
OR – 4 – Povzetki predavanj 1 © 2025 Rozman - FRI

ORGANIZACIJA RAČUNALNIKOV

4. Paralelizem na nivoju ukazov

OR – 4 – Povzetki predavanj 2 © 2025 Rozman - FRI

4. Paralelizem na nivoju ukazov

◼ Paralelnost poskušamo izkoristiti na več različnih nivojih

◼ Cevovod – osnovni koncept paralelizma na nivoju ukazov

◼ Prednosti in omejitve paralelizma na nivoju ukazov oz. cevovoda

 osnovna ideja: več večperiodnih ukazov hkrati !

 + transparentnost

 - cev. nevarnosti - medsebojna odvisnost ukazov (operandov)

 - zaporednost razmišljanja, algoritmov, podatk. struktur

◼ Cevovodne nevarnosti in načini njihove odprave

◼ Špekulativno (?!) izvajanje ukazov

◼ Večizstavitveni – superskalarni procesorji

◼ Paralelnost na nivoju niti (npr. „Hyper-Threading“)

Današnji zmogljivi

„desktop“ procesorji

(npr. Intel, AMD)

Namen in cilji 4. poglavja:

OR – 4 – Povzetki predavanj 3 © 2025 Rozman - FRI

Def: Večina ukazov v zaporedju (programu) se lahko izvede vzporedno…

Število ukazov, ki jih CPE izvede v 1 sek : 𝑀𝐼𝑃𝑆 =
fcpe

CPI 106

MIPS..Million Instr. Per Second

Hitrost CPE (št.ukazov/sek) je možno povečati na dva načina:

• povečamo fcpe (hitrejši elementi)

• zmanjšamo CPI (z uporabo večjega števila elementov)

CEVOVOD: način realizacije CPE, pri katerem se naenkrat izvaja več

ukazov.

Glavna prednost cevovoda (poleg pohitritve) je

• TRANSPARENTNOST:

• ni posegov (v programe) !!!

ukaz 1

ukaz 2

4. Paralelizem na nivoju ukazov

MIPS..Million Instr. Per Second

Je zelo RELATIVNA enota– primer:

 CISC RISC

ADD (A),(B),(C) LDR R1,(A)

 LDR R2,(B)

 ADD R3,R1,R2

 STR R3,(C)

CISC = 1MIPS RISC=4MIPS

Sicer čas lahko enak !!!!

MIPS..Million Instr. Per Second

Je zelo RELATIVNA enota– primer:

 CISC RISC

ADD (A),(B),(C) LDR R1,(A)

 LDR R2,(B)

 ADD R3,R1,R2

 STR R3,(C)

CISC = 1MIPS RISC=4MIPS

Sicer čas lahko enak !!!!

Ponovitev RA

OR – 4 – Povzetki predavanj 4 © 2025 Rozman - FRI

T1

tCPE

T2 T3 T4 T5 T6 T7 T8 T9

čas

T10

korak 1 korak 2 korak 3 korak 4 korak 5

korak 1 korak 2 korak 3 korak 4 korak 5

Necevovodna CPE

ukaz 1

ukaz 2

T1

tCPE

T2 T3 T4 T5 T6 T7 T8 T9

čas

T10

korak 1 korak 2 korak 3 korak 4 korak 5

korak 1 korak 2 korak 3 korak 4 korak 5

ukaz 1

ukaz 2

Cevovodna CPE (5 stopenj)

Izvrševanje treh ukazov pri necevovodni in cevovodni CPE s 5 stopnjami

ukaz 3

korak 1 korak 2 korak 3 korak 4 korak 5ukaz 3

Št. period za 3 ukaze ?

Št.ukazov/periodo?

Ponovitev RA

OR – 4 – Povzetki predavanj 5 © 2025 Rozman - FRI

Ideja cevovodnega procesiranja – Logisim primer: SUM = A x B + SUM

ukaz 2

4.1 Zgradba cevovodne CPE – cevovodno procesiranje

Necevovodna izvedba

Cevovodna izvedba

OR – 4 – Povzetki predavanj 6 © 2025 Rozman - FRI

2.3.5 Pojav paralelizma

Prednost ?

Poraba: „… Dve jedri porabita manj

kot eno dvakrat hitrejše …“

4.1 Zgradba cevovodne CPE - Pojav paralelizma

https://slideplayer.com/slide/5164867/

Ponovitev OR-2

https://slideplayer.com/slide/5164867/

OR – 4 – Povzetki predavanj 7 © 2025 Rozman - FRI

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

Ukazi Operandi

Ukazni

predpomnilnik

Operandni

predpomnilnik

4.1 Zgradba cevovodne CPE - Primer cevovoda s 5 stopnjami (FRI-SMS,HiP):

Primer cevovoda s 5 stopnjami (FRI-SMS,HiP):

STOPNJA OZNAKA PODOPERACIJA

1.stopnja IF
prevzem ukaza,

Sprem: PC= PC+1

2.stopnja ID

dekodiranje

ukaza

dostop do

registrov

3.stopnja EX izvrševanje

4.stopnja MEM
dostop do

pomnilnika

5.stopnja WB
shranjevanje

rezultata

Problem: dostop do pomn.!
Izstavitev ukaza

Ponovitev RA

OR – 4 – Povzetki predavanj 8 © 2025 Rozman - FRI

4.1 Zgradba cevovodne CPE - Primer HiP

Primer cevovoda s 5 stopnjami (HiP):

OR – 4 – Povzetki predavanj 9 © 2025 Rozman - FRI

4.1 Zgradba cevovodne CPE

- Primer FRI-SMS

Primer cevovoda s 5 stopnjami

(FRI-SMS):

OR – 4 – Povzetki predavanj 10 © 2025 Rozman - FRI

4.1 Zgradba cevovodne CPE – Primer ARM Cortex M7

Primer dvo-izstavitvenega cevovoda s 6 stopnjami (ARM Cortex M7):

OR – 4 – Povzetki predavanj 11 © 2025 Rozman - FRI

4.1 Zgradba cevovodne CPE

Primer 5 – stopenjskega cevovoda:

MiMo v2

Vizualizacijski povzetek cevovoda

OR – 4 – Povzetki predavanj 12 © 2025 Rozman - FRI

+
4

ALEPC naslov ukaz
Registri

R0 – R14

Ukazni

pomnilnik

+

naslov

operand

Operandni

pomnilnik

M
U

X

M
U

X

M
U

X

A

C

B

Kontrolna

enota

Ukazni register

CPE ARM LEGv8 (RA) s podatkovno in kontrolno enoto ter kontrolnimi signali

ukaz za pogojni skok

pogoj izpolnjen

Memory R/W

Vrsta ALE operacije

32-bitna podatkovna

povezava

kontrolni

signal (večinoma 1 bit)

32-bitna povezava

za prenos ukaza

skočni naslov

operand

Register Write

Poenostavljena različica ARM LEGv8 (Vir: [Patt], pogl. 4)

OR – 4 – Povzetki predavanj 13 © 2025 Rozman - FRI

ARM V8 v Logisimu

https://github.com/mkayaalp/computer-organization-logisim

ARM V8 v Logisimu

https://github.com/mkayaalp/computer-organization-logisim
https://github.com/mkayaalp/computer-organization-logisim
https://github.com/mkayaalp/computer-organization-logisim
https://github.com/mkayaalp/computer-organization-logisim
https://github.com/mkayaalp/computer-organization-logisim

OR – 4 – Povzetki predavanj 14 © 2025 Rozman - FRI

4.1 Zgradba cevovodne CPE - Splošni 5. st. cevovod

Primer splošnega cevovoda s 5 stopnjami (FRI-SMS,HiP):

OR – 4 – Povzetki predavanj 15 © 2025 Rozman - FRI

Problem dostopa do pomnilnika:
• N-kratno povečanje dostopov

• 2 dostopa v enem ukazu

Problemi pri izvajanju ukazov

• čas izvajanja ukaza se v cevovodni CPE podaljša – vzroka:
• strojne narave

• prenos med stopnjami (vmesni registri),

• uravnoteženost (skupna perioda)

• programske narave

• cevovodne nevarnosti

ukaz 1

ukaz 2

4.1 Zgradba cevovodne CPE - izzivi

OR – 4 – Povzetki predavanj 16 © 2025 Rozman - FRI

„takrat, kadar ukazi v izvajanju niso

med seboj neodvisni…“

Glede na vzrok ločimo:

• strukturne

• podatkovne (operandne)

• kontrolne

S povečevanjem števila stopenj

• se povečuje število ukazov, ki se hkrati izvršujejo (manjšata se CPI in tCPE)

• se povečuje pogostost cevovodnih nevarnosti (hkrati v cevovodu več ukazov) in

učinkovitost cevovoda pada (CPI se povečuje).

Cevovodne nevarnosti moramo zaznati in reševati:
• SW (prevajalnik):

• vstavlja NOP, preureja vrstni red

• HW (dodatna logika):
• zaklenitev

• na srečo tudi učinkovitejše rešitve za posamezne vrste nevarnosti

4.2 Cevovodne nevarnosti - splošno

OR – 4 – Povzetki predavanj 17 © 2025 Rozman - FRI

Def: „kadar več stopenj cevovoda rabi eno enoto, ki lahko izvede le eno

podoperacijo naenkrat.“:

• registri, ALE, pomnilnik, predpomnilnik

Odpravimo :

• z bolj zmogljivim in ločenim predpomnilnikom („Harvardska arhitektura“)

• večje število FE

• stopnja EX v obliki cevovoda

Zakaj bolj previdno z odpravljanjem teh nevarnosti?

• drage rešitve

• odločitve pri načrtovanju

Praksa pokaže, da so te nevarnosti „… še najmanj škodljive …“
ukaz 1

4.2.1 Strukturne nevarnosti

OR – 4 – Povzetki predavanj 18 © 2025 Rozman - FRI

„Ukaz potrebuje operand, ki še ni dostopen“

Imamo zaporedje dveh ukazov:
• Ukaz 1: sub r3,r4,r5

• Ukaz 2: add r1,r6,r3

3 skupine podatkovnih nevarnosti :

• RAW – Read After Write

• WAR – Write After Read

• WAW – Write After Write

• RAR ?

ukaz 1

4.2.2 Podatkovne (operandne) nevarnosti

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

OR – 4 – Povzetki predavanj 19 © 2025 Rozman - FRI

L2: sub r3,r4,r5

 add r1,r6,r3

Ukaz add bere operand v registru r3 preden ga ukaz sub shrani, zato
prebere napačno vrednost

Rešitve :

 cevovodno razvrščanje (prevajalnik)

 zaklenitev cevovoda

 premoščanje

4.2.2 Podatkovne nevarnosti

RAW

RAW (read after write)

 Ukaz 2 bere operand preden ga ukaz 1 shrani, zato prebere napačno

vrednost.

◼ To je najpogostejša vrsta podatkovne nevarnosti in jo v večini primerov

lahko odpravimo s premoščanjem.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

4.2.2 RAW (read after write)

OR – 4 – Povzetki predavanj 20 © 2025 Rozman - FRI

4.2.2 Podatkovne nevarnosti

• cevovodno razvrščanje (prevajalnik)

• zaklenitev cevovoda

• premoščanje

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

zaklenitev

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

4.2.2 RAW (read after write) - rešitve

OR – 4 – Povzetki predavanj 21 © 2025 Rozman - FRI

4.2.2 Podatkovne nevarnosti

RAW (read after write)

Primer MiMo-Pipeline (v2)

Ni detekcije nevarnosti

test1

mov r1, #3 @cycle 5

mov r2, #3 @cycle 6

nop @cycle 7

nop @cycle 8

nop @cycle 9

cmp r1, r2 @cycle 10

nop @cycle 11

streq r1, #3@cycle 12

Zaklepanje

test2

mov r1, #3 @cycle 5

mov r2, #3 @cycle 6

cmp r1, r2 @cycle 10

streq r1, #3@cycle 12

Brez detekcije vs. zaklepanje

OR – 4 – Povzetki predavanj 22 © 2025 Rozman - FRI

4.2.2 Podatkovne nevarnosti

RAW (read after write) : Primer MiMo-Pipeline (v2) :

Zaklepanje

loop: @ stall
 mov r3, #3 @ 5, 22

ldr r1, [r2] @ 6, 23

add r1, r1, #1 @ 10, 27

 add r7, r7, #1 @ 11, 28

 str r2, r1 @ 14, 31

 subs r4, r3, r1 @ 15, 32

 add r5, r5, #1 @ 17, 34

 add r7, r7, #1 @ 18, 35

 add r6, r1, r4 @ 19, 36

 jne loop @ 20, 37

zaklepanje vs. premoščanje
(test5)

Premoščanje

| forwarding

| 5, 17

| 6, 18

| 8, 20 (here one mandatory stall-get the value from MA)

| 9, 21

| 10, 22

| 11, 23

| 12, 24

| 13, 25

| 14, 26

| 15, 27

OR – 4 – Povzetki predavanj 23 © 2025 Rozman - FRI

Cevovodno razvrščanje

◼ Spremeni vrstni red, da bo manj zaklenitev cevovoda

◼ C programska koda za : A = B + E; C = B + F;

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles

Potrebno znanje o delovanju konkretnega cevovoda !
(npr. ARM-Cortex M7 ne kaže teh razlik v internih pomnilnikih)

Programer,

prevajalnik

OR – 4 – Povzetki predavanj 24 © 2025 Rozman - FRI

WAR (write after read):
 Ukaz 2 piše v register, preden ukaz 1 prebere vsebino registra. Ukaz 1 dobi tako

novo vrednost namesto stare.

