrammed CPUModel wsorevo o~ D9 conOfed
: Reset : Cycle' StOP.M ~Instruction: ==

P 1 R Address DataBusE'

0000) 000033
br_cycle . : Address Data :

N -

’-
-
’-
=t br_addr_on
.
"
"

R0 0000 =
R1/0000

R R2/ 0000 » br_addr S
T T) p—— e =) R 00 ‘.L"?°F"“‘°.r‘::‘:::‘:‘:‘.SP‘:’-QReg"s.t‘e‘r.s‘...

RAM | pcreg N B 0000
I _____PCreg "
f VASys RAM 16K x 16 - e R0
‘1 | oooduls®loooo 0ooo o000 ‘IMM ¢ 0000
"~ 00040000 0000 0000 0000] = - ALUOut | 0000

** 0008|0000 0000 0000 0000}

000c|0000 0000 0000 0000
-~ 00100000 0000 0000 0000
~ 0014|0000 0000 0000 0000

" Quick tips:
Use ctrl+t to manually toggle global clock signal o o o A
Use Simulate->Ticks Enabled for automatic clock S|gna| o |cycles . Jeycles| . |emds|.

NOStI VO 5.‘.@‘::‘1‘:"i‘i‘ii‘i‘i‘ii‘iii‘ii ... o1
pogoji v KE https://qgithub.com/LAPSyLAB/MiMo_ Student_Release

|Cyc|es 07 Cybleé 0 Cmds 0

OR - 3 — Povzetki predavanj 19 © 2025, Rozman, FRI

https://github.com/LAPSyLAB/MiMo_Student_Release

0 _ Pogosta napaka pri razli¢nih verzijah Logisim Evolution

U Model wsaevo /- N PePY9 conOd

[Resel) cyeie[@{agae] stop[BD{ubgaa]

RAM 16Kx16 -
05b0{0000 0000 0000 0000,
05b4{0000 0000 0000 0000, ~
- 05b 80000 0000 000D 0000, * -
05bc{0000 0000 0000 0000
.. 05c0|0000 0000 0000 0000, - - *
~ . 05c4{0000 0000 0000 0000, e

reset} reset CLK| -

CLKIN ‘

cont}= continue - - - - | -

dbgeycyy breyele - | F

dhgins brinstr - |- -

addr br_addr -
MicroPC =t ucounter -

O T R

———————————————— - o dbgadr br_addron - - -} - - - - - -

" 05c8|0000 000Oofefelss}O000|

https://github.com/LAPSyLAB/MiMo Student Release

OR - 3 — Povzetki predav# '
wsel| - - -

20 © 2025, Rozman, FRI

https://github.com/LAPSyLAB/MiMo_Student_Release

" A 2022/23
MiMo — Podatkovna enota v0.5

~ Address BUS

- (twrite)

oo RAM ‘ 1 1 1 | [imload == 0000 ==

f VAR RAM 16Kx 16
N R oooFoooooooooooo S
000410000 0000 0000 0000 =

* ' 00080000 0000 0000 0000] *
~000c|0000 0000 0000 0000} - - - -

... 0010|0000 0000 0000 0000| - . !
.. 00140000 0000 0000 0000|

Novosti v0.5

OR - 3 — Povzetki predavanj 21 © 2025, Rozman, FRI

MiMo — Podatkovna enota v0.4a

S Clock R
___ e

SﬁAddre'sSBUSﬁﬁﬁﬁﬁﬁﬁﬁﬁ ﬁ [@ﬁ @
.Iﬁﬁ..ﬁ' ..

I H _ I:: |addrse\®

datasel .

OR - 3 — Povzetki predavanj 22 © 2025, Rozman, FRI

MiMo — Podatkovna enota
Prikaz delovanja ob izvrsevanju ukaza
jnez r1,loop #Jump to loop: if r11=0

Primer programa v zbirniku :

main: li r1, 2 # r1 is the counter
li r2, -1 # Used to decrement r1

loop: add r1,r1,r2 #r1--

jnez r1, loop #loopifr1!1=0

sw 12,16 # Save the r2

Vizualni prikaz je narejen na podobni podatkovni enoti v03.a

OR - 3 — Povzetki predavanj 23 © 2025, Rozman, FRI

jnez Rs,immed (40)

- JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC + 2
. fetch: addrsel=pc irload=1 # Address=PC, Load IR register]
pcload=1 pcsel=pc, opcode_jump # PC=PC+1, jump to 2+OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command,;
jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction Iﬂfﬁ%’il hfrﬁl%s_l sregs||dregs| New CMD Reset
o el

swrite|datasel indexselfcond||regsrc|imload Jirload || dwrite | pcload | pcsel|addrsel |datawrite Jop2sel
(x1) x1) x2 X) (xe (x1) x2 Address| x16 |Datal x16 | IR[x16 ICycIes Cycles
|—.pc
/ . . address ireg

data

WIUX

Status
cO—{<]
20—

N

Immed. Reg.

IMM
k;es%; “'immedl
en0
||m|oad>J —
x16

el RAM

ALU
Clock treg
A 64KB RAM D J
slel L Id clr i a
1 t{atou]
Clock) .
X
I I N I I e

Skok v kontrolni enoti :

Default: next address
N N N N

Naslov: Podatki: I— Kontrolni signali: [

u jnez Rs,immed (40)

JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC +2
fetch: addrsel=pc irload=1 # Address=PC, Load IR register
(pcload=1 pcsel=pc, opcode jump # PC=PC+1, jump to 2+OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command,;
jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza

Microinstruction frege I_SF_QS_"EFEEI New CMD Reset
swrite|datasel jindexselfcond|| regsrc |imload jirload || dwrite | pcload | pesel|addrsel | datawrite fop2sel = X?J XS]
x2 X & e (x1) x2 \ddress| x16 | Datal x16 | IR[x16 | ICycles(xa Cycles(xi5 |
-

&> <16 address data irreg
| (e
] (immed] -
adaress(8 — e A Registers Status
sreg

Immed. Reg.

MM
l'rleBEJ) “'immedl
-dd X
= RAM ||m|oad)J * .
X
Clock
A 64KB RAM D |data>

sel o Id cIr

1*
Bl ogq
OCI

(8]

I I I B B B
Skok v kontrolni enoti :

IJump to address OP+2=40+2=42

[N BN BN BN BN B
Naslov: Podatki: I— Kontrolni signali: [

u . - jnez Rs,immed (40)
JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC +2
fetch: addrsel=pc irload=1 # Address=PC, Load IR register
pcload=1 pcsel=pc, opcode jump # PC=PC+1, jump to 2+OPC
(40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command,;
jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza

Microinstruction Iﬂrﬁfidil h%i"f?ﬂi"ﬂfﬁil New CMD Reset
|swrite|dataselIindexsellcond"regsrclimloadIirload"dwriteIpc\oadlpcselladdrsel|datawrite|op258ll (x7 sl el [l
(x1) x1) x2 X) (xe (x1) x2 Address| xi6 | Datal x16 | IR[x16 | ICycles x4/ Cycles| x16 |
l_.PC
/ . . address

i

deta] [imeg

Registers Status

WIUX

el RAM

A 64KB RAM D

sel o Id cIr

Bl e
Clock o<

I I N B S .
Skok v kontrolni enoti :

Default: next address
N N N N

Naslov: Podatki: I— Kontrolni signali: [

jnez Rs,immed (40)

q JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC +2
fetch: addrsel=pc irload=1 # Address=PC, Load IR register
pcload=1 pcsel=pc, opcode_jump # PC=PC+1, jump to 2+OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
(aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command,;
jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction Iﬂfﬁ%’il hfrﬁl%s_l sregs||dregs| New CMD Reset
o el

swrite|datasel findexseljcond||regsrc |imload jirload || dwrite | pcload | pesel|addrsel | datawrite fop2sel
(x1) x1) x2 X) (xe (x1) x2 Address| x16 |Datal x16 | IR[x16 ICycIes Cycles
i address data ireg

M=
puned Status
Address @— m

][]

:0—T
NO—1]

Immed. Reg.

MM
b g immed]
RAM —L ol
imload —
(xt6 sl ALU
Clock l
A 64KB RAM D |da:a,‘,
Aai
sel o Id clr i \'|
[—
Clock o<l
1 x16

NN _ N N B
ISkok v kontrolni enoti : l

if z
then pcincr I

else jum

jnez Rs,immed (40)
if Rs 1=0, PC <- immed else PC<-PC+ 2

L JNEZ Rs,immed: PC=PC+1, ve

fetch: addrsel=pc irload=1 # Address=PC, Load IR register
pcload=1 pcsel=pc, opcode_jump # PC=PC+1, jump to 2+OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
(pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command;
jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza

Microinstruction frege I_SF_QS_"EFEEI New CMD Reset
swrite|datasel jindexselfcond|| regsrc |imload jirload || dwrite | pcload | pesel|addrsel | datawrite fop2sel = X?J XS]
x2 X & e (x1) x2 \ddress| x16 | Datal x16 | IR[x16 | ICycles(xa Cycles(xi5 |
-

&> ﬁ <16 address data irreg
| (e
] (immed] -
adaress(8 — e A Registers Status
sreg

Immed. Reg.

MM
(‘rIeBEJ; “'immedl
-dd a0
= RAM ||m|oad)J * .
X
Clock
A 64KB RAM D |data>

sel o Id cIr

1*
Bl ogq
OCI

(8]

I I N B S .
Skok v kontrolni enoti :

Jump to address fetch:
G I B B B .

Naslov: Podatki: I— Kontrolni signali: [

jnez Rs,immed (40)

= JNEZ Rs,immed: izvedba skoke if Rs 1= 0, PC <- immed else PC <- PC +2
fetch: addrsel=pc irload=1 # Address=PC, Load IR register
pcload=1 pcsel=pc, opcode_jump # PC=PC+1, jump to 2+OPC
40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister
aluop=sub op2sel=const0, if z then pcincr else jump # ALU: Rs-0, If z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch # Increment PC and goto new command;
[jump: pcload=1 pcsel=immed, goto fetch # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction Iﬂfﬁ%’il hfrﬁl%s_l sregs||dregs| New CMD Reset
o el

swrite|datasel jindexselfcond||regsrc |imload jirload || dwrite | pcload | pesel|addrsel | datawrite fop2sel
(x1) x1) x2 X) (xe (x1) x2 Address/ x16 |Datal x16 | IR[x16 | ICycles x4 CVC|95

data ireg

M=
puned Status
Address @— m

cO—(]
20—

N

RAM

ALU
treg i
A 64KB RAM D |data> I
sel o Id cIr i u
' 0] t—(atuou]
Clock

s x16

I I I I e e

Skok v kontrolni enoti :

Jump to address fetch:
I I N .

Naslov: Podatki: I— Kontrolni signali: [

| _MiMov0.5
3.2.2. MiMo - podatkovna enota -

Oznacevanje :

3.2.2.1 ALE: > ALU

* KONTROLNI SIGNALI

Vhodi: N

2x 16-bitna operanda: "

« Sreg,

* izhod iz MUX-a (op2sel) *

Izhodi: :

* 16-bitni rezultat operacije 0000
(»aluout«)

+ zastavice C (+,-), Z (NOR), N (b,5) aluout

Kontrolni signali:

op2sel — doloCi 2. operand: aluout:

e 0.7 op2sel: Data Bus

e 1.7 0..Treg aluop: Addr Bus

. 2.2 1.IMM (Rx+iMv) O Register

e 3.7 2.0 (Rx-0) 1--;

aluop — dolodi operacijo (iz OP kode) 3.1 (R) 2/

- 0.7

e 1.7

e 2.7

e 3.7

30 © 2025, Rozman, FRI

ooo0oo0on,

ADDDDDDDD

3.2.2.1 ALE:

16-bit ALU

nooooooin

—— The ALU
alunit: alu port map |

BDDDDDDDD

Vhodi:

2x 16-bitna operanda:

Sreg,

* izhod iz MUX-a (op2sel)

Izhodi:

* 16-bitni rezultat operacije
(»aluout«)

» zastavice C (+,-), Z (NOR),
N (bys)

Kontrolni signali:
op2sel — doloc€i 2. operand:

e 0.Treg
« 1.IMM (Rx+IMM)
« 2.0 (Rx-0)

(
« 3.1 (Rx+1)
aluop — doloci operacijo (iz OP
kode)
. +

. *

W =0
2

A =* alu a,

B => alu b,
ATUCP => aluop,
EESULT=> aluout,

|

=
=
)
«|e
o

ZERC => =zero,
CARRY => carry,
NEG => neg

WLI

u

Lo

VHDL:
—— The ALU component
component alu is port (
std_lmgic_vectmr{DATA_WIDTH—l downto 0) 7
B : in std logic vector (DATA WIDTH-1 downto 0);
ALUOP : in std logic_vector (3 downto 0);
RESULT: out std logic vector (DATA WIDTH-1 downto 0);

B : in

ZERC : out std_logic;
CARRY : out std logic;
NEG : out std logic);

end component;

-- Multiplexor into the second ALU input, and first ALU input

alu_a <= sreg;
alu b <= treg when op2sel="00" =ls=

immed out when op2sel="01" else
x"0000" when opl2ssl="10" els=

x"0001" when opldssl="11" =ls=
(others => "2");

/ @Negative

'5, Rozman, FRI

oooooooa

DDDDDDDDRESU"

