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4. Paralelizem na nivoju ukazov
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4. Paralelizem na nivoju ukazov

Namen in cilji 4. poglavja:

Paralelnost poskusamo izkoristiti na vec razlicnih nivojih
Cevovod — osnovni koncept paralelizma na nivoju ukazov

Prednosti in omejitve paralelizma na nivoju ukazov oz. cevovoda
[0 oshovna ideja: veC€ vec€periodnih ukazov hkrati !
[0 + transparentnost
1 - cev. nevarnosti - medsebojna odvisnost ukazov (operandov)
1 - zaporednost razmiSljanja, algoritmov, podatk. struktur

Cevovodne nevarnosti in nacCini njihove odprave ~
Spekulativno (?!) izvajanje ukazov

Vedizstavit : kal : . Danasnji zmogljivi
ecClzstavitvenl — superskalarni procesor]jl desktop* procesorii

(npr. Intel, AMD)

Paralelnost na nivoju niti (npr. ,Hyper-Threading®) )
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4. Paralelizem na nivoju ukazov

Def: VeCina ukazov v zaporedju (programu) se lahko izvede vzporedno...

Stevilo ukazov, ki jih CPE izvede v 1 sek : MIPS = fepe | /wPS. Millon st e second.

\I/CPI 106 Je zelo RELATIVNA enota- primer:
CisC RISC
ADD (A),(B),(C) LDRR1,(A)

MIPS..Million Instr. Per Second

LDR R2,(B)

Hitrost CPE (St.ukazov/sek) je mozno povecati na dva nacina: TSI CENRY
* povecamo f ,, (hitrejSi elementi) SRR
« zmanjsamo CPI (z uporabo vecjega Stevila elementov) CISC=IMIPS  RISC=4MIPS

k Sicer cas lahko enak !!!! /

CEVOVOD: nacin realizacije CPE, pri katerem se naenkrat izvaja vec
ukazov.

Glavna prednost cevovoda (poleg pohitritve) je
» TRANSPARENTNOST:
* ni poseqov (v programe) !!!
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|zvrSevanje treh ukazov pri necevovodni in cevovodni CPE s 5 stopnjami

; , .
Necevovodna CPE St. period za 3 ukaze
tepe St.ukazov/periodo?

T10 |

T/'¢:v24M korak 1 korak2 korak3 korak4 korak5

ukaz 2

korak 1 korak2 korak3 korak4 korak5

ukaz 3

Cevovodna CPE (5 stopenj)

T T,

I'CYAMMM Korak 1  korak 2 korak 3 korak 4 korak 5

ukaz 2 korak 1 korak2 korak3 korak4 korak 5

ukaz 3 korak 1 korak2 korak3 korak4 korak5
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.1 Zgradba cevovodne CPE — cevovodno procesiranje
|ldeja cevovodnega procesiranja — Logisim primer: SUM = A x B + SUM
Necevovodna izvedba

;mZMUwUUf'ﬁ& """""" o T

In8pooooood™=tequ| - B el ={000000dNon_pipelined_Out

L CLK|O T
CGVOVanalzvedbaﬁﬂﬂﬂﬁﬂﬂﬂ]ﬁﬂﬂﬁﬂﬂﬂ] """""""""""""""""""""""

JMmeww”.jf

IN3o 00000 o of—

ﬂ]b&

Signal Name 204999 ns

CLK

D Flip-Flop(130,150)
‘@ Non_pipelined_Out[7..0]

‘@ Pipelined_Out[7..0]




4.1 Zgradba cevovodne CPE - Pojav paralelizma

2.3.5 Pojav paralelizma

—* Processor [ |
Input Output
—* Processor |— — 11/2 Output
Input
f — Processor — f

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

12

Poraba: ,,... Dve jedri porabita manj
kot eno dvakrat hitrejse ..."

Multi-Core Parallelism for Low-
Power Design

Vishwani D. Agrawal
James J. Danaher Professor
Department of Electrical and Computer Engineering
Auburn University
http://www.eng.auburn.edu/~vagrawal
vagrawal@eng.auburn.edu

https://slideplayer.com/slide/5164867/

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV?f

Ponovitev OR-2

b

Approximate Trend

n-parallel proc.

n-stage pipeline proc.