L2: mov r3, r7

 lw r8, (r3)

 add r3, r3, 4

 lw r9, (r3)

 ble r8, r9, L2

WAR (write after read) Ukaz add piše v register r3, preden ukaz

 lw prebere vsebino registra. Ukaz lw dobi tako novo vrednost namesto stare

Nastopa le :

 v nekaterih izvedbah cevovodov in

 pri dinamičnem razvrščanjem ukazov

WAR

4.2.2 Podatkovne nevarnosti

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

4.2.2 WAR (write after read)

OR – 4 – Povzetki predavanj 25 © 2025 Rozman - FRI

WAW (write after write) :

 Ukaz 2 piše v register, preden vanj piše ukaz 1. Vrstni red pisanja v register je

drugačen kot v programu, zato ima register vrednost od ukaza 1 namesto od 2.

L2: mov r3, r7

 lw r8, (r3)

 add r3, r3, 4

 lw r9, (r3)

 ble r8, r9, L2

WAW (write after write) Ukaz add piše v register, preden vanj piše ukaz mov.

Vrstni red pisanja v register je drugačen kot v programu, zato ima register

vrednost od ukaza mov namesto od add.

Nastopa le:

 v nekaterih izvedbah cevovodov (več pisalnih stopenj) in

 pri dinamičnem razvrščanjem ukazov

WAW

4.2.2 Podatkovne nevarnosti

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

IF
Prevzem ukaza

ID
Dekodiranje ukaza

EX
Izvrševanje

MA
Dostop do pomn.

WB
Shranjevanje rez.

4.2.2 WAW (write after write)

OR – 4 – Povzetki predavanj 26 © 2025 Rozman - FRI

4.2.2 Podatkovne nevarnosti

Analiza vpliva podatkovnih nevarnosti

OR – 4 – Povzetki predavanj 27 © 2025 Rozman - FRI

Kontrolne nevarnosti se pojavijo pri vseh ukazih, ki spremenijo vsebino

programskega števca PC drugače kot po običajnem pravilu PC←PC+4(1).

To se dogaja pri kontrolnih ukazih:

• pogojni skoki

• brezpogojni skoki, klici, vrnitve (krajše „skoki“)

Slednji so ugodnejši, ker prej zvemo novi naslov.

Pri pogojnih zvemo kasneje in ali se sploh skok izvede!

Delovanje pogojnih skokov (ob napovedi neizpolnjenega pogoja):

• če je pogoj za skok izpolnjen, se v PC prenese skočni ali ciljni naslov (v

primeru na sliki naslov ukaza 5); že naloženi ukazi se razveljavijo,

prevzemati se začno ukazi z novega naslova…

• če pogoj ni izpolnjen, se izvršijo ukazi, ki so že v cevovodu – čakanja ni.

Meritev na programih (10 programov iz Spec92):

• zaradi kontrolnih nevarnosti se CPI poveča za 21.8%!

4.2.3 Kontrolne nevarnosti

OR – 4 – Povzetki predavanj 28 © 2025 Rozman - FRI

4.2.3 Kontrolne nevarnosti

ukaz 2

ukaz 1 - pogojni skok na ukaz 5

ukaz 3

ukaz 4

ukaz 5

u1

u2

u3

u4

u5

pogoj izpolnjen

pogoj ni izpolnjen

ukaz 6

u6

Izvajanje ukaza za pogojni skok

OR – 4 – Povzetki predavanj 29 © 2025 Rozman - FRI

4.2.3 Kontrolne nevarnosti

ukaz 2

ukaz 1 - pogojni skok na ukaz 5

ukaz 3

ukaz 4

ukaz 5

u1

u2

u3

u4

u5

pogoj ni izpolnjen

ukaz 6

u6

Pogoj ni izpolnjen

OR – 4 – Povzetki predavanj 30 © 2025 Rozman - FRI

4.2.3 Kontrolne nevarnosti

ukaz 2

ukaz 1 - pogojni skok na ukaz 5

ukaz 3

ukaz 4

ukaz 5

u1

u2

u3

u4

u5

pogoj izpolnjen

ukaz 6

u6

Pogoj je izpolnjen

OR – 4 – Povzetki predavanj 31 © 2025 Rozman - FRI

◼ Najpreprostejša rešitev te nevarnosti:

 v urini periodi, ko stopnja EX spremeni PC, v predhodne stopnje

vstavimo mehurčke.

◼ Skočna zakasnitev: čakanje toliko urinih period, kolikor je ?.

 Primer zakasnitve pri statični predikciji :

4.2.3 Kontrolne nevarnosti

ukaz 1 IF1

ukaz 2 IF2

ukaz 3 IF3

ukaz 5

ukaz 6

urine

periode T1 T2

ID1

T3

EX1

ID2

T4

MA1

IF5

T5

WB1

ID5

IF6

T6

EX5

ID6

T7

MA5

EX6

T8

WB5

MA6

T9

WB6

predpostavimo

„neizpolnjeni pogoj“

OR – 4 – Povzetki predavanj 32 © 2025 Rozman - FRI

◼ Primer ARM 9:

 Statična napoved neizpolnjenega pogoja

 Bxx (npr. BNE):

◼ Pogoj xx neizpolnjen :

 ?? tcpe

◼ Pogoj xx izpolnjen :
 ?? tcpe

 B (npr. BNE):

◼ Brezpogojni skok :

 ?? tcpe

4.2.3 Kontrolne nevarnosti

4.2.3.1.1 Statična predikcija neizpolnjenega pogoja („branch not-taken“)

OR – 4 – Povzetki predavanj 33 © 2025 Rozman - FRI

Pri gradnji cevovoda naredimo, da:
• se preverjanje pogoja za skok izvaja čim bolj na začetku cevovoda, saj

je tako manj ukazov, ki bi jih morali zavreči

• se tudi izračun skočnega naslova izvaja čim bolj na začetku cevovoda

Skočne zakasnitve pa se lahko zmanjšajo ali odpravijo tudi z

uporabo predikcije – napovedi:

• izpolnitve pogoja za skok in

• skočnega naslova

Rešitve (strojne ali strojne+programske) delimo v dve

skupini:
• statična predikcija:

• predpostavka neizpolnjenega pogoja („branch not taken“)

• z zakasnjenimi skoki („delayed branch“)

• dinamična predikcija (med delovanjem)

4.2.3.1 Zmanjšanje zakasnitev pri kontrolnih nevarnosti

OR – 4 – Povzetki predavanj 34 © 2025 Rozman - FRI

Skuša prevajalnik (med prevajanjem) napovedati izid skoka:
• napoved se ne spreminja več („statična“)

Skočne reže :

• ukazi, ki sledijo skoku so v t.i. skočnih režah

• št. skočnih rež je enako številu stopenj cevovoda pred aktivno (EX)

stopnjo (2 pri 5 stopenjskem)

Vstavitev ukazov v skočne reže:

• ukazi ne smejo vplivati na izid skoka

• če ni primernih, vstavi NOP-e

4.2.3.1.1 Statična predikcija z zakasnjenimi skoki („delayed branch“)

OR – 4 – Povzetki predavanj 35 © 2025 Rozman - FRI

Primer: 2 skočni reži, kar ustreza našemu primeru 5-stopenjskega cevovoda,

kjer je EX tretja stopnja:

4.2.3.1.2 Statična predikcija z zakasnjenimi skoki („delayed branch“)

LD R1,#100

ZN SUB R1,#4

 ADD R2,R4,R5

 SUB R7,R6,R5

 BEQ R1,ZN

 AND R8,R6,R5

LD R1,#100

ZN SUB R1,#4

 BEQ R1,ZN pogojni skok

 ADD R2,R4,R5 skočna reža 1

 SUB R7,R6,R5 skočna reža 2

 AND R8,R6,R5

◼ Ker se ukazi, ki se vstavijo v skočne reže, vedno izvedejo, ne smejo vplivati na izid skoka.

◼ Če prevajalnik v programu ne najde ukazov, ki bi jih lahko vstavil v skočne reže, ...

LD R1,#100

ZN SUB R1,#4

 ADD R2,R4,R5

 SUB R7,R6,R5

 BEQ R7,ZN

 AND R8,R6,R5

LD R1,#100

ZN SUB R1,#4

 SUB R7,R6,R5

 BEQ R7,ZN

 ADD R2,R4,R5 skočna reža 1

 NOP skočna reža 2

 AND R8,R6,R5

OR – 4 – Povzetki predavanj 36 © 2025 Rozman - FRI

Prednosti, slabosti:

+ preprosta

+ učinkovita pri krajših cevovodih

- spremeni se program

- problem pri daljših cevovodih

Meritev na programih (SPEC92):

• zaradi kontrolnih nevarnosti se CPI poveča za 21.8%!

• HiP: ob uporabi statične predikcije (zak.skoki) se CPI poveča le še za

8.7%!

4.2.3.1.1 Statična predikcija z zakasnjenimi skoki („delayed branch“)

OR – 4 – Povzetki predavanj 37 © 2025 Rozman - FRI

◼ Cevovodno razvrščanje

Primer pohitritve kode z uporabo cevovodnega razvrščanja, zakasnjenih skokov in

razpeljave zank:
for (i=1; i<=1000; i++)

 x[i] = x[i] + s;

Vir: https://web.archive.org/web/20201019124610/http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

https://web.archive.org/web/20201019124610/http:/web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

OR – 4 – Povzetki predavanj 38 © 2025 Rozman - FRI

Primer pohitritve kode z uporabo cevovodnega razvrščanja, zakasnjenih skokov in razpeljave

zank:

◼ Razvezava zanke + razvrščanje

for (i=1; i<=1000; i++)

 x[i] = x[i] + s;

Vir: https://web.archive.org/web/20201019124610/http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

https://web.archive.org/web/20201019124610/http:/web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

OR – 4 – Povzetki predavanj 39 © 2025 Rozman - FRI

Napoved se spreminja med delovanjem
• uporabi se informacija o delovanju skoka do sedaj

Uporablja se več vrst dinamične predikcije:

• 1-bitna prediktorska tabela:

• (branch prediction (history) table, prediction buffer)

• 2-bitna prediktorska tabela

• korelacijski prediktor

• turnirski prediktor

4.2.3.1.2 Dinamična predikcija skokov

OR – 4 – Povzetki predavanj 40 © 2025 Rozman - FRI

• najenostavnejša oblika

• 1-bitni pomnilnik :
• naslov:

• spodnji biti naslovov skočnih ukazov (nepopolni naslov)

• vsebina:

• izid zadnjega skoka s tem naslovom (1..izpolnjen, 0..neizpolnjen pogoj)

Delovanje:
• prevzem ukaza v skladu s prediktorskim bitom

• če napoved napačna:

• se prevzeti ukazi zavržejo

• prediktorski bit invertira

Zanka:

• dve obvezni zgrešitvi: na začetku in koncu

• zato boljša večbitna tabela

4.2.3.1.2.1 1-bitna prediktorska tabela

Primer: 1-bitna prediktorska tabela s 6-biti naslova

OR – 4 – Povzetki predavanj 41 © 2025 Rozman - FRI

2- bitna prediktorska tabela:
• najenostavnejša oblika

• 2-bitni pomnilnik :
• naslov:

• spodnji biti naslovov skočnih ukazov (nepopolni naslov)

• vsebina je lahko 0-3:

• 2-3: napoved izpolnjenega pogoja

• 0-1: napoved neizpolnjenega pogoja

Delovanje:
• prevzem ukaza v skladu s predikcijo

• če pogoj izpolnjen, se vrednost poveča za 1 (maks.vr. 3)

• če pogoj ni izpolnjen, se vrednost zmanjša za 1 (min.vr. 0)

Meritev na programih (SPEC92):

• 2-bitna tabela s 4096 naslovi: 7% napačnih napovedi

4.2.3.1.2.2 2-bitna prediktorska tabela

OR – 4 – Povzetki predavanj 42 © 2025 Rozman - FRI

Predikcija skoka

Prehajanje stanj pri 2-bitnem prediktorju

Pogoj ne

bo izpolnjen

00

Pogoj ni bil

izpolnjen

Pogoj ne

bo izpolnjen

01
Pogoj je bil

izpolnjen

Pogoj ni bil

izpolnjen

Pogoj je bil

izpolnjen

Pogoj bo

Izpolnjen

10
Pogoj je bil

izpolnjen

Pogoj ni bil

izpolnjen

Pogoj je bil

izpolnjen

Pogoj ni bil

izpolnjen

Pogoj bo

Izpolnjen

11

Pogoj bo

Izpolnjen

11

OR – 4 – Povzetki predavanj 43 © 2025 Rozman - FRI

Primerjava MiMo-Pip (v2) : 1-bitna vs. 2-bitna tabela (test1)

@this is a revised example showing the efficiency of a 2-bit predictor over a 1-bit predictor

/* b=1

 while (true){

if(a % 2 == 0){jump1} TNTNTNTNTNT

a++ }

a => r0, r1 => used for counting jump1 calls*/

.text

loop:

rem r0, r0, #2

cmp r0, #0

jeq jump1

add r0, r0, #1

j loop

jump1:

add r0, r0, #1

add r1, r1, #1

j loop

Predikcija skoka

using 1-bit predictor:

 no predictions are correct

using 2-bit predictor:

 50% of predictions are correct because it starts in state 00
(Strong Not Taken)

test1-1bit_vs_2bit.txt

OR – 4 – Povzetki predavanj 44 © 2025 Rozman - FRI

Korelacijski prediktor (m,n) uporabi:
• informacijo o (lokalnem) skočnem ukazu

• n-bitna prediktorska tabela

• informacijo o globalnem obnašanju

zadnjih m-skočnih ukazov

Tipični korelacijski prediktor (2,2):
• štiri (22) 2-bitne prediktorske tabele

0,1,2,3

• glede na izpolnjenost pogoja zadnjih

dveh skokov se uporabi različna

napoved (ena izmed tabel 0,1,2,3).