" S
3.2.2. MiMo - podatkovna enota

3.2.2.2 Registri
Vhodi: =L J= Regs

16-bitni vhod (»regval«) N I
iRO::::::iiiiiiiiiii
Izhodi: Rilooss M
3x 16-bitni izhodi Rol st M4
Dreg,Sreg, Treg iiiiiii""iiR3iiiiiiiiiiii'iiii
gj]::::::::':R4 |
Kontrolni signali: — _ ZR5
dsel, ssel, tsel — v ukazu: dolog&ajo kateri o 1"\’.6
register bo na vsakem od 3 izhodov: L jRT
+ Sreg ->ALU,vh.Regs,Nasl.vodilo e ——
 Treg->ALU,DataBus ~ 1
* Dreg -> DataBus 1 \ ﬁﬁﬁﬁﬁﬁﬁ
regsrc — doloCa vhodni izvor: ' . -

 (0..DataBus

- 1.IMM

« 2.ALU

e 3.Sreg regsrc:
dwrite, swrite, twrite 0..DBus
(obi¢ajno samo eden) — dolocajo pisalno 1..IMM
operacijo iz vhoda v izbrane registre ;--g\:ei

33 © 2025, Rozman, FRI

3.2.2.2 Registri

MiMo v 0.5

regval 0.0-0.0-0-0- 0 D
T o gooooog

Vhodi:

16-bitni vhod

(»regval«)

Izhodi:

3x 16-bitni izhodi
Dreg,Sreg,Treg - - = -

Kontrolni signali:

od 3 izhodov:
e Sreg-

l.vodilo
e Treg->
ALU,DataBus
. Dreg -> DataBus. - - - .. .- ..

regsrc — doloCa
vhodni izvor:
. 0..DataBus

0.0-0.0-0.0-0-0 rz

00000000

noooooaofp3
ponooong)

000000004

0 0000ooo)

0.0-0.0-0.0-0-0 r5

o 00000000

. 0-0-0.0-0-0-0-0 rB

Coo|goooooog

—looooooa7

Cooooooog) ot

. 1..IMM
« 2.ALU
. 3..Sreg

— doloc¢ajo pisalno
operacijo iz vhoda v
izbrane registre

0.0-0.0-0.0-0.04 - -

00000000

b-0.0-00000 -

0.0-0.0-0-0-0.0f - -

0000000 o

ooooooog

| _MiMov0.5
3.2.2. MiMo - podatkovna enota

3.2.2.3 Programski st.-PC

Vhodi:
« PC+1, Immreg, PC+Immreg, sreg

Izhodi:
* pcout: 1x 16-bitni izhod

[el o =]

IIIIIIZZZZZZZZ.'_C.iEi_ oo Kontrolni signali:
Cooo o 000t e o L.l pcload: dologa vpis v PC

.o 00000000
imregl "~ : pcsel — dolo¢a vhod v PC :

o 0-0-0-0-0.0000 -} pcout 0.. PC+1
S T 1.. tak.operand (abs.skok)
o —vlcout]|] | | : . o 2.. pcttak.operand (vejitev)
- joooo0o0o000f - - N | O®lreset - - - - 3.. Sreg (vrnitev iz

sreg 00000000 - - - - - - - . . gee———m L Clack podprograma)
S reset — postavi PC na 0

| _MiMov0.5
3.2.2. MiMo - podatkovna enota

3.2.2.4 Ukazni reg. - IR

(,,Instruction register®)
Vhod: Podatkovno vodilo (Databus)

|zhodi: razdelitev ukaza na polja :

« op.koda (7 bitov) in

« 3x3biti za izbiro registrov (dregs, sregs,
tregs)