Capacitance nC C
Voltage Vin Vin
Frequency fin f
Power CVzf/n2 CV2f/n2
Chip area n times 10-20% increase

G. K. Yeap, Practical Low Power Digital VLS| Design, Boston: Kluwer
Academic Publishers, 1998.

2/8/06

Input

— Processor

D&T Seminar

22

%put Input

— — Register

Y
Proc.

A gjtput
Proc.

— Register

— Register

—h

Capacitance = C

Voltage =V

Frequency = f
Power = CV2f

Capacitance = 1.2C

Voltage = 0.6V
Frequency = f

Power = 0.432CV?f
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" S Porovtes RA
4.1 Zgradba cevovodne CPE - Primer cevovoda s 5 stopnjami (FRI-SMS,HiP):

Primer cevovoda s 5 stopnjami (FRI-SMS,HiP):

IF ID EX MA WB

Prevzem ukaza Dekodiranje ukaza Izvr$evanje Dostop do pomn.  Shranjevanije rez.

|zstavitev ukaza

Problem: dostop do pomn.!

Ukazni Operandni
predpomnilnik J-SIQBNJA L OZNAKA | PODOPERACUA L predpomnilnik

prevzem ukaza,

Sprem: PC= PC+1
dekodiranje
ukaza

dostop do
registrov
izvrSevanje

. dostop do
4. stopnja MEM p .
pomnilnika
OR - 4 — Povzetki predavanj m WB shranjevanje © 2025 Rozman - FRI
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4.1 Zgradba cevovodne CPE - Primer HiP

Primer cevovoda s 5 stopnjami (HiP):

BME R4 LOOP — — — —
Lkazm predpemnilnik Qpzrondre predpomml ik
o T HZero Prallv T T
podaikovnl naglon| + r ngg kol podatkcenl
signgli wignah | | sigreali signah
BAoB3 vt | ! Ao B
7L 32 | |
| HewP I
1 |
| I
IF /1D ID/EY | | E¥ /MEM MEM /W
— — | I —
| |
| |
| | | (I |
|
2 3 O] 3 32 o W] 32 32
s PO 1 1Ty fo | u £ v
= 1
— - I —
IR g | Fragfl o fQ 7 -'ru AR rs?
ES
Ragistri
RO—-F31
3z 32 bl
i) pegior 7 o SO —F
TioReg 37
EX gnalanka
— -1 52—- A IR Razsird g’
predmalky
3z 3 ir
L— IR 4 IR1 7 IR 4
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d.1 Zgradba cevovodne CPE _ [—

- Primer FRI-SMS ” \_"_4 |
I-cache Jetch
pc + 4
- E———
| | decode I
instruction
decode
Primer cevovoda s 5 stopnjami immediae
(FRI-SMS):
execule
B, BL
MOV pc
SUBS pc
buffer/
data
LDR pc
OR — 4 — Povzetki predavanj o



4.1 Zgradba cevovodne CPE — Primer ARM Cortex M7

Primer dvo-izstavitvenega cevovoda s 6 stopnjami (ARM Cortex M7):

ARM Cortex-M7 — Dual-issue

A

l
) PreFETCH e LOAD/STORE [l
‘ UNIT (+ FPU) UNIT :
---------------------------------- -

Execute
Update from DPU
. g , Load/Store 1
4 Prefetch Decode|| Issue (2x 32b)

. . [ Load/Store 2
. . M 5 L ALU 1 (Main)

32 bit #1 DECODE || #2 DECODEJI ALU 2
\ VAN AN

from NVIC MAC
(32b x 32b + 64b)

64-bitfinstruction per cycle ' .. . —
Code memories ;P ....
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»d CPU Model v22Pipeiined Q cont—{eon] 0

G T o T
4.1 Zgradba cevovodne CPE e T Fi m

b 00000000 s S8
= B Rd : - i ]
oo : 5 ‘ |
e [r43 00000000

& Rs
Flagse
Flegee nao [r83 oooooooo [rsr]
Rt

Primer 5 — stopenjskega cevovoda: siRon

&
Imm &

Imm & HOR
Wi [ =
& xg =
s

T D

o |- e
Imm_|D cond ® e 8| cond iy (et 126 TEQ 00000000
. 0 - s [ai] Imm_EX o - s Imm_MA o = Imm_WB (Co”s =
iMo v ¢ e
RA_ID 5 FoR RA_EX 0w R RA_MA 0=+ R RA_WB 0= bt
Rs_ID 0—+ E Rs_EX 0= 8 Rs_MA 0=+ g Rs_WB o=+ g
Rt_ID o= RTS Rt_EX 0= TS Rt_MA o0~ RIS Rt_WB 0~ aTs
R B st it ‘m