4.2.3.1.2.3 Korelacijski prediktor (m,n) – 2. stopenjski adaptivni pred.

Delovanje:
• prevzem ukaza v skladu s predikcijo

• v izbrani 2-bitni tabeli:
• če pogoj izpolnjen, se vrednost poveča za 1 (maks.vrednost 3)

• če pogoj ni izpolnjen, se vrednost zmanjša za 1 (min.vrednost 0)

Meritev na programih (SPEC92):

• (0,2) : 2-bitna tabela s 4096 naslovi: 7% napačnih napovedi

• (2,2) : 4x 2-bitna tabela s 1024 naslovi: 4.3% napačnih napovedi

2- stopenjski prediktorji

OR – 4 – Povzetki predavanj 45 © 2025 Rozman - FRI

Primerjava na skupini programov

4.2.3.1.2.3 Korelacijski prediktor (m,n) – 2. stopenjski adaptivni pred.

2- stopenjski prediktorji

OR – 4 – Povzetki predavanj 46 © 2025 Rozman - FRI

Primerjava MiMo-Pip (v2) : 2-bitna tabela, LHT, Korelacijski prediktor

.text

loop:

rem r0, r0, #2

cmp r0, #0

jeq jump1 @2nd instruction

afterjump1:

add r0, r0, #1

add r5, r5, #1

add r5, r5, #1

add r5, r5, #1

add r5, r5, #1

add r5, r5, #1

cmp r1, #1

jeq jump2 @10th instruction, same last 3 bits as
jump1

add r4, r4, #1

rem r2, r2, #2

cmp r2, #0

jeq jump3 @another jump, independant to the last 2

Predikcija skoka

2-bit predictor: 34/100 predictions incorrect

LHT predictor: 18/100 incorrect

Correlating 2by2: 4/100 incorrect

Tournament predictor: 19/100 incorrect

afterjump3:

add r2, r2, #1

j loop

jump1:

add r3, r3, #1

j afterjump1

jump2:

mov r7, #15

jump3:

add r6, r6, #1

j afterjump3 test4_correlating_2by2.txt

OR – 4 – Povzetki predavanj 47 © 2025 Rozman - FRI

Turnirski prediktor uporablja:
• več prediktorjev (tabel) in

• za vsak skočni ukaz ugotavlja, kateri prediktor (tabela)

daje boljši rezultat.

Turnirski prediktor sestavljajo trije deli:
• globalni prediktor (podoben korelacijskemu prediktorju)

• lokalni prediktor

• selektor (izbere napoved globalnega ali lokalnega

prediktorja)

Ko se ugotovi resnična izpolnjenost skočnega pogoja:
• se po potrebi osveži vsebina obeh prediktorjev

• se osveži vsebina selektorja samo, če sta različno

napovedala.

4.2.3.1.2.4 Turnirski prediktor – „hibridni“ prediktorji

Hibridni prediktorji

Hibridni prediktorji – novejše nadgradnje ideje, z

združevanjem napovedi različnih prediktorjev

OR – 4 – Povzetki predavanj 48 © 2025 Rozman - FRI

Primerjava enostavnejših prediktorjev

OR – 4 – Povzetki predavanj 49 © 2025 Rozman - FRI

4.2.3.1.2.4 Turnirski prediktor – „hibridni“ prediktorji

„Hibridni“ prediktorji – novejše nadgradnje ideje, z

združevanjem napovedi različnih prediktorjev

Hibridni prediktorji

OR – 4 – Povzetki predavanj 50 © 2025 Rozman - FRI

Primerjava MiMo-Pip (v2) : 2-bitna tabela, LHT, korelac., turnirski prediktor

.text

loop:

add r0, r0, #1

rems r2, r0, #8

jne jump1

afterjump1:

rem r2, r0, #8

cmp r2, #2

jne jump2

afterjump2:

rem r2, r0, #8

cmp r2, #4

jne jump3

afterjump3:

rem r2, r0, #8

cmp r2, #6

jne jump4

j loop

Predikcija skoka

2-bit predictor: 22/112 predictions incorrect

LHT predictor: 27/112 incorrect

Correlating 2by2: 39/112 incorrect

Tournament predictor: 23/112 incorrect

jump1:

add r5, r5, #1

j afterjump1

jump2:

add r6, r6, #1

j afterjump2

jump3:

add r7, r7, #1

j afterjump3

jump4:

add r4, r4, #1

j loop

test5_tournament.txt

OR – 4 – Povzetki predavanj 51 © 2025 Rozman - FRI

Primerjava MiMo-Pip (v2) : Bubble sort - vsi prediktorji (test 6)

@ Bubble sort algorithm

.data

.word 10 @array size

.word 42, 17, 88, 23, 54, 75, 12, 67, 31, 99 @array

.text

ldr r0, #0 @ r0 -> size and
outer loop counter

sub r0, r0, #1 @ size = size - 1

sort_outer:

cmp r0, #0 @ Check if outer loop is
done

beq sort_done @ Exit if size == 0

mov r1, r0 @ r1 inner loop counter

mov r2, #1 @ r2 points to array

…

Predikcija skoka

sort_inner:

cmp r1, #0 @ Check if inner loop is done

beq sort_outer_dec @ Exit inner loop if r1 == 0

ldr r3, [r2] @ Load array[j]

ldr r4, [r2, #1] @ Load array[j+1]

cmp r3, r4 @ Compare array[j] and array[j+1]

ble sort_inner_next @ Skip if array[j]<=array[j+1]

str r4, [r2] @ Swap array[j] and
array[j+1]

str r3, [r2, #1]

… test6-bubble_sort.txt

Number of incorrect.
predictions:

no prediction: 37

1-bit: 52

2-bit: 32

correlating LHT: 37

correlating 2 by 2: 24

tournament: 30

Number of cycles:

no prediction: 605

1-bit: 620

2-bit: 600

correlating LHT: 605

correlating 2 by 2: 592

tournament: 598

OR – 4 – Povzetki predavanj 52 © 2025 Rozman - FRI

„Loop counter“:
• šteje in določa periodo ponovitev zanke

• običajno del hibridnega prediktorja

Vrnitveni prediktor:
• Povratni naslovi znani - > preprost sklad

Nevronske mreže (MLP)

• AMD Ryzen, Exynos

G-Share (korelacijski)

TAGE (hibridni)

Nekateri novejši prediktorji

OR – 4 – Povzetki predavanj 53 © 2025 Rozman - FRI

4.2.3.1.2.5 Prediktorji – trenutno stanje

Aktualni:
• „gshare“ prediktor (korelacijski)

• kombinira „lokalno“ in „globalno“

• TAGE prediktor (hibridni)

• več dolžin zgodovine

• Perceptron

OR – 4 – Povzetki predavanj 54 © 2025 Rozman - FRI

4.2.3.1.2.5 Prediktorji – trenutno stanje

Izhodišča:
• Malo informacij o podrobnostih

• Do sedaj „gshare“ prediktor

• Trenutno najverjetneje TAGE prediktorji ali druge hibridne kombinacije

• AMD: hibridni (Zen 2)

• Perceptron (hiter) + TAGE (boljša napoved)

• Perceptron hitro napove, TAGE kasneje preveri

OR – 4 – Povzetki predavanj 55 © 2025 Rozman - FRI

4.2.3.1.2.5 Prediktorji – trenutno stanje

OR – 4 – Povzetki predavanj 56 © 2025 Rozman - FRI

4.2.3.1.2.5 Prediktorji – trenutno stanje

OR – 4 – Povzetki predavanj 57 © 2025 Rozman - FRI

Potenciali:

• izpopolnitev hibridnih prediktorjev ?

• izvedba obeh vej ?

• perceptroni – AMD ?

• „context switch“

• tudi prediktorji ?

4.2.3.1.2.5 Prediktorji – pogled naprej

https://www.agner.org/optimize/microarchitecture.pdf

https://www.agner.org/optimize/microarchitecture.pdf

OR – 4 – Povzetki predavanj 58 © 2025 Rozman - FRI

Za napoved skoka poleg napovedi pogoja rabimo še napoved

skočnega naslova (sicer še vedno skočna zakasnitev):

• potrebujemo skočne naslove zadnjih nekaj skokov, kjer je bil

pogoj za skok izpolnjen

• to je vsebina skočnega predpomnilnika.

V stopnji prevzema ukaza se hkrati zgodi:

• prevzem ukaza in

• dostop do skočnega predpomnilnika:

• če zadetek, se prebere skočni naslov in prenese v PC.

• če zgrešitev, predpostavimo neizpolnjen pogoj

4.2.3.1.3 Skočni predpomnilnik

OR – 4 – Povzetki predavanj 59 © 2025 Rozman - FRI

4.2.3.1.3 Skočni predpomnilnik

0

1

2

3

4

n -1

PC

=
Da – uporabi se skočni naslov

PC

Skočni predpomnilnik

Naslovi skočnih ukazov Napovedani skočni naslov
Prediktorski

biti

Naslov skočnega ukaza

Ne – predpostavimo

neizpolnjen pogoj

OR – 4 – Povzetki predavanj 60 © 2025 Rozman - FRI

Če sta napoved izida skoka ali skočni naslov napačna, se mora

ukaze, ki so bili v cevovodu, zavreči (zamenjati z mehurčki)

Pri današnjih superskalarnih računalnikih, ki lahko istočasno

prevzamejo več ukazov, je namesto prve stopnje cevovoda (IF) enota

za prevzem ukazov.

Enota za prevzem ukazov

Ukazni predpomnilnik 32 KB

Skočni

prediktor

Ukazni

TLB

32 B

16 B

32 B

Prevzem ukazov pri procesorjih Intel Core

4.2.3.1.3 Skočni predpomnilnik

OR – 4 – Povzetki predavanj 61 © 2025 Rozman - FRI

4.3 Izvajanje operacij, ki trajajo več urinih period

◼ Zakaj več urinih period?

 Če bi pri kompleksnih operacijah kot so npr. celoštevilčno množenje in deljenje ter

operacije v plavajoči vejici, zahtevali, da se izvršijo v eni urini periodi, bi

◼ morala biti urina perioda zelo dolga (nizka frekvenca ure) ali

◼ morali uporabiti zelo obsežno in kompleksno logično vezje.

◼ Noben od teh načinov ni dober, računalniki se gradijo tako, da se:

 večina ukazov izvrši v eni urini periodi,

 pri kompleksnih operacijah pa traja izvajanje ukaza več urinih

period:

◼ Če tak ukaz za pride v stopnjo EX, bi se moral cevovod ustaviti in čakati

toliko urinih period, kolikor bi trajalo izvajanje v enoti EX

◼ Zato: več stopenj EX ~ funkcijskih enot (FE)

OR – 4 – Povzetki predavanj 62 © 2025 Rozman - FRI

FPE1

FPE2

IF ID M
A

ALE1

ALE2

ALE3

W
B

Primer: petstopenjski cevovod s štirimi dodatnimi funkcijskimi enotami,
ki izvajajo operacije, ki trajajo različno število urinih period.

◼ Primer: Izvrševanje v prvi funkcijski enoti (ALE1) traja eno urino
periodo, v vseh ostalih pa več urinih period.

4.3 Izvajanje operacij, ki trajajo več urinih period

Večperiodne FE:
• povzročajo strukturne nevarnosti
• več podatkovnih nevarnosti
• več ukazov hkrati v MA,WB

• (vrstni red!)