skupaj 16 bitov

Kontrolni signal:
« irload: doloCa vpis v IR iz podatk. vodila

IR Logic

instructionf' VYo uUY D Q) 0 ojtregsel

P 0000000 Instruction_register_Content

~~~~~~~~~~~ © 2025, Rozman, FRI




| _MiMov0.5
3.2.2. MiMo - podatkovna enota

3.2.2.5 Takojsnji reg.-“immed*
(takojsnji register, ,Immediate”)
shranjuje takojsnji operand

Vhod: Podatkovno vodilo

|lzhod: ,immed"”

Kontrolni signali:
« imload: doloCa vpis v »Immed« reg.

iz podatk. vodila
Gataln 00 00,

cLKin[ 0>

40 © 2025, Rozman, FRI



3.2.2.6 Podatkovno vodilo

(BRANJE iz RAM) * RAMSel (vklop pomnilnika)

(PISANJE v RAM) |

Kontrolni::
- datawrite (0..BRANJE, 1..PISANJE)

I~ ImmReg

Vhod::
* podatkovno vodilo data
Izhod:
* podatkovno vodilo data
RAM  [ili—=rir—]
l r
A RAM 16K x 16
0 0000 0000 0000
WE 0004|0000 0000 0000 0000
_*DE 0008|0000 0000 0000 0000
000¢|/0000 0000 0000 0000
0010(0000 0000 0000 0000
00140000 0000 0000 0000
CLK (RAMSel| |
~O<J—+91 datawrite
ADDR DEC. /o1

Branje iz RAM pomnilnika (obi¢ajen tok podatkov
neaktiven datawrite):

+ tak.register (Immed. Reg.)

+ ukazni reg. (Ins. Reg.)

* v MUX pred registri

Ponor pisanja dolocajo kontr. signali (imload, irload,
regsrc)

Vpis v RAM pomnilnik:
pri vpié‘.u v RAM pomnilnik pa se smer obrne — aktiven datawrite.
» datasel : dolo¢a iz enega od 4 virov :

0..PC (skok v podprogram,shranitev PCja)
1..Dreg (pri ukazih STR Rx,naslov, vpis Rx- —
>RAM) R

2.in3 Treg in izhod ALE



| _MiMov0.5
3.2.2.7 Naslovno vodilo

.............. Vir naslova dolo¢a »addrsel«:
--------------- 0..PC (nasledniji ukaz)
"""""""" 1 .. Immed Reg(branje iz abs. naslova)

RA M 2 ..izhod ALE je lahko :

Sreg+immed; indeksno s fiksnim odm.
Sreg+Treg; posredno s spr. pomikom

RAR 16K 1

LK

IEH {datawrite]
|ﬁ S




| _MiMov0.5
3.2.2.8 RAM pomnilnik

7 RAM L

RAM pomnilnik je priklju¢en na: e
P J .p ) &~ RAM 16Kx16
* pOdatkovnO vodilo (,,data“) B 0006 7e03 0001 7e04 L
* naslovno vodilo (,address") _’w 00090001 8201 8000

000c¢[8201 4000 8200 D'
Kontrolna signala: - ooof| 4008 I 400,
« datawrite : ——h
« doloca branje (0) ali pisanje (1)
* RAMsel(ect) :
« aktivira (1) RAM pomnilnik
» deaktivira (0) RAM pomnilnik
(uporaba: ,naslovno dekodiranje®)

Vhod |lzhod/Vhod :
*Naslov (A): 14 bitni, naslovni prostor 16-bitni .« Podatkovno vodilo (D)

datawrite|

OR - 3 — Povzetki predavanj 46 © 2025, Rozman, FRI



H _MiMov0.5
o - VA AM 16K x 16
3.2_2_8 RAM pomnllnlk o 7603 0001 7e04

0001 8201 8000| - -
Naslov RAM 14 bitni 8201 4000 8200 |-
Naslov MiMo 16bitni ?7??

4008- 400f| -

Naslovno dekodiranje

""l Izbira ¢ipa (CS)

* Kako prikljuc¢imo dve (ali ve€) naprav na vodilo?

* Naenkrat mora biti izbran samo en Cip (ali nobeden)

* Za izbiro uporabimo naslednje signale:

* Uporabni so biti, ki niso povezani na naslovne signale naprav | A;s-A,

» CSA*in CSB* sta torej funkciji / a,,-a,, inilag
R CsB*
A L [esa DASLOYNO DELODIRANIE
A . Ic?é* C:é- 4"‘“41”' ‘ T .’ I _07
. ” Naprava, ya Mﬁﬁil‘;f | o B
. > 00 2An

cee 01 ' tB-L@
Dx? %0 10 T Y



| _MiMov0.5
3.2.2.9 Graficni zaslon (,,FrameBuffer®)

registrih (,framebuffer”).

Vhodi:
» address: naslov,
* data: podatek (vrednost),

address| o 01 0.0.0)

Kontrolni signali: " pooo1000

N ,,store“ (pisanje), ____________

. CLK e |

e Clear” — R

OR - 3 — Povzetki predavanj 50 © 2025, Rozman, FRI



0o

Py

0

pooo0000
pO000000

pO0000D00
pooo0000

0000000
pooo0000

[elel B Giels)

:?\ffffffﬁfff

1)
(=]

po00o0000
pO000000

pO0000D00
0000000

]
(=]

pO000000
poo000D00

po00o0000
pO0000D00

...... oo
...... L o0
e
...... . oo
...... - = o

.......... - e

I Le]
(=]

po0000D00
0000000

__________ A

pO000000
po0o0o0000

.Fooooogq: o

onap

...... 1 I

L LI ]
..... L

..... o b

OR — 3 — Pc clock{@F—

:réset@ —

© 2025, Rozman, FRI



| _MiMov0.5
3.2.2.10 Serijski terminal (,, TTY")

Vsebina zaslona je prikazana v 4

vrsticah in 16 znakih. :-Iat.zi 0.0.0.0.0.0.0.0 .

11100001
Vhodi: ﬁﬁﬁﬁﬁﬁ'ﬁﬁﬁﬁﬁﬁlﬁﬁ”
 data: podatek oz. znak (7bitna ASCII Write_Enable [0]——————" clear
koda),

Kontrolni signali:

« \Write_Enable” (pisanje),
* CLK,

o Clear”.

OR - 3 — Povzetki predavanj 53 © 2025, Rozman, FRI



| _MiMov0.5
3.2.2.11 Debug enota

Vsebina zaslona je prikazana v 4
vrsticah in 16 znakih.

Vhodi:
» clock: urin signal Logisim
« Addr: naslov ukaza ustavitve
(,breakpoint®)
reset[ @ >—

Izhod
continue@

Debug Unit

Makes sure the 'continue’ button only

lets through 1 clock pulse, until you let go

and press it again. - -

Qutputs 1 only.on first cycle (shift bits are unequal).

« CLK: glavni urin signal sistema

Uporabniske kontrole:

» Cycle: ustavitev vsako urino periodo
* Instr:  ustavitev vsak nov strojni ukaz
» Stop: ustavitev na naslovu Addr

« Cont: nadaljuj izvedbo (po ustavitvi)

break_addr |

Breaks on PC = break_addr

break_on_addr[ @.>

ucounter

Avtor: Maks Popovi¢

Breaks on each new instruction

Pass

OR - 3 — Povzetki predavanj 55 break_on_instr[ 8>

—@ instr

break_on_cycle[ €.

Breaks on each clock pulse



H _MiMovO.Sa
3.2.3 MiMo — Kontrolna enota

Mikroukaz = elementarni korak M Icrococle contrOI U nlt

Control ROM
I ~ i i PR " ;laluo !
Vsa k m | krou kaz d Oloca Address of third uinstruction is "opcode+2 l opz:c!
weounterfy 0000000 A ROM 256 x 32 l { datawrite

« stanje vseh ? e —
.. ex
* naslednji ? o

Dec 0O

MicroPC

pcload
dwrite
irload
imload

Vhodi v KE: ()
opcode — operacijska koda ukaza [vemd
C, Z, N zastavice

regsrc
cond
indexsel

datasel|
SWrite
01

1

Izhodi iz KE O
Vsi kontrolni signal

Kontrolni signali:
cond — izbira pogoja (Z, ZorN,N,C)
indexsel — opcode_jump
(skok na opcode+uPC)
ucounter(uPC)=2, torej
skok na opcode + 2

OR - 3 — Povzetki predavanj




"
MiMo — Diagram prehajanja stanj

1 * Obicajen koncept opisovanja KE

IR < MIPCl« * Razvidna izvedba strojnih ukazov

0: fetch: addrsel=pe irload=1 * Potrebna optimizacija pred samo

i realizacijo (Stevilo notranjih stanj,

)

»PC<-PC+1«
1:  pcload=1 pesel=pc, opcode_jump

/

ADD Rd,Rs.Rt
0: aluop=add op2sel=treg dwrite=1
regsrc=aluout, goto fetch

%/ LI Rd.Immed

65: addrsel=pc dwrite=1 regsrc=databus,
goto peiner

JNEZ Rs,immed
40: addrsel=pc imload=1, goto [130]
130: aluop=sub op2sel=constO, if z then pcincr else jump

SW Rd,immed

67: addrsel=pc imload=1, goto [131]

131: addrsel=immed datawrite=1 datasel=dreg,
goto peiner

v
»PC<-PCH1« »PC<-Immed«
peincr: pcload=1 pcsel=pc, goto fetch jump: peload=1 pesel=immed, goto fetch

| }

OR - 3 — Povzetki predavanj 59 © 2025, Rozman, FRI




" S
3.2.4 Mikro-zbirnik

kontrolni signali, nasl. mikroukaz

m Mikroukaz : (63: addrsel=pc dwrite=1 regsrc=databus, goto pcincr)
kontrolni signali

m VecCbitni kontrolni signali: micro_assembler.pl

#!/usr/bin/perl

use strict;
use warnings;
opisna vrednost g
|# Microassembler for Warren's 16-bit microcontrolled CPU.

add, sub, mul, div, rem, and, or, xor, [P () GPL3 Warren Toomey, 2012
m nand nor nOt ISI |SI’ asr I’OI ror die("Usage: $0 inputfile\n") if (GARGV!=1);
m treg |mmed COI’lStO COI’lSt1 ALE |# Table of control ROM values for the

.’ 2 ’ - # known control=value pairs
clelslis L pe, immed, aluout, sreg nasl. vodilo my Svelucs (O ;
. . 'aluop=add' => ,
D pc, immed, pcimmed, sreg PC 'aluop=sub' => 1,
. . . 'al =mul' = 2,
. .= databus, immed, aluout, sreg registri S
] znorz, n, ¢ kontr. enota ez b

OR - 3 — Povzetki predavanj 60 © 2025, Rozman, FRI



" S
3.2.4 Mikro-zbirnik

datoteka basic_microcode.def

fetch: addrsel=pcirload=1 # Address=PC, Load IR register

pcload=1 pcsel:pcl—opt;de__iump 1 # PC=PC+1, jump to 2+0PC

# ALU operation '+' on Rd,Rs,Rt
0: aluop=add op2sel=treg dwrite=1 regsrc=aluout, goto fetch

# INEZ Rs,immed
40: addrsel=pc imload=1
aluop=sub op2sel=constQ, if z then pcincr else jump

#li Rd,Immed
63: addrsel=pc dwrite=1 regsrc=databus, goto pcincr

# Rd->M[immed]
65: addrsel=pc imload=1
addrsel=immed datawrite=1 datasel=dreg, goto pcincr

pcincr: pcload=1 pcsel=pc, goto fetch

jump: pcload=1 pcsel=immed, goto fetch

se prevede v indexsel, pcload
00: OOOOZOOg}L@l/ # fetch: addrsel=pc irload=1 —_— =
01: 00&08“ 0202 # pcload=1 pcselzpc,‘-opcode_jump1
02: 00011000 0000 #0: aluop=add opZSeI:trehg dwrite=1 r'e'gsrc:aluout, goto fetch
2a: 00004000 8282 ~, #40: addrsel=pc imload=1 (goto 82)
| 41: 00001000 8484 #63: addrsel=pc dwrite=1 regsrc=databus, goto pcincr
| 43: 00004000 8383 ) #65: addrsel=pc imload=1 (goto 83)
82: 00040021 84854  # aluop=sub op2sel=const0, if z then pcincr else jump
83:001000c0 8484 # addrsel=immed datawrite=1 datasel=dreg, goto pcincr
84: 00000800 0000 # pcincr: pcload=1 pcsel=pc, goto fetch
85: 00000a00 0000 #jump: pcload=1 pcsel=zimmed, goto fetch

OR - 3 — Povzetki predavanj 61

© 2025, Rozman, FRI



" I
3.2.4 Mikro-zbirnik

Visual Studio Code > Other > OR Microcode Intellisense

b VisualStudio | Marketplace

OR Microcode Intellisense
Amadej99 | L 25installs | Y Kk K (1) | Free

Provides intellisense for basic_microcode.def files used in OR FRI

m Trouble Installing? [=

VSCode u-ass plugin {} micr
OrOdje Za Iaije mikroprog ramiranje D: > OneDrive - Univerza v Ljubljani > Delovni > Sluzba > Predavanja > OR > _Predav

(Amadej Milicev) o f

"commands™: [

"command": "aluop”,
G. h b "unit™: "ALU",
__lL_LL_ "description”: "## Izberi ukaz za ALU\n MoEnosti:\n

"args": [

||: "add",

"description™: "Seevanje "

OR - 3 — Povzetki predavanj 62 © 2025, Rozman, FRI


https://github.com/Amadej99/or-microcode-intellisense

Program v mikro-zbirniku za strojni ukaz
JNEZ Rs,immed

# Common start for all uinstructions : Read from M[PC] to IR, increment PC and goto »2+opcode«

fetch: addrsel=pc irload=1 # Address=PC, Load IR register, goto next line (empty 2nd part)
pcload=1 pcsel=pc, opcode_jump # PC=PC+1, goto »2+opcode«

# Example of assembler instruction body: JNEZ Rs,immed (opcode=40, address = 40+2=42)

40: addrsel=pc imload=1 # Read Immediate operand -> IMRegister

aluop=sub op2sel=0, if z then pcincr else jump # If z then pcincr else jump to immed
# Increment PC and goto new command; for all commands that use immediate operand
pcincr: pcload=1 pcsel=pc, goto fetch #additional PC<-PC+1, read new uinstruction
# Set address to immed and goto new command; for absolute jumps to immed address

jump: pcload=1 pcsel=immed, goto fetch #read new uinstruction from immed address

RAZLAGA:

najprej se prebere ukaz iz pomn. naslova PC v ukazni register (IR): IR<-M[PC]

PC se poveca za 1, nato skoci na vrstico »op.koda+2« : PC<-PC+1, goto »op.koda + 2«
v register »immed« se prebere operand iz pomnilnika M[PC]: immed <- M[PC]

izvedi ALU operacijo SUB med Rs in konst.0, €e rez=0 goto pcincr:, sicer pojdi na jump:
Ce velja Rs=0, povecaj PC in nadaljuj z novim ukazov (ni skoka)

Ce velja Rs#0, sko€i na immed naslov

T0O o0 OTN

OR - 3 — Povzetki predavanj 63 © 2025, Rozman, FRI



" N

Razpored mikroukazov v obeh kontrolnih pomnilnikih po naslovih:

0,1 mikroukaza za branje mikroukazov in poveéevanje PC (a: in b:)
2-129 prvi mikroukazi za vse ukaze z op. kodo 0-127 (naslov=op.koda+2)
130+ vsi ostali mikroukazi za vse ukaze v zbirniku (si sledijo po vrstnem redu)
0x82+

Prevajanje mikroprograma:
m .\micro_assembler.exe basic_microcode.def

m pripravi se datoteki, ki se vheseta v kontrolno enoto v MiMo model
(Logisim):
1 ucontrol.rom
[1 udecision.rom
m vnos obeh v Logisim: desni klik na ROM elementa in »Load Image«

m vsebine ROM pomnilnikov se shranjujejo skupaj z modelom

Pozor na verzijo mikro-zbirnika (1.vrst. Izpisa): micro_assembler.exe v2 (11/2023)
OR - 3 — Povzetki predavanj 64 © 2025, Rozman, FRI




" S
3.2.5 Zbirnik

m Prevajanje programa v zbirniku:
1 .\assembler.exe basic_program.s