OR – 4 – Povzetki predavanj 63 © 2025 Rozman - FRI

IF ID M
A

W
B

A

A1 A2

IM1 IM2 IM3 IM4

FM1 FM2 FM3 FM4 FM5 FM6

FD1 FD2 FD11 FD12

4.3 Izvajanje operacij, ki trajajo več urinih period

Rešitev: cevovodna realizacija (N ciklov = N stopenj)
+ odpravi strukturne nevarnosti
- ostanejo podatkovne nevarnosti (ni premoščanja med FE, več ukazov -> več nevarn.)
- več ukazov v MA, WB (lahko drugačni vrstni red – WAW, WAR

Rešitev za boljšo izkoriščenost FE enot -> dinamično razvrščanje ukazov

OR – 4 – Povzetki predavanj 64 © 2025 Rozman - FRI

Problemi cevovodne realizacije FE:
◼ več ukazov hkrati v stopnjah MA in WB:

 v isti urini periodi lahko v stopnjo MA pride več ukazov

 je treba več rezultatov shraniti v registre v stopnji WB.

 v stopnjo WB rezultati prihajajo tudi v drugačnem vrstnem redu kot v programu.

◼ podatkovne nevarnosti :
 v obdelavi je več ukazov hkrati -> več podatkovnih nevarnosti

 premoščanje pri podatkovnih nevarnostih tipa RAW iz notranjosti cevovodne funkcijske enote

ni možno.

◼ vsi ti problemi prinesejo dodatne čakalne periode, tako da so lahko nekatere

funkcijske enote nekaj časa neizkoriščene:

◼ rešitev kako čim bolj zaposliti funkcijske enote je v dinamičnem razvrščanju

ukazov.

4.3 Izvajanje operacij, ki trajajo več urinih period

 Npr: zaporedje ukazov povzroči 10 čakalnih period (skupaj se izvaja 18 period):

OR – 4 – Povzetki predavanj 65 © 2025 Rozman - FRI

4.4 Odpravljanje podatkovnih nevarnosti z

dinamičnim razvrščanjem ukazov

◼ Dinamično razvrščanje: način delovanja CPE, pri

katerem se strojno spremeni vrstni red izvrševanja

ukazov, da bi se zmanjšalo število čakalnih urinih period.

◼ Pri naslednjem zaporedju ukazov mora ukaz IDIV čakati, dokler se

ne razreši podatkovna nevarnost prejšnjih dveh ukazov:

 IMUL R2,R3,R4 R2R3*R4

 ADD R6,R2,R5 R6R2+R5 RAW

 IDIV R7,R8,R5 R7R8/R5

OR – 4 – Povzetki predavanj 66 © 2025 Rozman - FRI

Realizacija:

◼ ID - stopnjo za dekodiranje ukazov je potrebno razdeliti v dve
stopnji:

 izstavljanje : („in-order“)

◼ ta stopnja dekodira ukaz

◼ ugotavlja strukturne nevarnosti

 branje operandov: („out-of-order“)

◼ tu se preverjajo podatkovne nevarnosti

◼ operandi se berejo ko ni podatkovne nevarnosti, sicer čakanje

◼ EX – izvrševanje ukazov („out-of-order“)

◼ (MEM,WB) shranitev rezultatov v registre ali pomn. („in-order“)

4.4 Dinamično razvrščanje ukazov

OR – 4 – Povzetki predavanj 67 © 2025 Rozman - FRI

4.4 Dinamično razvrščanje ukazov – Tomasulov algoritem

Izstavljanje ukazov v

nespremenjenem

vrstnem redu

Izvrševanje

ukazov v

drugačnem

vrstnem

redu

Shranjevanje

rezultatov v

prvotnem, nespremenjenem

vrstnem redu

Enota za prevzem ukazov

in dekodiranje

Rezervacijske

postaje

Rezervacijske

postaje

Rezervacijske

postaje
Rezervacijske

postaje

Funkcijska

enota
Funkcijska

enota
Funkcijska

enota

Funkcijska

enota

Enota za potrjevanje

in zapis rezultatov

Ohrani

odvisnosti

Ukazi/operandi

za izvršitev

Rezultati vsem

čakajočim

RPjem

Priskrbi operande

za izstavljene

ukaze Poskrbi za

pravi vrstni red

OR – 4 – Povzetki predavanj 68 © 2025 Rozman - FRI

Spletna demonstracija:

◼ http://nathantypanski.github.io/tomasulo-simulator/

4.4 Dinamično razvrščanje ukazov

4.4 Dinamično razvrščanje ukazov – Tomasulov algoritem

http://nathantypanski.github.io/tomasulo-simulator/
http://nathantypanski.github.io/tomasulo-simulator/
http://nathantypanski.github.io/tomasulo-simulator/
http://nathantypanski.github.io/tomasulo-simulator/

OR – 4 – Povzetki predavanj 69 © 2025 Rozman - FRI

Slabosti dinamičnega razvrščanja ukazov:

◼ se povečajo težave pri kontrolnih nevarnostih:
 več ukazov v urini periodi :

◼ v primeru napačne predikcije -> težko povemo, katere je potrebno razveljaviti

 rešitev: čakanje do izida skoka in s tem naslednjega ukaza

Čimmanj teh čakanj do izida skokov ->

 rešitev: špekulativno izvajanje ukazov….

4.4 Dinamično razvrščanje ukazov

OR – 4 – Povzetki predavanj 70 © 2025 Rozman - FRI

Špekulacija: način izvajanja ukazov, ki dovoljuje prevajalniku ali
procesorju, da ugiba o lastnostih ukaza in s tem omogoči pogojno
izvajanje ukazov, ki so odvisni od ukaza o katerem se špekulira.

Primera:
◼ Špekuliranje o izidu skočnega ukaza, tako da se ukazi za skokom

lahko prej izvedejo.

◼ Špekulacija je lahko tudi predvidevanje, da STORE in LOAD ukaz ne
dostopata do iste lokacije in lahko zamenjamo vrstni red njunega
izvajanja.

4.5 Špekulativno izvrševanje ukazov

OR – 4 – Povzetki predavanj 71 © 2025 Rozman - FRI

Težava pri špekulativnem izvrševanju ukazov:

◼ špekulacija (špekulacija ~ „manj zanesljiva napoved“) je pogosto

napačna.

◼ Špekulativno izvrševanje lahko izvaja prevajalnik (programsko - SW)

in/ali procesor (strojno - HW).

4.5 Špekulativno izvrševanje ukazov

Potreben mehanizem, ki vključuje:

 način za preverjanje, ali je bila

predpostavka pravilna.

 način za izničenje vsega, kar so

naredili napačno napovedani in

izvedeni ukazi.

Špekuliraj – napovej in

nadaljuj kljub

nerazrešenim odvisnostim

Špekuliraj – napovej in

nadaljuj kljub

nerazrešenim odvisnostim

Vzdržuj oboje : nove in

stare vrednosti

Vzdržuj oboje : nove in

stare vrednosti

Napoved prava :

zavrži stare vrednosti,

uveljavi nove vrednosti

Napoved prava :

zavrži stare vrednosti,

uveljavi nove vrednosti

Napoved NI prava :

zavrži nove vrednosti,

uveljavi stare vrednosti

Napoved NI prava :

zavrži nove vrednosti,

uveljavi stare vrednosti

OR – 4 – Povzetki predavanj 72 © 2025 Rozman - FRI

Procesor s špekulativnim izvrševanjem ukazov običajno izvaja
kombinacijo omenjenih pristopov:

 Dinamično predikcijo skokov, pri kateri se kljub skokom izberejo ukazi, ki
gredo v izstavljanje.

 Dinamično razvrščanje ukazov.

 Špekulativno izvrševanje ukazov brez predhodnega čakanja na
preverjanje pravilnosti skočne predikcije in z možnostjo izničenja vpliva
napačno izvršenih ukazov pri napačni napovedi.

Da se prepreči vpliv izvršenih ukazov na stanje programsko dostopnih
registrov dokler ni potrjena pravilnost napovedi skoka, se uporablja

preureditveni izravnalnik – PI („ReOrder Buffer“ - ROB)

4.5 Špekulativno izvrševanje ukazov

OR – 4 – Povzetki predavanj 73 © 2025 Rozman - FRI

Preureditveni izravnalnik (ROB):

◼ FIFO vmesnik, ki vsebuje ukaze (operande in rezultate), dokler niso

dovršeni (potrjena pravilnost špekulacije)

◼ loči „novo“ in „staro“ stanje

◼ koraki, ki so potrebni pri špekulativnem izvrševanju ukazov:

 Izstavljanje, Branje operandov, Izvrševanje, Zapis rezultata, Dovršitev

4.5 Špekulativno izvrševanje ukazov

ponor
veljavnostukaz-vrsta

F4 nastane v

ROB5

OR – 4 – Povzetki predavanj 74 © 2025 Rozman - FRI

4.5 Špekulativno izvrševanje ukazov

Čakalna vrsta ukazov

Rezervacijske

postaje

Rezervacijske

postaje

Rezervacijske

postaje
Rezervacijske

postaje

Funkcijska

enota
Funkcijska

enota
Funkcijska

enota

Funkcijska

enota

Preureditveni izravnalnik Programsko dostopni registri

Ukazno vodilo UV

Skupno podatkovno vodilo SPV

Operandno vodilo OV

1. Izstavljanje

2. Branje operandov

3. Izvrševanje

4. Zapis rezultata

5. Dovršitev

OR – 4 – Povzetki predavanj 75 © 2025 Rozman - FRI

4.5 Špekulativno izvrševanje ukazov

Čakalna vrsta ukazov

Rezervacijske

postaje

Rezervacijske

postaje

Rezervacijske

postaje
Rezervacijske

postaje

Funkcijska

enota
Funkcijska

enota
Funkcijska

enota

Funkcijska

enota

Preureditveni izravnalnik Programsko dostopni registri

Ukazno vodilo UV

Skupno podatkovno vodilo SPV

Operandno vodilo OV

1. Izstavljanje

2. Branje operandov

3. Izvrševanje

4. Zapis rezultata

5. Dovršitev

4.4 Dinamično razvrščanje ukazov – Tomasulov algoritem

4.5 Špekulativno izvrševanje ukazov – primerjava z dinamičnim razvrščanjem ukazov

OR – 4 – Povzetki predavanj 76 © 2025 Rozman - FRI

Koraki pri špekulativnem izvajanju ukazov:
◼ Izstavljanje (UV):

 Ukazi se iz čakalne vrste jemljejo v enakem vrstnem redu kot v programu.

◼ Ukaz se prenese (če je prostor) v:

 RP (rezervacijsko postajo) pri funkcijski enoti, ki jo ukaz potrebuje

 in v PI (preureditveni izravnalnik).

◼ Strukturna nevarnost:

 če ni prostora v preureditvenem izravnalniku ali v RPju funkcijske enote

◼ Branje operandov (OV):

 Operand, ki ga potrebuje ukaz, se lahko nahaja v:

◼ preureditvenem izravnalniku

◼ ali v programsko dostopnem registru.

 Operand lahko da še ni na voljo – označimo mesto, kjer se bo pojavil

4.5 Špekulativno izvrševanje ukazov

OR – 4 – Povzetki predavanj 77 © 2025 Rozman - FRI

◼ Izvrševanje (RP,FE,SPV):
 Če v ukazu manjka eden ali oba operanda, ukaz v RP čaka, dokler se operand ne

pojavi na skupnem podatkovnem vodilu (SPV).

 Ko ima ukaz vse operande:

◼ gre v izvrševanje v funkcijsko enoto,

◼ rezervacijska postaja pa se izprazni.

◼ Zapis rezultata (SPV):

 Ko je na izhodu funkcijske enote rezultat ukaza, se prenese (SPV):

◼ v vse rezervacijske postaje, ki čakajo nanj

◼ in v preureditveni izravnalnik, v ukaz ki čaka na ta rezultat.

4.5 Špekulativno izvrševanje ukazov

OR – 4 – Povzetki predavanj 78 © 2025 Rozman - FRI

◼ Dovršitev (PI):

 Ko se na izhodu preureditvenega izravnalnika pojavi veljaven ukaz, se dovrši.

◼ skočni ukazi: preveri se pravilnost napovedi:

 Če je napoved pravilna, je skočni ukaz izvršen.

 Če pa je napoved napačna:

▪ se izbriše celotna vsebina preureditvenega izravnalnika in vsebina čakalne

vrste ukazov.

▪ Prevzame se ukaz s pravilnega naslova.

◼ ALE ali LOAD ukazi: se vrednost zapiše v programsko dostopni register.

◼ STORE ukazi: se vrednost zapiše v pomnilnik.

 Če ukaz dovršen, se izbriše iz PI:

◼ vsebina PI se pomakne navzdol

◼ izhod:

 se pojavi naslednji ukaz v vrsti

◼ na vhodu:

 se sprosti prostor za novi ukaz

4.5 Špekulativno izvrševanje ukazov

OR – 4 – Povzetki predavanj 79 © 2025 Rozman - FRI

Velikost preureditvenega izravnalnika določa največje število

ukazov, ki se lahko špekulativno izvršijo – ukazno okno.