m pripravi se datoteka, ki se
vhese v RAM pomnilnik v MiMo
model (Logisim):

1 basic_program.ram

m primer prevajanja v zbirniku ->

assembler.pl

H!/usr/bin/perl
use striet;
use warnings;

|# Assembler for Warren's 16-bit microcontrolled CPU.

# (c) GPL3 Warren Toomey, 2012

# v0 : Original file

# vl : Bug fixed: X processing option (11/2017)

# few instructions' definitions changed
-# v2 : corrected bug for swi,lwi ( from 'dX' to 'dsi' )

die("Usage: 30 inputfilei\n") if (GARGVI=1);
|# Table of opcode names, the values

# and their arguments
# Meaning of abbreviations in %Opcode:

# D-reg if (satype egq 'd') {
# D-reg, S-req is D-reg if (Satype eq 'D') {
# S-reg if (satype eq 's') |
# T-reg if (satype eq 't') {
# Absolute immediate if (Satype eq "i') {
# Relative immediate if (Satype eq 'I') |

OR - 3 — Povzetki predavanj 65

© 2025, Rozman, FRI



" S
3.2.5 Zbirnik

m Primer (testni):

main: 1i r0, O # r0 is the running sum
1i rl, 100 ¥ rl is the counter
1i r2, -1 ¥ Used to decrement rl
loop: add r0, r0, rl # rO= r0 + ril
add rl, rl, r2 # rl--
jnez rl, loop # loop if rl !'= 0
SW r0, 256 # Save the result
inf: jnez r2, inf # loop if r1l != 0 -> loop forever
Q000: 0000700 0111111000000000 main: 1i ro, 0
0001 : Q0000000 0000000000000
0002: 00007edl 0111111000000001 11 rl, 140
0003: Q0000084 OQOQOO0QQOIA0ORO0
0004: 00007202 0111111jpoopooplo 1i rz, -1
0005: Q000fffFf 1111112f111f111p11
0006: 00000040 000000001000P0OO loop:  add ra, ro, ri
0007 00000089 QOCGOODO010001001 add rl, rl, r2
0008: 00005008 0101000po0poipoo inez rl, loop
000%: Q00000068 QOQO0O00000
000a: Q00Q00BZ00 1000001000 ra, 256
000b: QO0QO0100 0QOQQO000I00
000c: 00005010 01020000Q0 r2, inf
000d4: 0000000c 0QOQDO0Op

OR - 3 — Povzetki predavanj

© 2025, Rozman, FRI



" S
Zbirnik — primeri ukazov

list_of instructions.txt (distribucija) :

add Rd,Rs,Rt (0)
sub Rd,Rs,Rt (1)

jeqz Rs,immed (39)
jnez Rs,immed (40)

beq Rs,Rt,immed (46)
bne Rs,Rt,immed (47)

li Rd,immed (63)
sw Rd,immed (65)

lw Rd,immed (64)
lwi Rd,Rs,immed (66)
swi Rd,Rs,immed (67)

OO0O0O0o0o0o0oOooooooan

rdecCe: trenutno ze implementirani
ukazi v modelu MiMo.

Rd <- Rs + Rt, PC <-PC + 1
Rd <-Rs —Rt, PC <-PC + 1

if Rs == 0, PC <-immed else PC <-PC + 2
if Rs =0, PC <-immed else PC <-PC + 2

if Rs == Rt, PC <- PC + immed else PC <-PC + 2
if Rs I= Rt, PC <- PC + immed else PC <-PC + 2

Rd <- immed, PC <- PC + 2
M[immed] <- Rd, PC <- PC + 2

Rd <- M[immed], PC <- PC + 2
Rd <- M[Rs+immed], PC <- PC + 2
M[Rs+immed] <- Rd, PC <- PC + 2

OR - 3 — Povzetki predavanj

67 © 2025, Rozman, FRI



Naslov/
signal

42
0x2a

65
0x41

67
0x43

130
0x82
131
0x83
132
0x84
133
0x85

datasel:

0..PC

1..Dreg
2. Treg
3.ALU

_el Mikroprogramirane CPE v0.5a

[y

swrite

(]

datasel

[y
cond [N}

indexsel

[

regsrc:

0..DBus
1.IMM
2.ALU
3.5reg

-]

regsrc

MiMo - Model Mikroprogramirane CPE v0.5a

izkoriscenih)

17111 22
T 5 @ T — @
s 8538 & %
-— v}
E =35 8|27
1 0
1 0
1
1 0
1 0
1 0
1
1 0
1 1
pcsel: addrsel:
e« 0.PC+1 e 0.PC
s 1.IMM e 1.IMM
e 2.PCHIMM e 2. ALU
s 3 .5reg . 3..5reg

Kontrolni (»Control«) ROM 256x32bitov (23

1

datawrite

2 4
_r
g3
- c 2
c =
2 & N4
nN 35| O o
g ®
fetch:
0 0 0
40:
63:
65:
2 1
pcincr:
jump:
op2sel:
. 0..Treg
e 1.IMM
. 2."0"
. 3."1"

Oznaka:
strojni ukaz ali

»mikroukaz«
»IR<-M[PC]«
»PC<-PC+1«

ADD Rd,Rs,Rt

JNEZ Rs,immed
LI Rd,Immed

SW Rd,immed

JNEZ Rs,immed

SW Rd,immed

PC++, goto fetch:

PC<-immed, goto

cond:

[ ]

fetch:

aluop:
0.z o 0.+
l.norz e 1..-
2.*
3./

2.n .

3..c .
.

Opis vsebine mikroprograma

Opis

mikroukaza

IR<-M[PC],goto [1]
PC++, goto »Op+2«

ADD op. Rd,Rs,Rt,
goto fetch:

immed<-M[PC],
goto [0x82]

Rd<-immed<-M[PC],
goto pcincr:

immed<-M[PC],
goto [0x83]

SUB op. Rs-0, if Z then
pcincr: else jump:
Rd->M[immed];
goto pcincr:
PC<-PC+1,
goto fetch:
immed->PC,
goto fetch:

Format 1:

Op.koda

7

Format 2:

Mikroukaz

addrsel=pc irload=1
pcload=1 pcsel=pc, opcode_jump

aluop=add op2sel=treg dwrite=1
regsrc=aluout, goto fetch

addrsel=pc imload=1

addrsel=pc dwrite=1
regsrc=databus, goto pcincr

addrsel=pc imload=1, goto 83

aluop=sub op2sel=const0,
if z then pcincr else jump

addrsel=zimmed datawrite=1
datasel=dreg, goto pcincr

pcload=1 pcsel=pc, goto fetch

pcload=1 pcsel=immed, goto fetch

Treg  Sreg  Dreg
3 3 3

¢ Format 1 + 16-bitni tak. operand

Odloditveni
(»Decision«)
ROM
256x16bitov
true false
8bhit 8bit
1 1
2 2
0 0
82 82
84 84
83 83
84 85
84 84
0 0
0 0

v 0.5a



rogramirane CPE v0.5a

MiMo - Microprogrammed CPU Model vo.saor evo Debug  con ]

Reet cycle[@>{amgere]  stop[T{amgaur] Instruction: [ived]

sysciklT—emxn] instr [E>{agm] Adar [T
Address BUS 00 0 0 0

/[

reset

Address, Data Bus

- 'Address ' 0000 Data' 0000

(=] Registers

continue

pcload

br_cycle

RO 0000 =

br_instr
br_addr_on

Data BUS

- — =i - ImmRe R2 0000 = br_addr
i Imieg o @) Spec. Registers
- e o o R4 0000 = pcreg
RAM i e [ oo 20 2 0 reing 0~Geg]
RAM 16K x 16 R6 0000 =
000dfeR0000 0000 0000 g7 @000 ALU IMM 0000 ={immed]
0004 M ALUOut 0000 ={aluout]
BE - o008 o0 1 :
000 - O Tmmear—} .
0010/0000 0000 0000 0000 q  MUX | Flags
001410000 0000 0000 0000 c ._@
#0000
NH:
-o<t— { |

o [irtoad }-§ 0000 Status
O . New,Mn

Quick tips:
Use ctrl+t to manually toggle global clock signal

Use Simulate->Ticks Enabled for automatic clock signal

Micro Instruction

ICycles 0 Cycles' 0 Cmds' 0

Microcode Control Unit

Control ROM
e o i iietons et i weropc Wiro_intr (00002000 ext_inste 101 =—{orom]

MW datawrite swrite] datasel [indexsel] cond| [regsrc]imioad|[iroad][dwrite | acioad|[oc sei adar sel] datawrite | [ apzse/|[aiop)
addrsel|
02 00011000 ‘ a0 a0 00 00 00 00 0000
csel
| cload|
durite) Frame Buffer LED 16x16 TTY
0a 00000000 00000000| Irioad
imload
regsrc |data)
CROM| cond
indexsell
datasel| Clear_Screen
P swrite
Decision ROM
" ROM 256 % 16

ucounter [ Icycles

[omstH reset  Emmeyeies
Eemas

CycleCounter

OR-3. Based on: http://minnie.tuhs.org/Programs/UcodeCPU/index. html
v05: Migration to EVO, Debug, Counters, InmReg Units

v05a: norz instead of corz @

© 2025, Rozman, FRI



"
|lzvedba strojnega ukaza JNEZ R1,LOOP po skupinah kontrolnih signalov

Primer izvedbe ukaza :

main: li ro, 0 # r0 is the running sum
li r1, 100 # r1 is the counter
li r2, -1 # Used to decrement r1
loop: add rO0, r0, r1 #r0=r0 +r1

add r1,r1,r2 #r1--

jnez r1, loop #loopifr1!'=0

sw 10, 256 # Save the result

OR - 3 — Povzetki predavanj 70 © 2025, Rozman, FRI



.._,LOOP po skupinah kontrolnih signalov

Razdelimo se v skupine:

DolocCite aktivna stanja kontrolnih signalov pri vsakem mikroukazu

Primer izvedbe ukaza :

main: li r0, 0 #r0 is the running sum
li r1, 100 #r1 is the counter
li r2, -1 # Used to decrement r1
loop: add r0,r0, r1 #r0=r0+nr1

add r1,r1,r2 #r1--
/ jnez  r1, loop #loopifri!1=0

sw r0, 256 # Save the result

I Using the Collaboration Space Predavanja Notes

Izvedba INEZ

Mondlay, November 00,2020 1011 00

Enota ? KE KE ALE ALE MM B BC NASLVOD.

JNEZ Rs, IMMED INDEXSEL COND ALUOP oP2sEL IMLOAD IRLOAD PCSEL ADDRSEL MicraPC

# Address=PC, Load IR register

#PC=PC+1, jump to 2+OP

# Read Immediate operand -> IMRegister

# ALU: Rs-0, If z then pcincr else jump

# Increment PC and goto new command;

# Set address to immed and goto new command

OR - 3 — Povzetki predavanj 71 © 2025, Rozman, FRI



jnez Rs,immed (40)

E JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC +2
. fetch: # Address=PC, Load IR register
# PC=PC+1, jump to 2+OPC
40: # Read Immediate operand -> IMRegister
# ALU: Rs-0, If z then pcincr else jump
pcincr: # Increment PC and goto new command,;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction IEFEE{il |_tfr9_975_| sregs||dregs| New CMD Reset
o el

swrite|datasel indexselfcond||regsrc|imload Jirload || dwrite | pcload | pcsel|addrsel |datawrite Jop2sel
@ @ @ @ @ o o0 0 0 & & @ e Address| xi6 | Datal xi5 | IR[ x16 | ICycles(xa Cycles( x16 ]
|—.pc
/ . address data ireg

WIUX

(]
Address m Stat u s
e cO—(J

z

Immed. Reg. N .

IMM
k;es% ) <immed|
en0
imload —
x16

el RAM

—ed ALY
Clock treg
A 64KB RAM D |
slel L. Id dr i ﬂ
1 t{atou]
Clock
1 x16
I I I I N e

Skok v kontrolni enoti :

Default: next address
N N N N

Naslov: Podatki: I— Kontrolni signali: [



[ | . : jnez Rs,immed (40)
JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC + 2

fetch: # Address=PC, Load IR register
( # PC=PC+1, jump to 2+OPC
40: # Read Immediate operand -> IMRegister
# ALU: Rs-0, If z then pcincr else jump
pcincr: # Increment PC and goto new command,;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza

Microinstruction

swrite|datasel jindexselfcond||regsrc|imiocad Jirload|| dwrite | pcload | pcsel|addrsel | datawrite Jop2sel
& bel & e (e @ & bel bl (e
0

Address m—

weosfead] newewo  RESEL
\ddress | x16 | Datal x16 | IR[ x16 ICycIes Cycles

Registers

Status

RAM

A 64KB RAM D |data>
sel o Id cIr

1 -
Clock o<

I I I B B B
Skok v kontrolni enoti :

IJump to address OP+2=40+2=42

[ N BN BN BN BN B
Naslov: Podatki: I— Kontrolni signali: [



jnez Rs,immed (40)

1 JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC + 2
fetch: # Address=PC, Load IR register
# PC=PC+1, jump to 2+OPC
( 40: # Read Immediate operand -> IMRegister
# ALU: Rs-0, If z then pcincr else jump
pcincr: # Increment PC and goto new command,;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction IEFEE{il |_tfr9_975_| sregs||dregs| New CMD Reset
o el

Address Data IR ICycles Cycles
address data ireg

Status

|swrite|dataselIindexsellcond"regsrclimloadlirload"dwrite Ipc\oad I pcselladdrsel |datawrite|op258||
Q & x2 @ @ Q x2
‘ -

WIUX

Address

el RAM

A 64KB RAM D

sel o Id cIr

Bl e
Clock o<

I I N B S .
Skok v kontrolni enoti :

Default: next address
N N N N

Naslov: Podatki: I— Kontrolni signali: [



jnez Rs,immed (40)

N JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC+2
fetch: # Address=PC, Load IR register
# PC=PC+1, jump to 2+OPC
40: # Read Immediate operand -> IMRegister
[ # ALU: Rs-0, If z then pcincr else jump
pcincr: # Increment PC and goto new command,;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction IEFEE{il |_tfr9_975_| sregs||dregs| New CMD Reset
o el

swrite|datasel findexseljcond||regsrc |imload jirload || dwrite | pcload | pesel|addrsel | datawrite fop2sel
@ @ o @ e @ o o @ k& & @ b Address| xi6 | Datal x16 | IR x16 | ICycles(x4 Cycles xi6 |
pc
l_. address data ireg

0 <>

(immed
Address m— m Status
sreg

[~ ]

:0—T
NO—1]

Immed. Reg.

MM
b g immed]
RAM —L ol
imload —
(xt6 sl ALU
Clock l
A 64KB RAM D |da:a,‘,
Aai
sel o Id clr i \'|
[ —
Clock o<l
1 x16

NN _ N N B
Skok v kontrolni enoti : l

IE[LZn pcincr I

else jum



jnez Rs,immed (40)

. . .
JNEZ Rs,immed - izvedba if Rs 1= 0, PC <- immed else PC <- PC + 2

fetch: # Address=PC, Load IR register
# PC=PC+1, jump to 2+OPC
40: # Read Immediate operand -> IMRegister
# ALU: Rs-0, If z then pcincr else jump
( pcincr: # Increment PC and goto new command;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza

Microinstruction frege I_SFES_"EFEEI New CMD Reset
|swrite|dataselIindexsellcond"regsrclimloadIirload"dwriteIpc\oadlpcselladdrsel|datawrite|op258ll s (3 (xs)
(x1) x1) x2 x & (x1) x2 PC<-PC+1 \ddress | x16 | Datal x16 | IR[ x16 | ICycles(xa Cycles| x16 |
- address

cycles

data ireg

x16
= w (e
adaress( 8 — M A Registers Status
sreg

Immed. Reg.

MM
l'rleBEJ ) <immed|
-dd 2
= RAM ||m|oad)J * .
X
Clock
A 64KB RAM D |data>

sel o Id cIr

1 -
Clock o<

I I N B S .
Skok v kontrolni enoti :

Jump to address fetch:
G I B B B .

Naslov: Podatki: I— Kontrolni signali: [



B . 7 Jjnez Rs,immed (40)
JNEZ Rs,immed: velja Rs#0 if Rs 1= 0, PC <- immed else PC <- PC + 2

# Address=PC, Load IR register

fetch:
# PC=PC+1, jump to 2+OPC
40: # Read Immediate operand -> IMRegister
# ALU: Rs-0, If z then pcincr else jump
pcincr: # Increment PC and goto new command;
jump: # Set address to immed and goto new command

MiMo - Microprogrammed CPU Model voza
Microinstruction |opcode| |tregs"sregs"dregs| New CMD Reset
|swrite|dataselIindexsellcond"regsrclimloadIirload"dwriteIpc\oadlpcselladdrsel|datawrite|op258ll x7 x| [l )
(x1) x1) x2 x) G (x1) x2 Address| x16 |Datal x16 | IR[ x16 | ICycles (x4 Cycles| x156 |
C
i !_ﬂ address data ireg
B=
Status
cO—(<]

Address m—
20—

N

RAM
ALU

treg J

A B4KBRAM D |dafa> .
slel o ld alr " \n]
4 (]
RPN |

s x16

I I N B S .
Skok v kontrolni enoti :

Jump to address fetch:
G I B B B .

Naslov: Podatki: I— Kontrolni signali: [



JNEZ Rs,immed — koncna tabela

fetch: addrsel=pc irload=1
pcload=1 pcsel=pc, opcode_jump
40: addrsel=pc imload=1
aluop=sub op2sel=const0, if z then pcincr else jump
pcincr: pcload=1 pcsel=pc, goto fetch
jump: pcload=1 pcsel=immed, goto fetch
lzvedba JNEZ

Monday, November 08, 2020 10:11 PM

# Address=PC, Load IR register
# PC=PC+1, jump to 2+OPC
# Read Immediate operand -> IMRegister

# ALU: Rs-0, If z then pcincr else jump

# Increment PC and goto new command,;
# Set address to immed and goto new command

Enota ?

KE

KE

ALE

ALE

IMIM

IR

PC

PC

MNASL

JNEZ Rs, IMMED

INDEXSEL

COND

ALUOP

OP2SEL

IMLOAD

IRLOAD

PCLOAD

PCSEL

ADDRSEL

MicroPg

# Address=PC, Load IR register

PC (0]

0

# PC=PC+1, jump to 2+0P

"pCE1"

# Read Immediate operand -= |MReqgister

PC(0)

42
(40+2)

#ALU: Rs-0, If z then pgingr else jump

SUB (1)

CONSTO

130

# Increment PC and goto new command;

"pC+1"

7=1,132

# Set address to Immed and goio new command

"IMMED"

7=0,133

OR - 3 — Povzetki predavanj

78

© 2025, Rozman, FRI




"

3.2.6 Primerjava Mikroprogramska/Trdoozicena KE

Mikroprogramska KE:

m PocCasnejSa

m Enostavna, fleksibilna

m Moznost realizacije razlicnih arhitektur

Trdoozicena KE :

m Hitrejsa

m Potrebnih vec logi¢nih vezij
m Realizacijsko bolj zapletena

OR - 3 — Povzetki predavanj 79 © 2025, Rozman, FRI



Pristop k realizaciji trdoozicene realizacije KE

Izhodisca:

s Diagram poteka / |

m Elementarni koraki
m Poenostavitev: CPE, ISA:

Elementarni koraki:
""""""""""" - 0 .. Branje ukaza -> IR

Format 1: nop
2 .. Vse operacije :

- > R/W from Mem
Phase ===y
Counter I
[I'( phase
l L _ N N | -I
yd
72
-

lop1]fop2Rd Rs

op1 op2

bbg bsb,

mm‘ Mnemeonic H Purpose
--\AND Rd,Rs |Rd=RdJANDRs
[00[01 [OR Rd,Rs _ [Rd=RdORRs
[00[10 [ADDRd,Rs  [Rd=Rd +Rs

[00 [ 11 [SUBRd,Rs  [Rd=Rd-Rs
[01[00 [LW Rd, (Rs) [Rd =Mem[Rs]

[01 [01 [SW Rd, (Rs) [Mem[Rs] =Rd
[01[10[MOVRA,Rs [Rd=Rs

E I NOP Do nothing

E E JEQ Rd, immed |PC = immed if Rd == 0
E E JNE Rd, immed |PC = immed if Rd =0
(10 [10]7GT Rd, immed|PC = immed if Rd > 0

[lo[u
1100
|11 ]01

[2][2[2]2]

\ Irbit7 (b-):
0 .. 8-bitni ukaz (1bajt)

/ 1 .. 16-bitni ukaz (2 bajta)

JLT Rd, immed

PC = immed if Rd < 0

|0p1||0p2“i1nmediate|

LW Rd, immed

Rd = Mem[immed]

[2[af2]2] 8 ]

SW Rd, immed

Mem[immed] = Rd

0|LI Rd, immed

Rd = immed

m m ‘JMP immed

HPC = immed

Podrobnejsi opis - dodatno gradivo:

http://minnie.tuhs.org/CompArch/Tutes/week03.html

1 .. Format 2: branje operanda

0 ALE, skok, reg.write,


http://minnie.tuhs.org/CompArch/Tutes/week03.html

Pristop k realizaciji trdooziCene realizacije KE

Izhodisca:

s Diagram poteka /

Elementarni koraki:

0 .. Branje ukaza -> IR

1 .. Format 2: branje operanda
Format 1: nop

2 .. Vse operacije :

ALE, skok, reg.write,
> R/W from Mem

m Elementarni koraki

m Implementacija, izbrani primeri:

Realizacija el. korakov:
0,1 .. enostavna/zapletena ?

bsbg op2 2 .. enostavnal/zapletena ?
irbit7: 120 | 00 {TEQIRd. immed|
Rd. i Phase -
0 .. 8-bitni ukaz (1bajt) [10] 01 J/NER, immed] Counter I
1 .. 16-bitni ukaz (2 bait [10] 10 |JGT_:Rd. immed| phase |
- 16-bitni ukaz (2 bajta) ([ 1L 7T R, immed] =
2
\ IR Load Zero \ 1 reset
E—% \[iwe —(
irload
irbit7
' LB N I . :
| | D— ' pcload
L N - ‘ L r
\ Immed Load op2
irbit4 |
imlc:-ad irbit5 - } L===a
negative i bit7 M V\

L LB B ] ‘
Podrobnejsi opis - dodatno gradivo:

http://minnie.tuhs.org/CompArch/Tutes/week03.html

11 || 11 |[;MP immed



http://minnie.tuhs.org/CompArch/Tutes/week03.html

MiMo: primer trdoozi¢ene realizacue'.
(osnovni ukazi) '

S Lo I Phase counter |
o u:: SR g |
N o | ~
. e il S | '_@P"a.s.e :I
] : — 1
::z s | ::
i = EE 1
|false O} swrite - E I-clock- I

Immed Load:

datasel

bwrite

Avtor: Kiril Tofiloski

OR - 3 — Povzetki predavanj 82




" M

2023/24 — novosti: MiMo v1 v0.5a DecisionRoM__

m Sprememba MiMo v0.5a:
[1 vezave zastavic v KE
0 mikrozbirnika: micro_assembler.exe v2 (11/2023)

m Dodatni studentski prispevki:

Addre: P10
Data PIOA2

OR — 3 — Povzetki predavanj - o - © 2025, Rozman, FRI



Realiziral sem Stevec, ki lahko hkrati Steje (Stoparica) in odSteva (Casovnik). Nastavi se mu
lahko zacetna vrednost do 999, ¢e je veC avtomatsko nastavi na 999. OdStevanje se zacne

na naslovih, ki imajo Isb 1, sestevanje pa na naslovih ki imajo Isb 0. Vrednost lahko tudi

preberemo.

Testni program je v tocki 4.

2024/25 — novosti: MiMo v1 v0.5a

m Dodatni studentski prispevki:

16-bit ALU
1i r5, 999
sw 5, 49153

1w 5, 49153

Konéen izgled in povezava naprave

Apaiiian
1iiioog &1

# counter value
# start countdown with start value of 999

# load value of countdown

Clear_countdown

b

oogo

address

E—ﬁ

ooga

7e00

i

PCEDe

counter

(EEE

customread

1 also renamed the ‘norz’ flag to ‘v’ and addressed a minor issue in the ‘micro_assembler.pl’ file.

custom >—

After making the necessary fixes, I packaged it into an executable file named micro_i bler_v2.

The issue involved the assembler incorrectly translating the ‘if x then y’ partial jumps. The solution
was straightforward: I simply needed to rename the variable in line 169 from $jump to $tjump.

MiMo Overflow flag
(Nik Uljarevic)

Druga raziéica te naprave je vizualizacija dolZine ukaza v programu, V tem primeru je spremenjena
vrednost vhoda X koordinate. Vhod je t. ciklov v pesameznem ukazu. Za vsak ukaz v programu zatne
barvati od leve prosti desni, vsak ukaz v svoji vrstici

MiMo: primer trdooZi¢ene realizacij...

nja > OR

ommand”: "aluop",
“ALU™,
"description™: "##

“args”: [

Qdlotil sem se dodati RGB zaslon. Ima 6 vhodov.
1) Reset -z kliku na rumen gumb resetira zaslon v na povsem érno “UnRERETE
2) Clock - tunel CLK (Easovnik)

3) Write enable - tunel RGB (priZge ko je pravi naslov)

4) X coordinate — &. vseh ciklov

5) ¥ coordinate - st. izvedenih ukazov

6) Datain 565 RGB (16 bit) - tunel data (navadno vrednost registra)

i ukaz za ALU\n

“arg":
"description™:

a

Ta naprava deluje na istih naslovih kot RAM, saj grafiéno predstavija izvajanje ukazov iz RAM-a. Pryi
ukaz zaéne levo zgoraj in proti desni, drugi ukaz eno vrstico nije itd.

RGB zas!ona
(Gasper Culk)

VSCoe u-ass plugin
(Amadej Milicev) Github

vq VisualStudio | Marketplace

Visual Studio Code > Other > OR Microcode Intellisense

(Jan Ljubic)

OR Microcode Intellisense

étevecléavsovnik
(Klemen Sustar)

(b) Zaslon

RGB zaslon 32x32
(Marcel Homsak)

OR - 3 — Povzetki predavanj 84

Provides intellisense for basic_microcode.def files used in OR FRI

m Trouble Installing? &

Amadej99 | & 25installs | A Ak k (1) | Free 2025 Rozman FRl


https://github.com/Amadej99/or-microcode-intellisense

2024/25 — novosti: MiMo v1 v0.5a

m Dodatni studentski prispevki:

—
- Frame Buffer LED 16x16 e e
- ik coc " 0000
= fouenable m 0000
o ey S Naerrar
s eIADDR e 15564400 e 0000
" 0,000
L 0,000
W 0000
na 0000
ha 0000
hio 0,000
hii 000
200
hi2 0000
n3 0000
LA fo 0,000
o . : . : oy T
. . © an
00000000 51 a0
addr . dout aaaesaeil 82 a0
din - - o . . . . . : gg
wr s a0
e =
clke . [j_—cy_dout resultS0
st - resultsl 0o
Joystick_x
e Slika 17: Celotno vezje FPU z oznalenimi deli. Slika 29: FPU enota, ko jo vkljuéimo v MiMo model

Joy

RGB Joystick
(Grohar)

FPU - Float. point enota
(Tim Thuma)

p—

# Dodatno delo / razlike od originala
## Mikroukazi - Control ROM
Kontrolni ROM ima 3 nove signale:

- flags (bo ALU posodobil zastavice)
- twrite (pisanje v Rt’)

- withcarry (bo ALU uposteval carry)
Poleg tega ima "Regsrc’ novi opeiji:
- TRt

e —— YD =c  JOYLED

—— | _ . Blnarna ura

mikrozbirnik sem zamenjal z typescript programom “fu', ki hkrati vsebuje definicijo

mikrokode. Poleg ~.rom’ datotek generira tudi .dot’ datoteko, ki opise usmerjen

graf prehodov med mikroukazi. (M atl c Be rn ot) "

88 Zbirnik 01110100
Seznam ukazov iz mikrozbirnika potem uporabi zbirnik. Napisan je v Typescriptu in .
Ohm-u.

Zbirnik podpira konstante, vstavljanje datotek in vec formstow "string’ -ov. JUYON £

#R# Sintaksa 00000000
0

3

e Joystick2JoyLED RGB gradient
(Rok Oblak)

3. Ak ik ot 1. He for secnds]

565RGB screen 128x128

Address bits 0-6 control X coardinats
Bits 7-13 cantrol ¥ casndinate
Data st pixal color

Nadgradnja MiMo
vi
OR - 3 — Povzetki predavanj 86 © 2025, Rozman, FRI




"
2024/25 — novosti: MiMo v2 (cevovodna razliCica)

Cevovodne razli¢ice MiMo v1 modela: Osnovna distribucija :

m mimo_32bit_v2 (osnovna cevovodna izvedba) OR:
L - ] + https://github.com/LAPSyLAB/MiMo Student Release/tre
= mimo_32bit_v2.1 (v3+zaklenitev) e/main/MiMo_v2 Pipelined versions
u mimo_32bit_v2.2 (v3.1+premoscanje) * Diploma:
m mimo_32bit_v2.3 (v3.2+predikcije) * https://github.com/kiriltofiloski/pipelined-MiMo-CPU

FRERE = - ‘

...........

Izhodiséna dokumentacija (diploma $e ni objavljena):
https://mimo-pipelined.gitbook.io/documentation

OR - 3 — Povzetki predavanj 87 © 2025, Rozman, FRI


https://mimo-pipelined.gitbook.io/v2-documentation/instructions
https://mimo-pipelined.gitbook.io/documentation
https://mimo-pipelined.gitbook.io/documentation
https://mimo-pipelined.gitbook.io/documentation
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/LAPSyLAB/MiMo_Student_Release
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU
https://github.com/kiriltofiloski/pipelined-MiMo-CPU

" JE
2024/25 — novosti: MiMo v2 (cevovodna razli€ica)

CPU Overview

This document describes the changes to the Instruction Set

new versions of the pipelined CPU based on For the instruction set | implemented most of the standard ARM instructions along with some
the original MiMo CPU model. Developed in additions from the previous MiMo model.
LOgISIm EVO|UtIon' Instruction Code | Arguments Function
General features and changes: mov Rd, Rs/immediate | Rd<-Ry/Immediate
.5 Stage pipe“ne (lnStrUCtion fetch _ mvn Rd, Rs/Immediate Rd <- NOT Rs/Immediate
. add Rd, Rs, Rt/Immediate | Rd <- Rs + Rt/Immediate
IF' Instruction DeCOde - ID' Execute - sub Rd, Rs, Rt/Immediate | Rd <- Rs - Rt/Immediate
EX, Memory Access - MA, Write Back e Rd, Rs, RefImmediate | R <- RY/Immediate - Rs
_ WB) mul Rd, Rs, Rt/Immediate Rd <- Rs * Rt/Immediate
N div Rd, Rs, Rt i Rd <-Rs /Rt
.Harva rd ArChIteCture (Separate rem Rd, Rs, Rt/Immediate Rd <- Rs % Rt/Immediate
Instruction and Ope rand RAM) and Rd, Rs, Rt/Immediate | Rd <- Rs AND Rt/Immediate
.32_b|t I nStrUCtlon Set orr Rd, Rs, Rt/Immediate | Rd <- Rs OR Rt/Immediate
. .. eor Rd, Rs, Rt/Immediate | Rd <- Rs XOR Rt/Immediate
¢ 16_b It add resses (LogISIm RAM nand Rd, Rs, Rt/Immediate | Rd <- Rs NAND Rt/Immediate
mOdUles hGVe llmited address Sizes). nor Rd, Rs, Rt/Immediate | Rd <- Rs NOR Rt/Immediate
.Instruction set has been modifled to bic Rd, Rs, Rt/Immediate Rd <- Rs AND NOT(Rt/Immediate)