4.5 Špekulativno izvrševanje ukazov

Tip ukazno okno RP in FE

AMD Opteron

(»Barcelona«):
60 60RP za 11 FE

Intel Core iX

(»Nehalem«):
128 36RP za 12 FE

Intel Core iX (»Sandy

ridge«):
168 54 RP za 12 FE

Intel Core iX (»Haswell«): 192 64 RP za 20 FE

Intel Core iX (»Skylake«): 224 97 RP za 22 FE

Intel Core iX (»Sunny

Cove«): l. 2019
352 >125 (???)

„..352 entries might be equivalent

to as much as 525 µOPs…“

Intel Core iX (»Golden

Cove«): l. 2021
512 ?

Intel Core iX (»Lion

Cove«): l. 2024 576

OR – 4 – Povzetki predavanj 80 © 2025 Rozman - FRI

Spletna demonstracija delovanja PI :

http://www.ecs.umass.edu/ece/koren/architecture/ROB/rob_simulator.htm

4.5 Špekulativno izvrševanje ukazov

Prednosti špek. izvrševanja ukazov:

• Ukaz #4 (DIV.D) se začne izvajati 1. cikel pred

MUL.D, ki čaka na rezultata obeh LD ukazov

• Ukaz DIV.D konča izvedbo že v 45. ciklu (brez ŠI

„in-order“ bi končal v 56. ciklu)

http://www.ecs.umass.edu/ece/koren/architecture/ROB/rob_simulator.htm

OR – 4 – Povzetki predavanj 82 © 2025 Rozman - FRI

4.6 Večizstavitveni procesorji

Z znanimi metodami:

 dinamično predikcijo skokov,

 špekulativnim izvrševanjem in

 dinamičnim razvrščanjem ukazov

se CPI (povprečno število urinih period za izvedbo ukaza) približa 1.

CPI se lahko zmanjša pod 1, če se v vsaki urini periodi prevzame in

izstavi v izvrševanje več ukazov.

Pri takih procesorjih se običajno uporablja enota IPC (instructions

per clock) to je povprečno število izvršenih ukazov v urini periodi.

CPI
IPC

1
=

OR – 4 – Povzetki predavanj 83 © 2025 Rozman - FRI

Delovanje n-kratnega večizstavitvenega procesorja:

◼ Pri prevzemu n-ukazov mora ukazni predpomnilnik dostavljati n ukazov v

urini periodi v čakalno vrsto.

◼ Iz čakalne vrste se prevzame n ukazov v enakem vrstnem redu kot so v

programu.

◼ Če predpostavimo, da med prevzetimi ukazi ni skokov, je potrebno

preveriti odvisnost med operandi.

4.6 Večizstavitveni procesorji

OR – 4 – Povzetki predavanj 84 © 2025 Rozman - FRI

Strojno ugotavljanje medsebojnih podatkovnih odvisnosti je

zahtevno za realizacijo:

◼ Poleg HW rešitve se pojavi še programska

Večizstavitvene procesorje tako delimo v dve vrsti:

 VLIW procesorji – število ukazov, ki so prevzeti in izstavljeni v eni

urini periodi je določeno s programom (prevajalnik) vnaprej in se

med delovanjem ne spreminja.

 Superskalarni procesorji – število prevzetih in izstavljenih ukazov

se med izvajanjem programa dinamično spreminja in ga določa

logika v procesorju.

4.6 Večizstavitveni procesorji

OR – 4 – Povzetki predavanj 85 © 2025 Rozman - FRI

4.6.1 Superskalarni procesorji

Izraz superskalarni procesor:

◼ prvič uporabljen pri IBM projektu America, ki je bil osnova za serijo

procesorjev IBM RS/6000 (Power1),

◼ nekateri viri: „da je bil že superračunalnik CDC 6600 leta 1963

superskalarni“.

Superskalarni procesor dinamično določa, kateri ukazi se v eni urini

periodi izstavijo v izvrševanje.

OR – 4 – Povzetki predavanj 86 © 2025 Rozman - FRI

n-kratni superskalarni procesor:

◼ Za ugotavljanje medsebojnih podatkovnih odvisnosti je pri n tri-operandnih registrskih
ukazih potrebnih n2 – n primerjav.

 Pri predpostavki, da so vsi operandi registrski in da ima vsak ukaz dva vhodna in en izhodni
operand, je pri n ukazih potrebnih n2 – n primerjav.

◼ Pri n = 6 je to 30 primerjav, ki jih je težko narediti v eni urini periodi. Zato se pri
superskalarnih računalnikih to primerjanje opravi v več stopnjah cevovoda.

◼ Ko so morebitne medsebojne odvisnosti operandov ugotovljene, se nadaljevanje
izstavljanja ukazov ne razlikuje bistveno od špekulativnega izvrševanja ukazov.

◼ Razlika je, da se v eni urini periodi namesto enega, v rezervacijske postaje izstavi do
največ n ukazov.

4.6.1 Superskalarni procesorji

OR – 4 – Povzetki predavanj 87 © 2025 Rozman - FRI

Poenostavljena shema superskalarnega procesorja

◼ Če več ukazov potrebuje isto funkcijsko enoto ali pa je preureditveni

izravnalnik poln, pride seveda do strukturne nevarnosti, kar povzroči

čakanje.

◼ Zato je pri superskalarnih procesorjih:

 število funkcijskih enot običajno večje od največjega števila ukazov, ki so

izstavljeni v eni urini periodi,

 večji pa je tudi preureditveni izravnalnik.

4.6.1 Superskalarni procesorji

OR – 4 – Povzetki predavanj 88 © 2025 Rozman - FRI

4.6.1 Superskalarni procesorji

Lastnosti nekaterih superskalarnih procesorjev

* Pri večjedrnih procesorjih se podatki nanašajo na eno jedro

** Velja za μ-operacije

Procesor
Prevzeti-izstavljeni-dovršeni

ukazi

Število funkcijskih

enot

IBM RS/6000 (1990) 2 – 2 – 2 2

Digital Alpha 21264 (1998) 4 – 4 – 11 6

Intel Pentium 4 (2000) 3 – 3 – 4 ** 7

IBM Power5 * (2003) 8 – 4 – 8 8

AMD Opteron X4 * (2007) 9 – 6 – 4 ** 11

Intel Core iX * (2008) 6 – 6 – 4 ** 12

Intel Core iX * Haswell (2013) 8 – ** 20

Intel Core iX * SunnyCove (2019)
12 – 10 – 7 **

(unfused)
?

Intel Core iX * LionCove (2024) 8 – 12 – 12 18

OR – 4 – Povzetki predavanj 89 © 2025 Rozman - FRI

◼ Preureditveni izravnalnik je pri superskalarnih procesorjih

zelo zapleten.

 Rezultate, ki pridejo iz funkcijskih enot je potrebno v isti urini

periodi zapisati v vse ukaze, ki v izravnalniku čakajo nanje.

 V koraku branje operandov je potrebno operande, ki so že v

izravnalniku, prenesti v rezervacijske postaje.

 Ob izvršitvi ukazov je treba operande zapisati v registre.

4.6.1 Superskalarni procesorji

Primer: Pentium III: :

◼ PI porabi 27% celotne energije !!!

◼ „Preveč zapleteno, preveč porabe!“

OR – 4 – Povzetki predavanj 90 © 2025 Rozman - FRI

Novejši procesorji (po letu 2000) zato običajno

uporabljajo eksplicitno preimenovanje registrov:

◼ razširjena množica registrov:
 procesor ima poleg programsko dostopnih registrov še precej več dodatnih

(začasnih) registrov

 Oboji skupaj tvorijo razširjeno množico registrov.

◼ preimenovalna tabela:
 določa ali je nek register v določeni urini periodi:

◼ programsko dostopen,

◼ prost ali

◼ zaseden

◼ preureditveni izravnalnik se poenostavi:
 zagotavlja le dovršitev ukazov v enakem vrstnem redu kot so v

programu in

 v njem ni več začasnih rezultatov, so v začasnih registrih

4.6.1 Superskalarni procesorji

razširjena

množica registrov

množica programsko

dostopnih registrov

OR – 4 – Povzetki predavanj 91 © 2025 Rozman - FRI

Preimenovanje registrov – osnovni pristop

Želimo izvesti 2 operaciji :

• M[1024] + 2 -> M[1032]

• M[2048] + 4 -> M[2056]

Neučinkovita izbira R1 za

obe operaciji -> odvisnost!!

Učinkovita izbira R1,R2 za

obe operaciji -> neodvisnost!!

OR – 4 – Povzetki predavanj 92 © 2025 Rozman - FRI

Prvotni ukazi Preimenovanje reg.Prosti reg.

Preimenovalna tabela

Razreši WAW/WAR

RAW ostanejo

Preimenovalna tabela tako v vsaki urini periodi vsebuje informacije v katere

registre razširjene množice so preslikani programsko dostopni registri.

4.6.1 Superskalarni procesorji

RAW 4x

WAW 1x

WAR 5x

RAW 4x

WAW -

WAR -

OR – 4 – Povzetki predavanj 94 © 2025 Rozman - FRI

4.6.2 VLIW procesorji - „Very Long Instruction Word“

Ideja v 80. letih, najprej na bolj specializiranih (DSP: TI C6000 še danes)

Značilnosti:

◼ t.i. dolgi ukazi:

 so sestavljeni iz več enostavnejših ukazov, ki se izvedejo paralelno

 vsak enostavnejši ukaz zaposli eno FE, tipično:

◼ 3 celoštevilčni ukazi, 2 FP ukaza, 2 dostopa do pomn. in 1 skok.

◼ prevajalnik oz. program določi in razvrsti ukaze v dolge ukaze tako, da

so FE čimbolje izkoriščene (če ne najde -> NOP)

◼ Potencialne prednosti:
 logika v procesorju enostavna :

◼ ni preverjanja odvisnosti

◼ ni detekcije nevarnosti

 prevajalnik vidi širšo vsebino (kot ukazno okno pri superskalarnih)

 odvisnost se preveri le enkrat (ob prevajanju programa)…

OR – 4 – Povzetki predavanj 95 © 2025 Rozman - FRI

4.6.2 VLIW procesorji - „Very Long Instruction Word“

Slabosti VLIW iz prakse:

◼ večja dolžina programov
 Prevajalnik vstavlja tudi NOP !

◼ togost
 Enote delujejo ali stojijo hkrati

◼ „statična“ odločitev
 Prevajalnik naredi pred izvajanjem programa

l. 1997: HP, Intel predlagata EPIC:

◼ „Explicitly Parallel Instruction Computing“

◼ Intel: Itanium 1, 2

Praksa ponovno pokaže:

◼ VLIW niso nič manj zapleteni od superskalarnih

◼ Fcpe se ni dvignila v skladu s pričakovanji

„…nobeden (VLIW; superskalarni) ni konsistentno boljši od drugega.“

http://rexcomputing.com/

http://rexcomputing.com/

OR – 4 – Povzetki predavanj 96 © 2025 Rozman - FRI

Tipični primeri izvedbe cevovodov:

• HiP 5-stopenjski cevovod

• ARM9TDMI 5-stopenjski cevovod (FRI SMS))

• MiMo v2 – cevovodna različica

• ARM Cortex A8 cevovod

• ARM Cortex M7 (ST-H7) cevovod

• Core i7 cevovod

• AMD Zen mikro-arhitekture

4.7 Primeri izvedbe cevovodov

OR – 4 – Povzetki predavanj 97 © 2025 Rozman - FRI

4.7.1 HiP 5-stopenjski cevovod
HiP_cevovod_OR_v3.pdf (brez premoščanja)

HiP 5-stopenjski cevovod :

• brez premoščanja 19 tcpe

• s premoščanjem 11 tcpe

OR – 4 – Povzetki predavanj 98 © 2025 Rozman - FRI

4.7.1 HiP 5-stopenjski cevovod
HiP_cevovod_OR_v3_premoscanja.pdf (premoščanja)

HiP 5-stopenjski cevovod :

• brez premoščanja 19 tcpe

• s premoščanjem 11 tcpe

OR – 4 – Povzetki predavanj 99 © 2025 Rozman - FRI

4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

◼ Harvardska arhitektura

 poveča VN ozko grlo z ločitvijo:

◼ ukazni predpomnilnik

◼ operandni predpomnilnik

 hkratni dostop do obeh

◼ 5-stopenjski cevovod

◼ premoščanje

◼ statična predikcija „neizpolnjeni

pogoj“ :
 BNE traja 1tcpe (pogoj ni izpolnjen)

 BNE traja 3tcpe (pogoj je izpolnjen)

◼ Realni (merjeni) CPI ~1.5

I-cache

rot/sgn ex

+4

byte repl.

ALU

I decode

register read

D-cache

fetch

instruction
decode

execute

buffer/
data

write-back

forwarding
paths

immediate

fields

next
pc

reg
shift

load/store
address

LDR pc

SUBS pc

post-
index

pre-index

LDM/
STM

register write

r15

pc + 8

pc + 4

+4

mux

shift

mul

B, BL

MOV pc

OR – 4 – Povzetki predavanj 100 © 2025 Rozman

- FRI

4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

instruction

fetch

instruction

fetch

Thumb

decompress

ARM

decode

reg

read

reg

writeshift/ALU

reg

writeshift/ALU
r. read

decode

data memory

access

Fetch Decode Execute

Memory WriteFetch Decode Execute

ARM9TDMI:

ARM7TDMI:

◼ ARM9TDMI podatki:

Process 0.25 um Transistors 110,000 MIPS 220
Metal layers 3 Core area 2.1 mm

2
Power 150 mW

Vdd 2.5 V Clock 0 to 200 MHz MIPS/W 1500

OR – 4 – Povzetki predavanj 101 © 2025 Rozman

- FRI

4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

◼ Premoščanje reši podatkovno nevarnost

◼ LDR : dobi rezultat šele v LS1 !

OR – 4 – Povzetki predavanj 102 © 2025 Rozman

- FRI

4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

◼ LDRB : dobi rezultat šele v LS2 !

OR – 4 – Povzetki predavanj 103 © 2025 Rozman

- FRI

4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

Za B ukazom je potrebno sprazniti cevovod

(vstaviti mehurčke) !

OR – 4 – Povzetki predavanj 104 © 2025 Rozman

- FRI

4.7.3 ARM Cortex-A8 Cevovod (poenostavljen)

◼ 14 stopenjski (3 delni) superskalarni

cevovod

 dinamični več-izstavitveni

 statični „in-order“ cevovod

◼ pomembna vloga prevajalnika !

◼ odprava kontrolnih nevarnosti:

 2-stopenjska predikcija

◼ odprava podatkovnih nevarnosti:

 polno premoščanje med EX cevovodi.

◼ 3 sekcije:
 Fetch

 Decode

 Execute

◼ Execute - 3 poti :
 1x LOAD/STORE

 2x ALE

OR – 4 – Povzetki predavanj 105 © 2025 Rozman

- FRI

4.7.3 ARM Cortex-A8 Cevovod v celoti

OR – 4 – Povzetki predavanj 106 © 2025 Rozman

- FRI

Benchmark Program General Category
Combinatorial optimization / Single-depot vehicle

scheduling

4.7.3 ARM Cortex-A8 Cevovod – Minnespec Benchmarks

Idealni CPI = 0.5, v praksi pa izmerimo :
• 1.4 (min),

• 2.0 (median)

• 5.2 (max)…

Meritve CPI na Minnespec Benchmarks:

• poenostavljen SPEC2000 (bistveno manjša količina vhodnih podatkov)

181.mcf

SPEC CPU2000 Benchmark Description File

OR – 4 – Povzetki predavanj 107 © 2025 Rozman

- FRI

4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

Značilnosti:

◼ „Dual issue in-order 6 stage pipeline“
 Fetch 3 stopnje, Execute 3 stopnje

◼ Pomnilniška hierarhija

◼ Prefetch enota s skočno predikcijo

OR – 4 – Povzetki predavanj 108 © 2025 Rozman

- FRI

4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

OR – 4 – Povzetki predavanj 109 © 2025 Rozman

- FRI

4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

OR – 4 – Povzetki predavanj 110 © 2025 Rozman

- FRI

4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

OR – 4 – Povzetki predavanj 111 © 2025 Rozman

- FRI

// Register Addresses

.equ DWT_BASE, 0xE0001000 // DWT Base address

.equ DWT_CTRL, 0x00 // DWT_CTRL reg (RM0433, pp.3209)

.equ DWT_CYCCNT, 0x04 // increments on each clock cycle when the processor is not halted in debug state.

.equ DWT_CPICNT, 0x08 // additional cycles required to execute multi-cycle instructions, and instruction fetch stalls

.equ DWT_EXCCNT, 0x0C // count the total cycles spent in interrupt processing

 // (cycles spent performing exception entry and exit procedures)

.equ DWT_SLPCNT, 0x10 // count the total number of cycles during which the processor is sleeping

 // (cycles spent sleeping)

.equ DWT_LSUCNT, 0x14 // counts the total number of cycles that the processor is processing an LSU operation

 // (cycles spent waiting for loads and stores to complete

 // For example, an LDR that takes two cycles to complete increments this counter one cycle.

 // Equivalently, an LDR that stalls for two cycles (and so takes four cycles),

 // increments counter three times.

.equ DWT_FOLDCNT, 0x18 // count the total number of folded instructions

 // (cycles saved by instructions which execute in zero cycles

 // This counts 1 for each instruction that takes 0 cycles.

// instructions executed = DWT_CYCCNT - DWT_CPICNT - DWT_EXCCNT - DWT_SLEEPCNT - DWT_LSUCNT + DWT_FOLDCNT

4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements

https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements
https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements
https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements

OR – 4 – Povzetki predavanj 112 © 2025 Rozman

- FRI

1.Instruction Fetch (16bajtov)

2.Predecode Stage (bajti->x86 ukaze)

3.µ-op decode (x86 ukazi -> µ-op)

5.Izstavitev µ-op -> ROB in RP

6.Izvedba µ-op

7.Dovršitev

4.7.5 Core i7 superskalarni cevovod - poenostavljen

OR – 4 – Povzetki predavanj 113 © 2025 Rozman

- FRI

4.7.5 Core i7 superskalarni cevovod

14 stopenjski superskalarni

cevovod:
◼ dinamični več-izstavitveni (6 µ-

op/cikel)

◼ dinamični „out-of-order“ cevovod

◼ špekulativno izvajanje ukazov

Osnovni problem :
CISC ukazi

 -> µ-operacije

 -> cevovod

◼ značilnosti:
 PI (ROB)

 ekspl. preimenovanje reg.

◼ „kazni“ v tcpe ciklih:
 15 napačno napovedan skok

 10 predp. L1 zgrešitev

 35 predp. L2 zgrešitev

 135 predp. L3 zgrešitev

OR – 4 – Povzetki predavanj 114 © 2025 Rozman

- FRI

1.Instruction Fetch (16bajtov)

2.Predecode Stage

 (bajti->x86 ukaze)

3.µ-op decode (x86 ukazi -> µ-op)

4.Loop Stream Detection

5.Izstavitev µ-op -> ROB in RP

6.Izvedba µ-op

7.Dovršitev

OR – 4 – Povzetki predavanj 115 © 2025 Rozman

- FRI

4.7.5 Core i7 superskalarni cevovod

Sunny Cove

140 (skupna)

>125 (?)

352

OR – 4 – Povzetki predavanj 116 © 2025 Rozman

- FRI

4.7.5 Core i7 superskalarni cevovod

OR – 4 – Povzetki predavanj 117 © 2025 Rozman

- FRI

4.7.5 Core i7 superskalarni cevovod

OR – 4 – Povzetki predavanj 118 © 2025 Rozman

- FRI

4.7.5 Core i7 cevovod

Meritve na SPEC2006 :

 učinkovitost napovedi in

 CPI špekulativnega izvajanja

Idealni CPI = 0.25, v praksi pa izmerimo :
• 0.44 (min),

• 0.79 (median)

• 2.67 (max)…

Branch misprediction:

 delež napačnih skočnih napovedi

 0% (min), 2% (median) 10% (max)

Wasted work:

 delež zavrženih µ-operacij
 1% (min), 18% (median) 39% (max)

Libquantum

ima najbolj

predvidljive

skoke!

mcf –

kombinatorična

optimizacija

OR – 4 – Povzetki predavanj 119 © 2025 Rozman

- FRI

sunny cove block diagram.svg

4.7.5 Core i7

superskalarni

cevovod

14-19 stopenjski

superskalarni

cevovod: „Sunny

Cove“

(2019)

◼ ROB (352)

◼ centralna RP (160) –

10 izhodov

◼ 280 registrov (ekspl.

preimenovanje)

https://en.wikichip.org/wiki/File:sunny_cove_block_diagram.svg

OR – 4 – Povzetki predavanj 120 © 2025 Rozman

- FRI

Primer x86 zbirnika :

void function1() {

 int A = 10;

 A += 66;

}

function1:

1 pushl %ebp #

2 movl %esp, %ebp #,

3 subl $4, %esp #,

4 movl $10, -4(%ebp) #, A

5 leal -4(%ebp), %eax #,

6 addl $66, (%eax) #, A

...

1. push ebp

2. copy stack pointer to ebp

3. make space on stack for local data

4. put value 10 in A (this would be the address A has now)

5. load address of A into EAX (similar to a pointer)

6. add 66 to A

Vir: http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm

http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm

OR – 4 – Povzetki predavanj 121 © 2025 Rozman

- FRI

4.7.5 Cortex A8, Intel i7 (4.7.4), Cortex M7

Processor ARM A8 Intel Core i7 920 ARM M7

Market Personal Mobile

Device
Server, cloud Embedded

Thermal design power 2 Watts 130 Watts 2.5 Watts

Clock rate 1 GHz 2.66 GHz 0.480 GHz

Cores/Chip 1 4 1-2

Floating point? No Yes Yes (SP,DP)

Multiple issue? Dynamic Dynamic Dynamic

Peak instructions/clock

cycle
2 4 2

Pipeline stages 14 14 6

Pipeline schedule
Static in-order

Dynamic out-of-order with

speculation
Static in-order

Branch prediction 2-level 2-level present, no info

1st level caches/core
32 KiB I, 32 KiB D 32 KiB I, 32 KiB D

16 KiB I, 16 KiB D

2nd level caches/core 128-1024 KiB 256 KiB

3rd level caches (shared) - 2- 8 MB

OR – 4 – Povzetki predavanj 122 © 2025 Rozman

- FRI

4.7.6 AMD „Zen“ mikroarhitekture

Novosti v „Zen“:

◼ „Design from scratch“

◼ 40% višji IPC od predhodnika

◼ SMT

◼ Izboljšan predpomnilniški sistem

◼ Evolucija: Zen+, Zen2, Zen 3, Zen 4, Zen 5

OR – 4 – Povzetki predavanj 123 © 2025 Rozman

- FRI

4.7.5 Zen 2 mikroarhitektura – poenostavljen model

OR – 4 – Povzetki predavanj 124 © 2025 Rozman

- FRI

4.7.5 Zen 3 mikroarhitektura – poenostavljen model

OR – 4 – Povzetki predavanj 125 © 2025 Rozman

- FRI

4.7.5 Zen 2 vs Zen 3 mikroarhitekturi – poenostavljena modela

OR – 4 – Povzetki predavanj 126 © 2025 Rozman

- FRI

4.7.5 Zen 4 mikroarhitektura – poenostavljen model

OR – 4 – Povzetki predavanj 127 © 2025 Rozman

- FRI

4.7.5 Zen 3 vs Zen 4 mikroarhitekturi – poenostavljena modela

OR – 4 – Povzetki predavanj 128 © 2025 Rozman

- FRI

MiMo v2 - cevovodne različice

https://github.com/LAPSyLAB/MiMo_Student_Release/tree/main/MiMo_v2_Pipelined_versions

https://github.com/LAPSyLAB/MiMo_Student_Release/tree/main/MiMo_v2_Pipelined_versions

OR – 4 – Povzetki predavanj 129 © 2025 Rozman

- FRI

5-stopenjska cevovoda: HiP, MiMo v2

HiP 5-stopenjski cevovod – ena izvedba zanke:

• brez premoščanja 19* tcpe

• s premoščanjem 11 tcpe

* štejemo od BNE v EX stopnji, zato naštetih ciklov več

Zaklepanje

mov r3,#3 @ 5

loop: @ stall

ldr r1, [r2] @ 6, 19

add r1, r1, #1 @ 10, 23

str r1, [r2] @ 14, 27

subs r4, r3, r1 @ 15, 28

jne loop @ 17, 30

Premoščanje

| forwarding

| 6, 13

| 8, 15 (here one mandatory stall to get value from MA stage)

| 9, 16

| 10, 17

| 11, 18

MiMo v2 5-stopenjski cevovod – ena izvedba zanke:

• brez premoščanja 17 tcpe

• s premoščanjem 11 tcpe

OR – 4 – Povzetki predavanj 130 © 2025 Rozman

- FRI

4.8 Omejitve paralelizma na nivoju ukazov

◼ Izrazita prednost:

 transparentnost

◼ Slabost:

 stopnja paralelizma na nivoju ukazov je omejena zaradi končnega števila ukazov

med dvema napačnima napovedima.

Količina paralelnosti na nivoju ukazov v programih je omejena,

odvisna od algoritmov in ne tehnologije !

Z več tranzistorji se lahko poveča:
• ukazno okno in

• natančnost napovedi skokov,

• tudi poraba

vendar od neke točke naprej to le malo

pomaga.

Praksa:

število izstavljenih ukazov pri

superskalarnih procesorjih se kljub

napredku tehnologije praktično ne

povečuje (je pod 10).

OR – 4 – Povzetki predavanj 131 © 2025 Rozman

- FRI

◼ V raziskavah je bilo ocenjeno, da je povprečni IPC, ki bi bil dosegljiv na

resničnem računalniku, približno 5 do 10. To pa je več kot danes

dosežejo najzmogljivejši superskalarni računalniki.

◼ Vzroka za nizek realni IPC pri P4 sta :
 zelo dolg cevovod in

 zgrešitve v predpomnilniku.