. . cmp Rs, Rt/Immediate Rs - Rt Set flags
be more SImIIar to ARM ISA (More cmn Rs, Rt/Immediate Rs + Rt Set flags
details on Instructions page), tst Rs, Rt/Immediate Rs XOR Rt Set flags
.Added Overﬂow flag V teq Rs, Rt/Immediate Rs AND Rt Set flags
. . Isl Rd, Rs, Rt/Immediate | Rd <- Rs << Rt/Immediate
.Added LI n k RegISter Isr Rd, Rs, Rt/Immediate Rd <- Rs >> Rt/Immediate
*Mu |tip|e pi pe line hazard asr Rd, Rs, Rt/Immediate | Rd <- Rs >> Rt/Immediate, Filled bits are sign bit
Optimlzation methods added ror Rd, Rs, Rt/Immediate Rd <- Rs ROLL RIGHT Rt/Immediate
. . . rol Rd, Rs, Rt/Immediate Rd <- Rs ROLL LEFT Rt/Immediate
(DescrIbEd thoroughly On Plpellne j Immediate/Label PC <- Immediate/Label
Hazard Optimizations page), b Immediate/Label PC <- PC + Immediate/Label
bl Label Jump to subroutine load Link Register with return address
. s one eturn from subroutine
Z naslova <https://mimo- = - - = —
L - - . Idr Rd, Immediate Rd <- M[Immediate]
pipelined.qgitbook.io/documentation> . F—— Wimmediate] < R
nop None No operation (Used to skip cycle and avoid pipeline hazards)

The Idr instructions supports 3 different notations that correspond to different addressing modes taht are supported in the CPU:
eldr Rd, [Rs] - Register indirect addressing

eldr Rd, [Rs, Rt/immed] - Base plus offset/Base plus index addressing

eldr Rd, immed - Absolute addressing

Z naslova <https://mimo-pipelined.qgitbook.io/documentation/instructions>

OR - 3 — Povzetki predavanj 88 © 2025, Rozman, FRI



https://mimo-pipelined.gitbook.io/documentation/instructions
https://mimo-pipelined.gitbook.io/documentation/instructions
https://mimo-pipelined.gitbook.io/documentation/instructions
https://mimo-pipelined.gitbook.io/documentation
https://mimo-pipelined.gitbook.io/documentation
https://mimo-pipelined.gitbook.io/documentation

3.3 Druzina ARM procesorjev

3.3.1 Splosni pregled ZARM® : Acorn RISC Machine, Advanced RISC MACHINE
Application
Processors
(with MMU,
.l:nrtex-AB support Linux,
System capability & . Cortex-A72 MS mobile O5)
performance
Cortex-AS57 Cortex-A35
. Cortex-AS3 Cortex-A32
cortex-a1s [ '
T e AL Real Time
Cortex-A9 . Processors
Cortex-A7
Cortex-AB ——_—
Cortex-R52
Cortex-A5 Cortex-R8
1 Cortex-R7
ARM11™ .
e SETiES Cortex-R3 Cortex-M7 |
ARMA S Cortex-R4 Microcontrollers
= ] ) cortex-m33 and deeply
Cortex-M4 embedded
ARMI20T™, | . . 4
ARMS40T™ -~ ARMBaE™. Cortex-M3 . Cortex-M23
ARMIGE™ . Cortex-M0  Cortex-Mo+
i, Cortex-M1
ARM7™ series (FPGA)
[ Classic ARM Processors ] [ ARM Cortex Processors ]

OR - 3 — Povzetki predavanj 89 © 2025, Rozman, FRI



3.3 Druzina ARM procesorjev
3.3.1 Splosni pregled ZARM® : Acorn RISC Machine, Advanced RISC MACHINE

1985: nastane pod vplivom ¢lanka o RISC procesorjih (Berkeley)
ARMv2 prva komercialna 1986: 30000 tranzistorjev

32-bitno nasl.
ARMv3
navidezni pomn.

StrongARM, half-word
ARM7TDMI, ARMITDMI  |o5q/store

Thumb

. Atmel 9260 (FRI-SMS)
ARM7EJ, ARMOE, Enhanced DSP . podpora DSP operacijam
ARM10E, XScale . uvedba tretjega set ukazov (poleg ARM,Thumb) za pospeseno izvajanje Jave
Jazelle . podpora navideznem pomnilniku htt // /
p:// www.arm.com
MMU
products/processors/
ARM11, Multiprocesiranje t
ARM11MP (prvi multiproc.) -
Cortex M SIMD corex-a
. Raspberry Pl .
6 novih status bitov http//Wwwarm .Com/
Cortex A lication Processor) :
sl ) products/processors/
NEON (MPE) . A5, A8(MPE), A9(MPE,MP), t
VE-Virt.Ext. «  A15A17 (MPE,VE,LPAE,VFPv4) cortex-m
Cortex A, M\, R
LPAE-Large.Ph.Addr.Ext. Cortex M (MicroController) :
VFP-Vector Floating Point . M3 (MPU, Bit Banding), M4 (M3 + DSP, FPU)
. M7 (M4 + 64bit buses + 2xPower Eff. of M4,
Cortex AS0 (AS3, AST, o4 itna Microsoft Win8, Windows 10 Mobile, loT Core

AT2, A73, AT5, AT76...)


http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m
http://www.arm.com/products/processors/cortex-m

3.3.1 Splosni pregled ARM procesorjev
ARM (Advanced RISC Machine) = RISC? :

+ load/store arhitektura

+ cevovodna zgradba

+ reduciran nabor ukazov, vsi ukazi 32-bitni

+ ortogonalen registrski niz, vsi registri 32-bitni while(i != j) {

if (i >]) loop: CMP Ri, Rj
i-=j; SUBGT Ri, Ri, Rj ;i=ij;
else SUBLTRj, Rj,Ri ;j=j-i
a += (j << 2); se spremeni v 1 strojni ukaz: ’ i-=i; BNE loop sif(il=j)

ADD Ra, Ra, Rj, LSL #2 |
- hitri pdéikalnik pred ALE
- pogojno izvajanje ukazov — ukaz se izvede le, Ce je stanje zastavic ustrezno.
- ve€ nacinov naslavljanja

- veC formatov ukazov

- nekateri ukazi se izvajajo vec€ kot en cikel (npr. load/store multiple) — obstaja nekaj
kompleksnejsin ukazov, kar omogo€a manjSo velikost programov

- dodaten 16-bitni nabor ukazov Thumb omogoca krajSe programe (vecja gostota !)
- novejSa Thumb2 ukazna arhitektura (16 ali 32 bitni ukazi)

OR - 3 — Povzetki predavanj 91 © 2025, Rozman, FRI



Announced
(32-bit)

3.3.2 ARM Cortex-A druzina procesorjev e co

- . . . . 2005 Cortex-A8
Namen : KompleksnejSe aplikacije, multimedija
2007 Cortex-A9

2009 Cortex-A5

NEON (advanced SIMD) ali MPE (»Media Processsing Engine«)

m 64 ali 128 bitni SIMD 2010  Cortex-A15

m do 16 hkratnih (krajSih) operacij ;’;U)Ph ;\%{"mm ?@d b,e, 2011 Cortex-A7
m v vseh Cortex A8, opcijsko tudi v A9 T e 2013 Cortex-A12
[ wdeo,audp in 3D grafika: @ . & 22/ A G
0 dekodira: 2 ropane Home atevars Robotc 2016  Cortex A32
= MP3 @ fepe = 1T0MhZ, AMR @ fop = 13MINZ, =
= MPEG4 VGA 30fr/sec @ fpe = 275 MHz Announced (32/64 or 64-bit)
m H.264 video @ fcpe = 350MHz et .
ARMV7 (32b) e ARMvV7 (32b) e ARMVS (64b) 2012 Cortex-A53
NEON 64b e MPU e NEON 128b e  Napoved skokov
VFPv3 ° out-of-order with e VFPv4 ° Out-of-order
Jazelle RCT speculative execution 2012 Cortex-A57
(Just in Time execution ° 7nm !N 2015 Cortex-A72
byte code apps) K bolj zmogljiv 2015 Cortex-A35
superskalarni o vec":ji L1, L2 PP 2016 Cortex-A73
(dual issue) ° NEON 64b 2017 Cortex-A75
dual ALU 2018 Cortex-A76
pipeline 2019 Cortex-A77
—— 2020 Cortex-A78
http://www.arm.com/products/processors/cortex-a 2021 Cortex-A510,710

2022 Cortex 715


http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a
http://www.arm.com/products/processors/cortex-a

" A
3.3.2 ARM Cortex-A druzina procesorjev

Cortex-A

expanded rangs of use cases

st silicon foctpring.

The technology sector’s compute performance needs are ever-
expanding to support new applications, experiences, and devices. The
Cortex-X Custom program enables customization and differentiation
beyond the traditional roadmap of Arm Cortex products, offering our
partners a way to deliver the ultimate performance required for their
specific use cases.

The Cortex-X1 design is based on the ARM Cortex-A78, but redesigned for

purely performance instead of a balance of performance, power, and area
(PPA).I1

CORTEX-X CUSTOM PROGRAM

© 2025, Rozman, FRI

https://www.arm.com/products/silicon-ip-cpu



https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://en.wikipedia.org/wiki/ARM_Cortex-A78
https://en.wikipedia.org/wiki/ARM_Cortex-A78
https://en.wikipedia.org/wiki/ARM_Cortex-A78
https://en.wikipedia.org/wiki/ARM_Cortex-X1#cite_note-:0-1

"
3.3.2 ARM Cortex-A druzina procesorjev

Premium Sustained Performance and
Efficiency for Next-Generation Devices

Peak perfnrmance
Crempear e to oten K2 Based umattphones Cortex-X3

Cortex-AT15
Cortex-A510

Balanced for D5U-110
o 'E'/ efficiency anc

Power ef‘fu:lenqr performar

Compared is Cortrn. A

Power enhancements

Enhanced scalability
Up to 12 Cores

https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed

OR - 3 — Povzetki predavanj © 2025, Rozman, FRI



https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed
https://community.arm.com/arm-community-blogs/b/announcements/posts/compute-performance-unleashed

" o NEON — ARM SIMD
What is NEON?

NEON is a wide SIMD data processing architecture
Extension of the ARM instruction set (v7-A)
32 x 64-bit wide registers (can also be used as 16 x 128-bit wide registers)

NEON instructions perform “Packed SIMD” processing
Registers are considered as vectors of elements of the same data type
Data types available: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single prec. float
Instructions usually perform the same operation in all lanes

Source
Registers

Elements : :
=t [Ie ) [e

Labdi ;:m
E [ | na estination
: : Register

University Program Material

Copyright © ARM Ltd 2012 THE ARCHITECTURE FOR THE DIGITAL WORLD®

OR - 3 — Povzetki predavanj 95 © 2025, Rozman, FRI



"  oJTTINEON vectorizing example
NEON vectorizing example

How does the compiler perform vectorization?

void add int(int : Pzr 2. Unroll the loop to the appropriate
int , . .
e : F number of iterations, and perform other
unsigned int n, int x) . - . ) .

{ transformations like pointerization

void add int({int *pa, int *pb,

unsigned int i; . .
unsigned n, int x)

for(i = 0; 1 = ;oi++)

palil = pblil + x; {

mns=igned int i;

ﬂ.AﬂEl}"EE each |Dl:lp: for (i = ((n & ~3) >> 2); i; i--)
= Are pointer accesses safe for {
vectorization? *lpa + 0) = *(pb + 0) + x;
’ *(pa + 1) = *{pb + 1) + x;
= What data types are being used? *(pa + 2) :
How do they map onto NEON *(pa + 3) =
pa += 4;

vector registers?

= Number of loop iterations } | o] | v] 3] < pb

Le [e [e [e | < x

3. Map each unrolled operation onto +
a NEON vector lane, and generate

corresponding NEON instructions | | | | | < pa

University Program Matenal

Copyright © ARM Lid 2012

OR - 3 — Povzetki predavanj 96 © 2025, Rozman, FRI



"

NEON - Advanced SIMD engine (ARM)

Example SIMD Instruction — Vector ADD

- Regqister split into equal size and type elements
- Same operation performed on each set of data
- VADD.U16 D2, D1, DO

63 47 31 15
0x100 0x200 0x300 0x400 DO
OxA OxB EfxC UTD D1
| |
RN T 1
A | D ADD A]ljn A]ljn
|
v ' { i

0x10A 0x20B 0x30C 0x40D D2

OR - 3 — Povzetki predavanj 97

© 2025, Rozman, FRI



" N

ARM Cortex M - SIMD

int16_t

QADDS8 {<Rd>} <Rn> <Rm> QADD16 {<Rd=>} <Rn=>, <Rm>
8 16
Saturation
bit l Rn Saturation
RN 4 positign Rd 3 bit Rd ,,
ints_t ;/D_. Signed »l | inta_t position
- saturation - :
ry int16_t .fD_. Signed >
int8_t o ) | Signed M inss N saturaion [
- . saturation - Saturation
A bit l
intd_t > @ > Stlgm?d | int8_t position
saturation .
+ int16_t -;/1_-\\ Sllgm;.id »
intg_t A,G\ . Sligmta_d »l| int8_t \n'/ saturation
saturation
0 - 0 0 o
Rm 31 Rm 31
int8_t
int16_t
intd_t
ing_t
int16_t
int8_t
0 0

Figure 4: Example of SIMD instructions: QADD8 and QADD16

int16_t

OR - 3 — Povzetki predavanj 98

© 2025, Rozman, FRI




" J 32-bit
3.3.3 ARM Cortex-M druzi ]
X= ruzina procesorjev
" . ortie 2004 | Cortex-M3
\ = = =3
. v N <& IS & 2007 | Cortex-M1
N a m e n : M I kro krm I I n IS kl S I Ste m I Environmental Sensor fusion ggghl?ﬁgted Smartwatch 2009 C rt 'Iﬂc]
orex-
2010 | Cortex-M4
- By
%@) gj)
Retail !"ledlca\ Q[; o Smart City 2012 C rt "U1U+
ARM Cortex-M optional components instruments Smart lighting ortex-
Cortex Cortex | Cortex | Cortex | Cortex  Cortex Cortex Cortex Cortex Cortex Cortex Cortex
ARMCOT® | o7 moal™® | m1l'9 | M3 | maBl | mzRd | m2s?Y | maaBd | masel'? | ms25) | mss?E | mgs] 2014 | Cortex-M7
SysTick 24- | Optional Optional | Optional Yes Yes Yes Optional Yes Yes Yes Yes Yes 2016 | Cortex-M23
bit Timer (0,1) 0, 1) (0,1) 1) 1) 1) 0,1,2) (1,2) 1,2) 1.2) ,2) (1,2)
single-cycle . . 2016 | Cortex-M33
10 port No Optional No No No No Optional No No MNo No No
— 2018 | Cortex-M35P
28] [28] = i i i
e No No No Optional | Optional | Optional No No No No No No
Memory _ i i ) Optional | Optional | Optional | Optional | Optional | Optional 2020 | Cortex-M>55
Protection No Optional No Optional | Optional |- Optional 0,4,8 0,48 {upto 0,4,8 | (0,4,8 | (0,4,8