◼ Večji IPC še ne pomeni nujno bolj zmogljiv procesor. Zmogljivost je

odvisna še od frekvence ure fCPE.

◼ Število ukazov, ki jih procesor izvrši v eni sekundi je

št.ukazov/sek = fCPE x IPC

◼ Realnost:
 večji IPC pa je večinoma mogoče doseči le z nižjo frekvenco ure fCPE.

4.8 Omejitve paralelizma na nivoju ukazov

realni IPC teoretični IPC Komentar

P4 0.8 3 31stopenj,

Core2

Core iX
1.5 4 14stopenj

OR – 4 – Povzetki predavanj 132 © 2025 Rozman

- FRI

Primerjava Intelovih procesorjev :

◼ kompleksnost dinamičnega razvrščanja ukazov in špekulacije zahteva

dodatno logiko in porabo.

◼ morda je manj enostavnejših jeder lahko kdaj tudi boljša rešitev (ARM,…)

Microprocessor Year Clock Rate Pipeline

Stages

Issue

width

Out-of-order/

Speculation

Cores Power

i486 1989 25MHz 5 1 No 1 5W

Pentium 1993 66MHz 5 2 No 1 10W

Pentium Pro 1997 200MHz 10 3 Yes 1 29W

P4 Willamette 2001 2000MHz 22 3 Yes 1 75W

P4 Prescott 2004 3600MHz 31 3 Yes 1 103W

Core 2006 2930MHz 14 4 Yes 2 75W

Core i5(Nehalem) 2010 3300MHz 14 4 Yes 2 87W

Core i5(Ivy Bridge) 2012 3400MHz 14 4 Yes 4 77W

Core i9(Coffee Lake) 2018 5000MHz 14 Yes 8 127W

Core i9(RaptorCove) 2022 5800MHz 12

OR – 4 – Povzetki predavanj 133 © 2025 Rozman

- FRI

Prelomnica:

Intel P4 CPE: snovalci izbirajo med (okoli l. 2000):

◼ povečanjem fcpe

 (poraba, toplota)

◼ 2 CPE na 1 čip

 (dvojni stroški, ni programov)

◼ dodajanje FE

 (samo po sebi ne pomaga)

◼ daljši cevovod

 (povečajo se nevarnosti)

◼ večnitnost (se zdi še edina možnost):

 izkoristimo HW, ki sicer stoji

 5% več površine->25% poveča zmoglj.

4.8 Omejitve paralelizma na nivoju ukazov

OR – 4 – Povzetki predavanj 134 © 2025 Rozman

- FRI

Prelomnica l.2000 (Intel P4):

◼ V mnogih situacijah (programih) obstaja paralelizem

tudi na višjem nivoju, ki ga na nivoju ukazov ni mogoče

izkoristiti.

◼ To je paralelizem na nivoju niti, kjer se izvrševanje

razdeli v več ločenih poti (niti):

 Zakaj (l.2000) ?:

◼ 5% več površine prinese 25% povečanje zmogljivosti

◼ l. 2000 je bila to še najbolj sprejemljiva rešitev

4.8 Omejitve paralelizma na nivoju ukazov

OR – 4 – Povzetki predavanj 135 © 2025 Rozman

- FRI

4.9 Paralelizem na nivoju niti (večnitnost)

◼ Nit („thread“) je zaporedje ukazov, ki se lahko izvršuje neodvisno od

drugih ukazov. Nit je lahko:

 del programa, ki ga sestavlja več procesov

 samostojen program

◼ Večnitnost ni transparentna !

 poskrbi programer (razen program = nit)

◼ Večnitnost na strojnem nivoju (Hardware Multithreading) omogoča,

da si več niti deli funkcijske enote enega procesorja.

◼ Vsaka nit v procesorju mora imeti svoje stanje, ki je neodvisno od

stanj drugih niti.

OR – 4 – Povzetki predavanj 136 © 2025 Rozman

- FRI

◼ Stanje vsake niti mora imeti svojo kopijo:
 programsko dostopnih registrov,

 programskega števca (PC) in

 potrebnih programsko nedostopnih registrov ter

 svoje tabele strani.

◼ Vse niti si delijo pomnilnik in predpomnilnike:
 pri čemer uporabljajo mehanizem navideznega pomnilnika.

◼ Vsaka nit vidi kot da sama uporablja procesor:
 en procesor je tako videti kot več logičnih procesorjev.

◼ Preklop med nitmi je bistveno hitrejši (t.j. trenuten) od
preklopa med programi v multiprogramskem načinu, ki
lahko traja od nekaj sto do tisoč urinih period.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 137 © 2025 Rozman

- FRI

◼ Obstaja več načinov realizacije strojne večnitnosti:

 Časovna večnitnost

◼ drobnozrnata

◼ grobozrnata

 Istočasna večnitnost (večizstavitvene CPE)

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 138 © 2025 Rozman

- FRI

Primer večnitnega programa :

4.9 Paralelizem na nivoju niti

#include <stdio.h> /* standard I/O routines */

#include <pthread.h> /* pthread functions and data structures */

#include <stdio.h> /* standard I/O routines */

#include <pthread.h> /* pthread funcs & structures */

/* function to be executed by the new thread */

void* do_loop(void* data)

{

int i; /* counter, to print numbers */

 int j; /* counter, for delay */

int me = *((int*)data); /* thread ID */

 for (i=0; i<10; i++) {

 /* delay loop */

 for (j=0; j<500000000; j++);

 printf("'%d' - Got '%d'\n", me, i);

 }

 /* terminate the thread */

 pthread_exit(NULL);

}

/* like any C program, program's execution begins in main */

int main(int argc, char* argv[])

{

int thr_id1, thr_id2; /* thread ID – new thread */

 pthread_t p_thread; /* thread's structure */

int a = 1; /* thread 1 id */

int b = 2; /* thread 2 id */

int c = 3; /* thread 3 id */

/* create a new thread & execute 'do_loop()' */

thr_id1 = pthread_create(&p_thread, NULL, do_loop, (void*)&a);

/* create a new thread that will execute 'do_loop()' */

thr_id2 = pthread_create(&p_thread, NULL, do_loop, (void*)&b);

/* run 'do_loop()' in the main thread as well */

do_loop((void*)&c);

 return 0;

}

Opis: funkcija do_loop:

◼ se izvaja v dveh nitih in še v glavnem programu,

◼ Vsaka nit z drugim IDjem (1,2,3)

◼ povsod z zakasnitvijo šteje do 10 in potem se konča

OR – 4 – Povzetki predavanj 139 © 2025 Rozman

- FRI

4.9.1 Drobnozrnata večnitnost

(„fine-grained multithreading“).

Procesor preklaplja med nitmi vsako urino periodo.

 Niti se preklapljajo enakopravno ena za drugo.

 Niti, pri katerih se pojavi čakanje zaradi kateregakoli vzroka, se

preskočijo.

 Za vsako nit se mora pri preklopu shraniti poleg registrov tudi

popolno stanje cevovoda.

 Dobra stran tega načina je, da se prikrije čakalne periode, ker se

takrat izvajajo ukazi drugih niti.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 140 © 2025 Rozman

- FRI

Izvajanje treh niti posamezno pri drobnozrnati večnitnosti :

4.9.1 Drobnozrnata večnitnost

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B6 B7 B8B5B4B3

C1 C2 C6 C7 C8C5C4C3

Nit A

Nit B

Nit C

Urine periode

A1 B1 B2 C2 A3 A4 B4 C4C1 A2 B3 C3

Urine periode

Drobnozrnata večnitnost (primer do A4,B4,C4)

Niti posamezno = 36 tCPE

24 urinih period

1 12

Večnitnost: 12 tCPE

Posamezne niti: 18 tCPE = 6 (do A4) + 8 (do B4) + 4 (do C4)

OR – 4 – Povzetki predavanj 141 © 2025 Rozman

- FRI

Idealna situacija – 5 stopenjski cevovod in izvajanje petih niti pri

drobnozrnati večnitnosti :

4.9.1 Drobnozrnata večnitnost

Nevarnosti ?

Pogosta situacija ?

OR – 4 – Povzetki predavanj 142 © 2025 Rozman

- FRI

4.9.2 Grobozrnata večnitnost

(„coarse-grained multithreading“).

Procesor preklopi na naslednjo nit samo kadar pride do daljšega

čakanja, kot npr. pri zgrešitvah v predpomnilniku L2.

 Procesor je enostavnejši, ker ob preklopu ni treba za vsako nit

shraniti celotnega cevovoda, ker lahko počakamo, da se

izprazni.

 Preklopov je manj in so zato lahko počasnejši.

 Izvrševanje posamezne niti se ne upočasni, če nima daljših

čakanj.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 143 © 2025 Rozman

- FRI

 Slabost tega načina je, da ne prikrije krajših čakanj. Pri krajših

čakanjih procesor stoji.

 Ob preklopu se mora cevovod napolniti z ukazi nove niti.

 Grobozrnata večnitnost je zato uporabna pri daljših čakanjih, kjer

je čas polnjenja cevovoda zanemarljiv v primerjavi s časom

čakanja.

4.9.2 Grobozrnata časovna večnitnost

OR – 4 – Povzetki predavanj 144 © 2025 Rozman

- FRI

4.9.2 Grobozrnata časovna večnitnost

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B6 B7 B8B5B4B3

C1 C2 C6 C7 C8C5C4C3

Nit A

Nit B

Nit C

Urine periode

A1 A2 C1 C2 A3 A4B1 C3 C4

Urine periode

Grobozrnata večnitnost

36 urinih period

32 urinih period

1 12

Posamezne niti: 15 tCPE = 6 (do A4) + 3 (do B1+) + 6 (do C4)

Večnitnost: 12 tCPE

Izvajanje treh niti posamezno in pri grobozrnati večnitnosti

Primer do A4,B1,C4:

OR – 4 – Povzetki predavanj 145 © 2025 Rozman

- FRI

Ugotovitve in primerjava:
◼ Drobnozrnata večnitnost:

 lahko pri k-stopenjskem cevovodu in k-nitih cevovod deluje s polno hitrostjo brez
čakanja, ker je v vsakem trenutku v cevovodu samo po en ukaz vsake niti.

◼ Grobozrnata večnitnost:
 Pri majhnem številu niti je boljša grobozrnata večnitnost.

◼ Pri obravnavi drobno in grobozrnate večnitnosti smo predpostavljali,
da procesor izstavi samo en ukaz vsako urino periodo.

◼ Pri večizstavitvenih procesorjih z dinamičnim razvrščanjem
(superskalarni procesorji) pa je možna istočasna večnitnost.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 146 © 2025 Rozman

- FRI

4.9.3 Istočasna večnitnost

(SMT-“Simultaneous MultiThreading“, Intel: „Hyperthreading“).

Pri superskalarnih procesorjih je običajno na voljo več funkcijskih enot,
kot jih lahko izkoristi ena nit.

 Zasnova superskalarnega procesorja omogoča, da se lahko izstavlja več
ukazov, ki lahko pripadajo različnim nitim.

 Med ukazi različnih niti ne more priti do medsebojnih odvisnosti, kar
poenostavi izstavljanje ukazov.

 Ukazi vsake niti pa se morajo dovršiti posebej, zato ima vsaka nit svoj
preureditveni izravnalnik.

 Istočasna večnitnost je podobna drobnozrnati večnitnosti, vendar se niti
ne izmenjujejo v vsakem ciklu, temveč ko pride pri niti do čakanja.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 147 © 2025 Rozman

- FRI

Paralelizem na nivoju niti

Izvajanje treh niti (vsake posebej) pri 2-izstavitvenem superskalarnem procesorju

(brez istočasne večnitnosti)

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B6 B7 B8B5B4B3

C1 C2 C6 C7 C8C5C4C3

Nit A

Nit B

Nit C

Urine periode

1 12

A1 A3 A5 A6

A7

A8

A2 A4
Nit A

B1 B3 B5

B6

B7

B8B4
Nit B

C1 C3 C5

C6

C7

C8C4
Nit C

B2

C2

9 urinih period

9 urinih period

8 urinih period

3*12=36 urinih period

2*9+8=26 urinih period

OR – 4 – Povzetki predavanj 148 © 2025 Rozman

- FRI

Paralelizem na nivoju niti – Primerjava pristopov

Primerjava: večnitnost pri 2-izstavitvenem superskalarnem procesorju

3*12=36 urinih period

A1 A2 A3 A4 A5 A6 A7 A8

B1 B2 B6 B7 B8B5B4B3

C1 C2 C6 C7 C8C5C4C3

Nit A

Nit B

Nit C

Urine periode

1 12

A1 A3 A5 A6

A7

A8

A2 A4

Drobnozrnata

večnitnost

B1 B3 B5

B6

B7

B8

B4

Grobozrnata

Večnitnost I
(„preventiva“)

C1 C3 C5

C6 C7

C8

C4Istočasna

večnitnost

B1 C1

C2

C2

B2

B2 C3

C4

B3

B4

C5

C6

B5

B6

C7

C8

A1

A2

A1

A2

B1

A6

A7

C5

C6

A5A3

A4

C3

C4

C1

C2

A3

A4

A5

B2

A6

A7

A8

B3

B4

B5

B6

B7

B8

C7

C8

A8 B7

B8
14 urinih period

12 urinih period

14 urinih period

A8B1 B3 B5

B6B4

Grobozrnata

Večnitnost II
(„daljši zastoj“)

B2A1

A2

A6

A7

C5

C6

A5A3

A4

C3

C4

C1

C2

B7

B8

C7

C8

22 urinih period
c

c

OR – 4 – Povzetki predavanj 149 © 2025 Rozman

- FRI

 Ker je večina današnjih procesorjev superskalarnih, je največkrat

uporabljena istočasna večnitnost.