Unit (MPU) ©.8) 08 (0.8) | (0.8,16) 12,16) | 12,16) 16)* 12, 16) 12, 16) 12, 16) 2022 | Cortex-M85
TR 2023 | Cortex-M52
Attribution . . . . . .
Optional | Optional | Optional | Optional | Optional | Optional
Unit (SAU) No No No No MNo No
- (0. 4, 8) (0.4,8) | (upto 8y | (0.4,8) (0, 4, 8) (0, 4, 8)
Stack Limits
Instruct Optional Optional | Optional | Optional | Optional
gs r:c on NolP? NoPTT | NoPO | NoPT | NoP® | (upto No No (upto (upto (up to (upto
ache 64 KB) 16 KB) 64KB) | 64KB) 64 KB)
Optional Optional Optional Optional
Data Cache | NoP¥ | nNoP?l | NoP?l | NoPT | NoPY | pto No No No (upto (up to (upto
64 KB) 64KB) | 64KB) 64 KB)
Instruction ) ) . ) )
TEY, Optional Optional Optional | Optional | Optional
TFE No No (upto No No (up to No No No (up to (up to (upto
( ) 1 MB) 16 MB) 16MB) | 16MB) | 16 MB)
Memory
Data TCM Optional Optional Optional | Optional | Optional
(DTCM) No No (upto No No {upto No NO No {upto (up to (upto
Memory 1MB) 16 MB) 16MB) | 16MB) | 16MB)
OR - 3 — Povzetki predavanj 100 © 2025,

Rozman, FRI


https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/ARM_Cortex-M
https://en.wikipedia.org/wiki/ARM_Cortex-M

3.3.4 Raspberry Pi - RPi

Release date

Introductory price

Operating system

O
T
cC

Memory

Storage

Graphics

Power

Release date

Raspberry Pi 1 model B+

February 2012; 3 years ago

US$25 (model A, B+[1), US$20
(model A+), US$35 (RPi 1 model
B, RPi 2 model B), US$30 (CM)

Linux (e.g. Raspbian), RISC OS,
FreeBSD, NetBSD, Plan 9,
Inferno, AROS

700 MHz single-core
ARM1176JZF-S (model A, A+, B,
B+, CM)2

256 MBE! (model A, A+, Brev 1)
512 MB (model B rev 2, B+, CM)

SDHC slot (model A and B),
MicroSDHC slot (model A+ and
B+), 4 GB eMMC IC chip (model
CM)

Broadcom VideoCore V2

1.5 W (model A), 1.0 W (model
A+), 3.5 W (model B) or 3.0 W
(model B+)

Raspberry Pi 1 model B+

February 2012; 3 years ago

Micro architecture improvements in ARM11 cores include:

» SIMD instructions which can double MPEG-4 and audio digital signal
processing algorithm speed

+ Cache is physically addressed, solving many cache aliasing problems
and reducing context switch overhead

» Unaligned and mixed-endian data access is supported

* Reduced heat production and lower overheating risk

» Redesigned pipeline, supporting faster clock speeds (target up to

1 GHz)

Longer: 8 (vs 5) stages

Out-of-order completion for some operations (e.g. stores)
Dynamic branch prediction/folding (like XScale)

Cache misses don't block execution of non-dependent
instructions

Load/store parallelism

ALU parallelism

* 64-bit data paths

OR - 3 — Povzetki predavanj

Rozman, FRI

Vir: Wikipedia.com

101



https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-1
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/Plan_9_from_Bell_Labs
https://en.wikipedia.org/wiki/Inferno_(operating_system)
https://en.wikipedia.org/wiki/AROS
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/ARM11
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Broadcom-BCM2835-Website-2
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-MB-3
https://en.wikipedia.org/wiki/Secure_Digital
https://en.wikipedia.org/wiki/MicroSDHC
https://en.wikipedia.org/wiki/Gigabyte
https://en.wikipedia.org/wiki/EMMC
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Broadcom-BCM2835-Website-2
https://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/MPEG-4
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/XScale
http://en.wikipedia.org/wiki/Arithmetic_and_logic_unit
http://en.wikipedia.org/wiki/Arithmetic_and_logic_unit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/64-bit

3.3.4 Raspberry Pi 2- RPi2

Release date

Introductory price

Operating system

O
o
c

Memory

Storage

Graphics

Power

Raspberry Pi 2 model B

February 2015; 9 months
ago

US$35

Same as for Raspberry Pi 1
plus

Windows 10 loT Corel and
additional distributions of
Linux such as Ubuntu

900 MHz quad-core ARM
Cortex-A7

1 GB RAM

MicroSDHC slot

Broadcom VideoCore IV

In early February 2015, the next-generation Raspberry Pi, Raspberry Pi 2,
was released.2%

The new computer board is initially available only in one configuration

(model B) and features

* a Broadcom BCM2836 SoC, with a quad-core ARM Cortex-A7 CPU and

+ a VideoCore IV dual-core GPU;

* 1 GB of RAM

+ with remaining specifications being similar to those of the previous
generation model B+.

The Raspberry Pi 2 retains the same US$35 price point of the model B,2
with the US$20 model A+ remaining on sale.

OR - 3 — Povzetki predavanj

Rozman, FRI

Vir: Wikipedia.com

© 2025,


https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-4
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/MicroSDHC
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Watt
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-20
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/ARM_Cortex-A7
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-BBC_RaspPi_2-21

3.3.4 Raspberry Pi 3

Release date

Introductory price

Operating system

@)
e
c

Memory

Storage

Graphics

Power

Raspberry Pi 3 model B

29 February 2016;
US$35

Same as for Raspberry Pi 1
plus

Windows 10 loT Core* and
additional distributions of
Linux such as Ubuntu

Broadcom BCM2837
1.2 GHz 64/32-bit quad-
core ARM Cortex-A53

1 GB LPDDR2 RAM at
900 MHz

MicroSDHC slot

Broadcom VideoCore IV at

higher clock frequencies
(300 MHz & 400 MHz)

800 mA (4.0 W)

The Raspberry Pi 3 is the third generation Raspberry Pi. It replaced the
Raspberry Pi 2 Model B in February 2016. Compared to the Raspberry Pi 2
it has:

* A 1.2GHz 64-bit quad-core ARMv8 CPU

+ 802.11n Wireless LAN

* Bluetooth 4.1

* Bluetooth Low Energy (BLE)

The Raspberry Pi 3 has an identical form factor to the previous Pi 2 (and Pi
1 Model B+) and has complete compatibility with Raspberry Pi 1 and 2.

Raspberry Pi 3 Model B released in February 2016 is bundled with on-

' $20-

Vir: Wikipedia.com

OR - 3 — Povzetki predavanj

Rozman, FRI

© 2025,


https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-4
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/ARM_Cortex-A53
https://en.wikipedia.org/wiki/Gibibyte
https://en.wikipedia.org/wiki/Mobile_DDR#LPDDR2
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/MicroSDHC
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Ampere
https://en.wikipedia.org/wiki/Watt
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth

" J
3.3.4 Raspberry Pi 4

Release date

Introductory price

System on a chip

O
T
c

Memory

Storage

Graphics

Power

Raspberry Pi 4 Model B

24 June 2019; 16 months
ago (Current)

-US$35 (Pi 4 2 GiB)™"

Broadcom BCM2711B0™

Pi4B: 1.5 GHz ﬁguad-
core A72 64-bit!

‘Pi4dB:2,4,o0r
8 GiB LPDDRA4-
3200 SDRAM" !

MicroSDHC slot

Broadcorq VideoCore VI
500 MHZ""

5V; 3 A (for full power

Raspberry Pi 4 Model B was released in June 20192 with a

* 1.5 GHz 64-bit quad core ARM Cortex-A72 processor,

* on-board 802.11ac Wi-Fi, Bluetooth 5,

« full gigabit Ethernet (throughput not limited),

» two USB 2.0 ports,

» two USB 3.0 ports, and

* dual-monitor support via a pair of micro HDMI (HDMI Type D) ports for
up to 4K resolution.

The Pi 4 is also powered via a USB-C port, enabling additional power to be
provided to downstream peripherals, when used with an appropriate PSU.

delivery to USB devices)@

Vir: Wikipedia.com

OR - 3 — Povzetki predavanj
Rozman, FRI

104 © 2025,


https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-TwoGBMin-1
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/System_on_a_chip
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-specs-5
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Hertz
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-specs-5
https://en.wikipedia.org/wiki/Mobile_DDR#LPDDR4
https://en.wikipedia.org/wiki/Synchronous_dynamic_random-access_memory
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Raspberry_Pi_4_Model_B_tech_specs-7
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-EightGB-3
https://en.wikipedia.org/wiki/MicroSDHC
https://en.wikipedia.org/wiki/Broadcom
https://en.wikipedia.org/wiki/VideoCore
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-BCM2711-10
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-BCM2837-9
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-12
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-Pi4OnSale-2
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/ARM_Cortex-A72
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth_5
https://en.wikipedia.org/wiki/Gigabit_Ethernet
https://en.wikipedia.org/wiki/USB_2.0
https://en.wikipedia.org/wiki/USB_3.0
https://en.wikipedia.org/wiki/HDMI#Connectors
https://en.wikipedia.org/wiki/4K_resolution
https://en.wikipedia.org/wiki/USB-C
https://en.wikipedia.org/wiki/USB-C
https://en.wikipedia.org/wiki/USB-C

3.3.4 Raspberry Pi 5

*The Raspberry Pi 5 was announced on September 28,
2023.1281 Improvements in hardware and software reportedly
make the Pi 5 more than twice as powerful as the Pi 4.127] |t
comes with a processor designed in-house, a power button, and
an RTC chip, among other things. The RTC chip needs a battery,
which can be purchased, but it saves a Pi user the cost of the
chip. Unlike the Pi 4, it was released with either 4 or 8 GB of
RAM. The 4 GB model costs $60 USD and the 8 GB model costs
$80 USD. An important thing to note is that it lacks a 3.5 mm
audio/video jack. Users must use Bluetooth, HDMI or USB audio
if they want to hear sound out of the Pi 5.

The Raspberry Pi 5 uses the Broadcom BCM2712 SoC, which is a chip designed
in collaboration with Raspberry Pi. The SoC features a quad-core ARM Cortex-
A76 processor clocked at 2.4 GHz, alongside a VideoCore VII GPU clocked at

800 MHz. The BCM2712 SoC also features support for cryptographic

extensions for the first time on a Raspberry Pi model. Alongside the new processor
and graphics unit, the monolithic design of the earlier BCM2711 has been replaced
with a CPU and chipset (southbridge) architecture, as the 10 functionality has been
moved to the Raspberry Pi 5's custom RP1 chip

Vir: Wikipedia.com

OR - 3 — Povzetki predavanj 105
Rozman, FRI

© 2025,


https://en.wikipedia.org/wiki/ARM_Cortex-A76
https://en.wikipedia.org/wiki/ARM_Cortex-A76
https://en.wikipedia.org/wiki/ARM_Cortex-A76
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Southbridge_(computing)
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-26
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-27
https://en.wikipedia.org/wiki/Raspberry_Pi#cite_note-27

3.3.4 Raspberry Pi

Family + Model ¢ SoC % Memory ¢  Form Factor ¢ | Ethernet ¢+ Wireless + GPIO ¢ Released ¢ Discontinued ¢
256 MB 2012
B Yes Yes (7777)
512 MB 26-pin | 2012[38]
Standard'@!
Raspberry Pi A BCM2835 256 MB No No 2013
B+ Yes
512 MB 2014
A+ Compactl’] No
Raspberry Pi 2 B BCM2836 /7 1GB Standard!@! Yes No
2015
Zero No
Raspberry Pi BCM2835 Ultra- No
W/ WH 512 MB No 2017
Zero compact!®! Yes
2W BCM2710A114139] 2021
B BCM2837A0/B0  1GB Standard'@! Yes Yes 2016
Raspberry Pi 3 A+ 512 MB Compact®] No 40-pin | 2018
BCM2837B0 Yesl€l
B+ 1GB Standard(@! Yes!] 2018
2019411 Yes (2020)142]
1GB
2021143
B BCM2711B0 / 2GB Standardl@!
Raspberry Pi 4 0] Yeslo' Yesl®! 2019411
co 4 GB
8 GB
2020
400 4 GB Keyboard No
Pico No 2021
Raspberry Pi Pico RP2040 264 KB Picol"! No : 26-pin
W Yesll 2022
4GB
Raspberry Pi 5[4 BCM2712 Standard!@! Yesld! Yesl®l  40-pin | 2023
8 GB

Vir: Wikipedia.com

OR - 3 — Povzetki predavanj 106 © 2025,
Rozman, FRI



3.3.4 Mikroracunalniski sistem FRI-SMS

= Mikrokrmilnik Atmel SAM 9260

m  Procesorska plos¢a z osnovnim naborom
V/I naprav (Ethernet, vmesnik za
SD/MMC kartico, USB, RS232)

m  64MB SDRAM delovnega pomnilnika
m 4 MB ROM NOR flash pomnilnika za OS

Ilzazls"'.tl” ez'!'zel vezie ZElsvegatﬁ"“.“abe'e.“';

Znacilnosti:

m  Oznaka ARM926EJ-S

m 2 loCena predpomnilnika:
1 8Kb operandni PP
0 8Kb ukazni PP

m 200 MIPS at 180 MHz

m  notranja pomnilnika :
0 2x4KB internal RAM
0 32KB internal ROM

m MMU enota

m USB,ETH,ADC,MMC,UART,SPI, TWI

OR - 3 — Povzetki predavanj 107 © 2025,
Rozman, FRI



3.3.4 ST Discovery F4

STM Discovery F4 (Cortex M4)
*STM32F407VGT6 microcontroller featuring 32-bit
Arm® Cortex®-M4 with FPU core, 1-Mbyte Flash memory and
192-Kbyte RAM in an LQFP100 package
*USB OTG FS
ST MEMS 3-axis accelerometer
*ST-MEMS audio sensor omni-directional digital microphone
*Audio DAC with integrated class D speaker driver
*User and reset push-buttons
Eight LEDs:
*LD1 (red/green) for USB communication
+LD2 (red) for 3.3 V power on
*Four user LEDs, LD3 (orange), LD4 (green), LD5 (red)
and LD6 (blue)
*Board connectors:
*USB with Micro-AB
*Stereo headphone output jack
+2.54 mm pitch extension header for all LQFP100 1/Os

for quick connection to prototyping board and easy

probing https://www.st.com/en/evaluation-
External application power supply: 3V and 5V tools/stm32f4discovery.html
OR - 3 — Povzetki predavanj 108

Rozman, FRI


https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html
https://www.st.com/en/evaluation-tools/stm32f4discovery.html

"
3.3.4 STM32H750B-DK Discovery razvojni sistem

*Arm® Cortex® core-based microcontroller with 128 Kbytes (STM32H750XBH6) of Flash memory
and 1 Mbyte of RAM, in TFBGA240+25 package

*4.3” RGB interface LCD with touch panel connector
*Ethernet compliant with IEEE-802.3-2002, and POE
*USB OTG FS with Micro-AB connector
*SAl audio codec
*One ST-MEMS digital microphone
*2 x 512-Mbit Quad-SPI NOR Flash memory
*128-Mbit SDRAM
*4-Gbyte on-board eMMC
*1 user and reset push-button
*Fanout daughterboard
*2 x FDCANs
*Board connectors:
 USB FS Micro-AB connectors
e  ST-LINK Micro-B USB connector
* USB power Micro-B connector
* Ethernet RJ45
» Stereo headset jack including analog microphone input
* Audio header for external speakers
* Arduino™ Uno V3 expansion connectors
 STMod+

https://www.st.com/en/evaluation-tools/stm32h750b-dk.html

OR - 3 — Povzetki predavanj 109 © 2025,
Rozman, FRI


https://www.st.com/en/evaluation-tools/stm32h750b-dk.html
https://www.st.com/en/evaluation-tools/stm32h750b-dk.html
https://www.st.com/en/evaluation-tools/stm32h750b-dk.html
https://www.st.com/en/evaluation-tools/stm32h750b-dk.html
https://www.st.com/en/evaluation-tools/stm32h750b-dk.html

" J
3.3.4 ST Discovery F7

STM Discovery F7 (Cortex M7)

*STM32F769NIH6 microcontroller featuring 2 Mbytes of Flash
memory and 512+16+4 Kbytes of RAM, in BGA216 package
*On-board ST-LINK/V2-1 supporting USB reenumeration
capability

*USB ST-LINK functions: virtual COM port, mass storage, debug

lified
dWs i

port
*4" capacitive touch LCD display with MIPI® DSI connector (on
STM32F769I-DISCO only) YO'E Pl Tk g g arm
SAl audio codec o | S MBED
*Two audio line jacks, one for input and one for output & iz Enabled
*Stereo speaker outputs Bl -
*Four ST MEMS microphones on DFSDM inputs
*Two SPDIF RCA input and output connectors

*Two push-buttons (user and reset)

*512-Mbit Quad-SPI Flash memory

+128-Mbit SDRAM

*Connector for microSD card

*Wi-Fi or Ext-EEP daughterboard connector

*USB OTG HS with Micro-AB connector

*Ethernet connector compliant with IEEE-802.3-2002

*Arduino™Uno V3 connectors

OR - 3 — Povzetki predavanj 110 © 2025,
Rozman, FRI

https://www.st.com/en/evaluation-tools/32f769idiscovery.html



https://www.st.com/en/evaluation-tools/32f769idiscovery.html
https://www.st.com/en/evaluation-tools/32f769idiscovery.html
https://www.st.com/en/evaluation-tools/32f769idiscovery.html

" J
3.3.4 ST Discovery STM32MP157C
STM Discovery MP1 (2xCortex A7 + 1xCortex M4) STM 3 2 MP 1

*STM32MP157 Arm®-based dual Cortex®-A7 32 bits +
Cortex®-M4 32 bits MPU in TFBGA361 package

*4-Gbit DDR3L, 16 bits, 533 MHz

*1-Gbps Ethernet (RGMII) compliant with IEEE-802.3ab
*USB OTG HS

*Audio codec

*4 user LEDs

2 user and reset push-buttons, 1 wake-up button

*5V /3 AUSB Type-CTM power supply input (not provided)
*Board connectors:Ethernet RJ454 x USB Host Type-AUSB
Type-CTM DRPMIPI DSISMHDMI®Stereo headset jack
including analog microphone inputmicroSDTM cardGPIO
expansion connector (Raspberry Pi® shields capability)
*ARDUINO® Uno V3 expansion connectors
*STM32CubeMP1 and full mainline open-source Linux® STM32
MPU OpenSTLinux Distribution (such as STM32MP1Starter)
software and examples

*4" TFT 480x800 pixels with LED backlight, MIPI

DSISM interface, and capacitive touch panel
*Wi-Fi® 802.11b/g/n

*Bluetooth® Low Energy 4.1

https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

OR - 3 — Povzetki predavanj 111 © 2025,
Rozman, FRI


https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html
https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

3.4RISC-V (htips://riscv.org/)

RISC-V: The Free and Open RISC Instruction Set Architecture

RISC-V is a free and open ISA enabling a new era of processor innovation through open standard
collaboration. Born in academia and research, RISC-V ISA delivers a new level of free, extensible
software and hardware freedom on architecture, paving the way for the next 50 years of

computing design and innovation.

3w More than 250 RISC-V Members in 28
:J Countries Around the World

RISC-V*

RISC-V Foundation Growth History
300 September 2015 to May 2019
275

250
225 E
200
175
150
125
100
75
50
25
0

13 Universities
29 Consulting; Research
23 Development Tools; SW and Cloud

104 Individual RISC-V d pers and adh

51 Machine Learning/Al; Commercial Chip Vendors; FPGA;
Broad Market; Networking; Application Processors, Graphics
45 Semiconductor IP; IP and Design Services; Foundry Services

Q3 Q4 Q1 G2 Q3 Q4 Q1 Q2 Q3 Q4 1 Q2 Q3 Q4 O Qe
2015 2015 2016 2016 2016 2016 2017 2017 2017 2017 2018 2018 2018 2018 2019 2019

May 2019 8

70,000

0,000

40,000

Ceres in Millions

30,000

10,000

2019+ 020" 2021 2022* 023" 2024 2025*

mComputer M Consumer W Communications W Transportation  windustrial  ® Other RISC-V

Jakob Jelovéan
Implementacija RISC-V CPE s

programirljivim logiénim vezjem

L ' © 2025,

Slika 2.1: Diagram centralne procesne enote FRI-V


https://riscv.org/

	Diapozitiv 1: ORGANIZACIJA  RAČUNALNIKOV  Povzetki predavanj
	Diapozitiv 2: Dejan Črnila: tudi 64 kratna pohitritev kode z optimizacijo
	Diapozitiv 3: Namen in cilji 3. poglavja: 
	Diapozitiv 4: 3. Mikro-arhitekturni nivo računalnika
	Diapozitiv 5: 3. Mikroarhitekturni nivo računalnika – logična vezja
	Diapozitiv 6: 3. Mikroarhitekturni nivo računalnika – asinhronska vezja
	Diapozitiv 7: 3. Mikroarhitekturni nivo računalnika– asinhronska vezja
	Diapozitiv 8: 3. Mikroarhitekturni nivo računalnika – asinhronska vezja
	Diapozitiv 9: 3.1 Sinhronska digitalna vezja
	Diapozitiv 10: 3.2 MiMo – Mikroprogramiran Model CPE
	Diapozitiv 11: 3.2 MiMo – Mikro-programiran Model CPE FPGA realizacija 
	Diapozitiv 12: 3.2 MiMo – Mikro-programiran Model CPE Mnenja (19/20)
	Diapozitiv 13: 3.2 MiMo – Mikro-programiran Model CPE Mnenja (21/22)
	Diapozitiv 14: 3.2 MiMo – Mikro-programiran Model CPE Mnenja (22/23)
	Diapozitiv 15: 3.2 MiMo – Mikro-programiran Model CPE Mnenja (23/24)
	Diapozitiv 16: 3.2 MiMo – Mikro-programiran Model CPE Mnenja (24/25)
	Diapozitiv 17: 3.2 MiMo – Mikroprogramiran Model CPE
	Diapozitiv 18: 3.2.1 Izvrševanje ukazov – MiMo 
	Diapozitiv 19: MiMo – Podatkovna enota v0.5a
	Diapozitiv 20: MiMo – Podatkovna enota v0.5a
	Diapozitiv 21: MiMo – Podatkovna enota v0.5
	Diapozitiv 22: MiMo – Podatkovna enota v0.4a
	Diapozitiv 23: MiMo – Podatkovna enota Prikaz delovanja ob izvrševanju ukaza jnez  r1,loop   #Jump to loop: if r1!=0
	Diapozitiv 24: JNEZ Rs,immed - izvedba 
	Diapozitiv 25: JNEZ Rs,immed - izvedba
	Diapozitiv 26: JNEZ Rs,immed - izvedba
	Diapozitiv 27: JNEZ Rs,immed - izvedba
	Diapozitiv 28: JNEZ Rs,immed: PC=PC+1, velja Rs=0
	Diapozitiv 29: JNEZ Rs,immed: izvedba skoka, velja Rs≠0 
	Diapozitiv 30: 3.2.2. MiMo – podatkovna enota - ALE
	Diapozitiv 32: 3.2.2.1 ALE:
	Diapozitiv 33: 3.2.2.2 Registri
	Diapozitiv 34: 3.2.2.2 Registri
	Diapozitiv 36: 3.2.2.3 Programski št.-PC
	Diapozitiv 38: 3.2.2.4 Ukazni reg. - IR
	Diapozitiv 40: 3.2.2.5 Takojšnji reg.-“immed“
	Diapozitiv 42: 3.2.2.6 Podatkovno vodilo
	Diapozitiv 44: 3.2.2.7 Naslovno vodilo
	Diapozitiv 46: 3.2.2.8 RAM pomnilnik
	Diapozitiv 48: 3.2.2.8 RAM pomnilnik
	Diapozitiv 50: 3.2.2.9 Grafični zaslon („FrameBuffer“)
	Diapozitiv 52: 3.2.2.9 Grafični zaslon („FrameBuffer“)
	Diapozitiv 53: 3.2.2.10 Serijski terminal („TTY“)
	Diapozitiv 55: 3.2.2.11 Debug enota
	Diapozitiv 56: 3.2.3 MiMo – Kontrolna enota
	Diapozitiv 59: MiMo – Diagram prehajanja stanj
	Diapozitiv 60: 3.2.4   Mikro-zbirnik
	Diapozitiv 61: 3.2.4 Mikro-zbirnik
	Diapozitiv 62: 3.2.4 Mikro-zbirnik
	Diapozitiv 63: Zaporedje mikroukazov za ukaz v zbirniku: JNEZ Rs,immed 
	Diapozitiv 64: Razpored mikroukazov v obeh kontrolnih pomnilnikih po naslovih: 
	Diapozitiv 65: 3.2.5  Zbirnik
	Diapozitiv 66: 3.2.5  Zbirnik
	Diapozitiv 67: Zbirnik – primeri ukazov
	Diapozitiv 68: MiMo – Model Mikroprogramirane CPE v0.5a
	Diapozitiv 69: MiMo – Model Mikroprogramirane CPE v0.5a
	Diapozitiv 70: Izvedba strojnega ukaza JNEZ R1,LOOP po skupinah kontrolnih signalov
	Diapozitiv 71: Izvedba strojnega ukaza JNEZ R1,LOOP po skupinah kontrolnih signalov
	Diapozitiv 72: JNEZ Rs,immed - izvedba
	Diapozitiv 73: JNEZ Rs,immed - izvedba
	Diapozitiv 74: JNEZ Rs,immed - izvedba
	Diapozitiv 75: JNEZ Rs,immed - izvedba
	Diapozitiv 76: JNEZ Rs,immed - izvedba
	Diapozitiv 77: JNEZ Rs,immed: velja Rs≠0 
	Diapozitiv 78: JNEZ Rs,immed – končna tabela 
	Diapozitiv 79: 3.2.6 Primerjava Mikroprogramska/Trdoožičena KE 
	Diapozitiv 80: Pristop k realizaciji trdoožičene realizacije KE
	Diapozitiv 81: Pristop k realizaciji trdoožičene realizacije KE
	Diapozitiv 82: MiMo: primer trdoožičene realizacije (osnovni ukazi)
	Diapozitiv 83: 2023/24 – novosti: MiMo v1 v0.5a 
	Diapozitiv 84: 2024/25 – novosti: MiMo v1 v0.5a
	Diapozitiv 86: 2024/25 – novosti: MiMo v1 v0.5a
	Diapozitiv 87: 2024/25 – novosti: MiMo v2 (cevovodna različica) 
	Diapozitiv 88: 2024/25 – novosti: MiMo v2 (cevovodna različica) 
	Diapozitiv 89: 3.3 Družina ARM procesorjev 
	Diapozitiv 90: 3.3 Družina ARM procesorjev 
	Diapozitiv 91: 3.3.1 Splošni pregled  ARM procesorjev
	Diapozitiv 92: 3.3.2 ARM Cortex-A družina procesorjev 
	Diapozitiv 93: 3.3.2 ARM Cortex-A družina procesorjev 
	Diapozitiv 94: 3.3.2 ARM Cortex-A družina procesorjev 
	Diapozitiv 95: NEON – ARM SIMD
	Diapozitiv 96: NEON vectorizing example
	Diapozitiv 97: NEON – Advanced SIMD engine (ARM)
	Diapozitiv 98: ARM Cortex M - SIMD
	Diapozitiv 100: 3.3.3 ARM Cortex-M družina procesorjev 
	Diapozitiv 101: 3.3.4 Raspberry Pi - RPi 
	Diapozitiv 102: 3.3.4 Raspberry Pi 2- RPi2 
	Diapozitiv 103: 3.3.4 Raspberry Pi 3 
	Diapozitiv 104: 3.3.4 Raspberry Pi 4 
	Diapozitiv 105: 3.3.4 Raspberry Pi 5 
	Diapozitiv 106: 3.3.4 Raspberry Pi 
	Diapozitiv 107: 3.3.4 Mikroračunalniški sistem FRI-SMS   
	Diapozitiv 108: 3.3.4 ST Discovery F4 
	Diapozitiv 109: 3.3.4 STM32H750B-DK Discovery razvojni sistem
	Diapozitiv 110: 3.3.4 ST Discovery F7 
	Diapozitiv 111: 3.3.4 ST Discovery STM32MP157C
	Diapozitiv 112: 3.4 RISC-V     (https://riscv.org/) 