 Smatramo lahko, da istočasna večnitnost poveča zmogljivost

superskalarnih procesorjev.

 Niti si delijo vire v procesorju na različne načine

◼ viri so lahko fiksno razdeljeni med nitmi

◼ vire si lahko delijo po pravilu “kdor prvi pride, prvi melje”

◼ dodeljevanje virov je lahko dinamično – drugačna pravila

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 150 © 2025 Rozman

- FRI

Istočasna večnitnost ali „Hyperthreading“ na Core i7

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 151 © 2025 Rozman

- FRI

Istočasna večnitnost ali „Hyperthreading“ na Core i7

Primerjava „SMT“ vs „non-SMT“

4.9 Paralelizem na nivoju niti

Figure 3.33: The speedup from using multithreading on one core on an i7 processor

averages 1.28 for the Java benchmarks and 1.31 for the PARSEC benchmarks

Recall that anything above 1.0 for

energy efficiency indicates that the

feature reduces execution time by

more than it increases average

power.

OR – 4 – Povzetki predavanj 152 © 2025 Rozman

- FRI

Primer (kaže tudi na slabosti večnitnosti):

 Dve niti, ki za dobro delovanje potrebujeta vsaka ¾

predpomnilnika.

◼ Če se izvajata ločeno:

 delujeta dobro, z malo zgrešitvami v predpomnilniku, ki pa povzročajo

čakanje.

◼ Če tečeta istočasno:

 je pri vsaki veliko število zgrešitev v predpomnilniku in je delovanje

lahko precej slabše kot brez večnitnosti

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 153 © 2025 Rozman

- FRI

Intelovi procesorji :

◼ Intel je prvič uporabil istočasno večnitnost („hyper-

threading“) v 2-nitnem procesorju Pentium 4.

◼ Realizacija je zahtevala za 5% več tranzistorjev, po

Intelovih podatkih pa se je hitrost povečala za 15 do 30%.

(pri nekaterih programih pa tudi zmanjšala).

◼ Pri Core (Intel Core2) mikroarhitekturi je Intel večnitnost

opustil, pri mikroarhitekturi Nehalem (Intel Core iX) pa je

zopet uvedel istočasno večnitnost z dvema nitma.

4.9 Paralelizem na nivoju niti

OR – 4 – Povzetki predavanj 154 © 2025 Rozman

- FRI

Vir: https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

4.9 Pregled dosedanjega razvoja

https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png

OR – 4 – Povzetki predavanj 155 © 2025 Rozman

- FRI

Naslednji korak izkoriščanja paralelizma na nivoju ukazov so večjedrni

procesorji:

◼ procesi se izvajajo bolj ločeno

◼ si ne delijo več naprav !!!!

◼ imajo na čipu več neodvisnih CPE (jeder)

◼ niti tečejo na svojih CPE -> prava paralelnost

Večjedrnost :

◼ korist za proizvajalce :

 ceneje duplicirati

 »uporabniki naj se naučijo paralelnega programiranja«

◼ manj koristi za uporabnike:

 »raje imam CPE z IPC=4, kot pa 8-jedrni procesor«

4.9.4 Naslednji korak: večjedrni procesorji:

	Diapozitiv 1: ORGANIZACIJA RAČUNALNIKOV
	Diapozitiv 2: Namen in cilji 4. poglavja:
	Diapozitiv 3: 4. Paralelizem na nivoju ukazov
	Diapozitiv 4: Izvrševanje treh ukazov pri necevovodni in cevovodni CPE s 5 stopnjami
	Diapozitiv 5: 4.1 Zgradba cevovodne CPE – cevovodno procesiranje
	Diapozitiv 6: 4.1 Zgradba cevovodne CPE - Pojav paralelizma
	Diapozitiv 7: 4.1 Zgradba cevovodne CPE - Primer cevovoda s 5 stopnjami (FRI-SMS,HiP):
	Diapozitiv 8: 4.1 Zgradba cevovodne CPE - Primer HiP
	Diapozitiv 9: 4.1 Zgradba cevovodne CPE - Primer FRI-SMS
	Diapozitiv 10: 4.1 Zgradba cevovodne CPE – Primer ARM Cortex M7
	Diapozitiv 11: 4.1 Zgradba cevovodne CPE
	Diapozitiv 12: CPE ARM LEGv8 (RA) s podatkovno in kontrolno enoto ter kontrolnimi signali
	Diapozitiv 13: ARM V8 v Logisimu
	Diapozitiv 14: 4.1 Zgradba cevovodne CPE - Splošni 5. st. cevovod
	Diapozitiv 15: 4.1 Zgradba cevovodne CPE - izzivi
	Diapozitiv 16: 4.2 Cevovodne nevarnosti - splošno
	Diapozitiv 17: 4.2.1 Strukturne nevarnosti
	Diapozitiv 18: 4.2.2 Podatkovne (operandne) nevarnosti
	Diapozitiv 19: 4.2.2 RAW (read after write)
	Diapozitiv 20: 4.2.2 RAW (read after write) - rešitve
	Diapozitiv 21
	Diapozitiv 22
	Diapozitiv 23: Cevovodno razvrščanje
	Diapozitiv 24: 4.2.2 WAR (write after read)
	Diapozitiv 25: 4.2.2 WAW (write after write)
	Diapozitiv 26: Analiza vpliva podatkovnih nevarnosti
	Diapozitiv 27: 4.2.3 Kontrolne nevarnosti
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32: 4.2.3.1.1 Statična predikcija neizpolnjenega pogoja („branch not-taken“)
	Diapozitiv 33: 4.2.3.1 Zmanjšanje zakasnitev pri kontrolnih nevarnosti
	Diapozitiv 34: 4.2.3.1.1 Statična predikcija z zakasnjenimi skoki („delayed branch“)
	Diapozitiv 35
	Diapozitiv 36: 4.2.3.1.1 Statična predikcija z zakasnjenimi skoki („delayed branch“)
	Diapozitiv 37: Primer pohitritve kode z uporabo cevovodnega razvrščanja, zakasnjenih skokov in razpeljave zank:
	Diapozitiv 38: Primer pohitritve kode z uporabo cevovodnega razvrščanja, zakasnjenih skokov in razpeljave zank:
	Diapozitiv 39: 4.2.3.1.2 Dinamična predikcija skokov
	Diapozitiv 40: 4.2.3.1.2.1 1-bitna prediktorska tabela
	Diapozitiv 41: 4.2.3.1.2.2 2-bitna prediktorska tabela
	Diapozitiv 42
	Diapozitiv 43
	Diapozitiv 44: 4.2.3.1.2.3 Korelacijski prediktor (m,n) – 2. stopenjski adaptivni pred.
	Diapozitiv 45: 4.2.3.1.2.3 Korelacijski prediktor (m,n) – 2. stopenjski adaptivni pred.
	Diapozitiv 46
	Diapozitiv 47: 4.2.3.1.2.4 Turnirski prediktor – „hibridni“ prediktorji
	Diapozitiv 48
	Diapozitiv 49: 4.2.3.1.2.4 Turnirski prediktor – „hibridni“ prediktorji
	Diapozitiv 50
	Diapozitiv 51
	Diapozitiv 52: Nekateri novejši prediktorji
	Diapozitiv 53: 4.2.3.1.2.5 Prediktorji – trenutno stanje
	Diapozitiv 54: 4.2.3.1.2.5 Prediktorji – trenutno stanje
	Diapozitiv 55: 4.2.3.1.2.5 Prediktorji – trenutno stanje
	Diapozitiv 56: 4.2.3.1.2.5 Prediktorji – trenutno stanje
	Diapozitiv 57: 4.2.3.1.2.5 Prediktorji – pogled naprej
	Diapozitiv 58: 4.2.3.1.3 Skočni predpomnilnik
	Diapozitiv 59
	Diapozitiv 60
	Diapozitiv 61: 4.3 Izvajanje operacij, ki trajajo več urinih period
	Diapozitiv 62
	Diapozitiv 63
	Diapozitiv 64
	Diapozitiv 65: 4.4 Odpravljanje podatkovnih nevarnosti z dinamičnim razvrščanjem ukazov
	Diapozitiv 66
	Diapozitiv 67
	Diapozitiv 68
	Diapozitiv 69
	Diapozitiv 70: 4.5 Špekulativno izvrševanje ukazov
	Diapozitiv 71
	Diapozitiv 72
	Diapozitiv 73
	Diapozitiv 74
	Diapozitiv 75
	Diapozitiv 76
	Diapozitiv 77
	Diapozitiv 78
	Diapozitiv 79
	Diapozitiv 80
	Diapozitiv 82: 4.6 Večizstavitveni procesorji
	Diapozitiv 83
	Diapozitiv 84
	Diapozitiv 85: 4.6.1 Superskalarni procesorji
	Diapozitiv 86
	Diapozitiv 87
	Diapozitiv 88
	Diapozitiv 89
	Diapozitiv 90
	Diapozitiv 91: Preimenovanje registrov – osnovni pristop
	Diapozitiv 92
	Diapozitiv 94: 4.6.2 VLIW procesorji - „Very Long Instruction Word“
	Diapozitiv 95: 4.6.2 VLIW procesorji - „Very Long Instruction Word“
	Diapozitiv 96: 4.7 Primeri izvedbe cevovodov
	Diapozitiv 97: 4.7.1 HiP 5-stopenjski cevovod
	Diapozitiv 98: 4.7.1 HiP 5-stopenjski cevovod
	Diapozitiv 99: 4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)
	Diapozitiv 100: 4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)
	Diapozitiv 101: 4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)
	Diapozitiv 102: 4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)
	Diapozitiv 103: 4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)
	Diapozitiv 104: 4.7.3 ARM Cortex-A8 Cevovod (poenostavljen)
	Diapozitiv 105: 4.7.3 ARM Cortex-A8 Cevovod v celoti
	Diapozitiv 106
	Diapozitiv 107: 4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
	Diapozitiv 108: 4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
	Diapozitiv 109: 4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
	Diapozitiv 110: 4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
	Diapozitiv 111: 4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
	Diapozitiv 112: 4.7.5 Core i7 superskalarni cevovod - poenostavljen
	Diapozitiv 113: 4.7.5 Core i7 superskalarni cevovod
	Diapozitiv 114
	Diapozitiv 115: 4.7.5 Core i7 superskalarni cevovod
	Diapozitiv 116: 4.7.5 Core i7 superskalarni cevovod
	Diapozitiv 117: 4.7.5 Core i7 superskalarni cevovod
	Diapozitiv 118
	Diapozitiv 119: 4.7.5 Core i7 superskalarni cevovod
	Diapozitiv 120
	Diapozitiv 121: 4.7.5 Cortex A8, Intel i7 (4.7.4), Cortex M7
	Diapozitiv 122: 4.7.6 AMD „Zen“ mikroarhitekture
	Diapozitiv 123: 4.7.5 Zen 2 mikroarhitektura – poenostavljen model
	Diapozitiv 124: 4.7.5 Zen 3 mikroarhitektura – poenostavljen model
	Diapozitiv 125: 4.7.5 Zen 2 vs Zen 3 mikroarhitekturi – poenostavljena modela
	Diapozitiv 126: 4.7.5 Zen 4 mikroarhitektura – poenostavljen model
	Diapozitiv 127: 4.7.5 Zen 3 vs Zen 4 mikroarhitekturi – poenostavljena modela
	Diapozitiv 128: MiMo v2 - cevovodne različice
	Diapozitiv 129: 5-stopenjska cevovoda: HiP, MiMo v2
	Diapozitiv 130: 4.8 Omejitve paralelizma na nivoju ukazov
	Diapozitiv 131
	Diapozitiv 132: Primerjava Intelovih procesorjev :
	Diapozitiv 133
	Diapozitiv 134
	Diapozitiv 135: 4.9 Paralelizem na nivoju niti (večnitnost)
	Diapozitiv 136
	Diapozitiv 137
	Diapozitiv 138
	Diapozitiv 139
	Diapozitiv 140
	Diapozitiv 141
	Diapozitiv 142
	Diapozitiv 143
	Diapozitiv 144
	Diapozitiv 145
	Diapozitiv 146
	Diapozitiv 147
	Diapozitiv 148
	Diapozitiv 149
	Diapozitiv 150
	Diapozitiv 151
	Diapozitiv 152
	Diapozitiv 153
	Diapozitiv 154
	Diapozitiv 155