IF ID EX MA wB

B3 )
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CPE ARM LEGVS8 (RA) s podatkovno in kontrolno enoto ter kontrolnimi signali

/— ukaz za pogojni skok

skoc¢ni naslov \
h pogoj izpolnjen
4
Vrsta ALE ii -
Ukazni rsta operacije Operandni
pomnilnik Ly ] \ pomnilnik
> > naslov
> PCl—<—»{ nasiov  ukaz |-¢» | Registri T >ALE operand [—»
RO - R14 l
[ s R
7'j—>| —> operand
™ Register Write _—
Memory R/W

32-bitna povezava A~

za prenos ukaza |

Kontrolna
enota

32-bitna podatkovna
povezava

Ukazni register
kontrolni > ]

signal (ve€inoma 1 bit)

OR-4-Po2 poenostavijena razlicica ARM LEGVS (Vir: [Patt], pogl. 4) '2°Rezman-FR
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ARM V8 v Logisimu

ExEM ME

]
]

RdAddrd RdData

WL RdAddr RdDatat

Addr

FEH
LI |

MemRead
— L ey EGEE RdDat

Inst

Wraddr  RegFile
e LAUEETE]

Insiem —

DataMem
WirData

Memilirite S izet

1 RegiWrite

| 1-10 [ ]
.
I
- [ FwdUnit
F &

[
Reset@

https://github.com/mkayaalp/computer-organization-logisim
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4.1 Zgradba cevovodne CPE - Splosni 5. st. cevovod

Primer sploSnega cevovoda s 5 stopnjami (FRI-SMS,HiP):

prevzem ukaza,
Sprem: PC= PC+1 Dmb‘
dekodiranje ukaza PP
dostop do registrov

izvrSevanje

dostop do pomnilnika
shranjevanje rezultata

(7 e]
PP

NESLo PosaTe

, ﬁﬁﬂéc
J

L\ fORSLOV  popATE -

PEGISTZ(

IS

> | 3 |

B

h d
N z
‘ v v
lo al |y
o
D

c,_c,
’
|

=

E

7 IR3

LD

m] ]|

-
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4.1 Zgradba cevovodne CPE - izzivi

Problem dostopa do pomnilnika:
* N-kratno povecCanje dostopov
» 2 dostopa v enem ukazu

Problemi pri izvajanju ukazov
» Cas izvajanja ukaza se v cevovodni CPE podaljSa — vzroka:
« strojne narave
* prenos med stopnjami (vmesni registri),
» uravnotezenost (skupna perioda)
* programske narave
« cevovodne nevarnosti

OR - 4 — Povzetki predavanj 15 © 2025 Rozman - FRI
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4.2 Cevovodne nevarnosti - sploSno

JLakrat, kadar ukazi v izvajanju niso
med seboj neodvisni..."

Zmogljivost

Glede na vzrok lo¢imo:

« strukturne

« podatkovne (operandne)
 kontrolne

Stevilo stopenj N

S povecevanjem Stevila stopenj

* se povecuje Stevilo ukazov, ki se hkrati izvrstjejo (manjSata se CPI in tgpg)

* se povecuje pogostost cevovodnih nevarnosti (hkrati v cevovodu veC ukazov) in
uCinkovitost cevovoda pada (CPI se povecuje).

Cevovodne nevarnosti moramo zaznati in reSevati:
*  SW (prevajalnik):
vstavlja NOP, preureja vrstni red
+ HW (dodatna logika):
zaklenitev
na sreco tudi ucinkovitejSe reSitve za posamezne vrste nevarnosti

OR - 4 — Povzetki predavanj 16 © 2025 Rozman - FRI
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4.2 .1 Strukturne nevarnosti

Def: ,kadar veC stopenj cevovoda rabi eno enoto, ki lahko izvede le eno
podoperacijo naenkrat.”:
* registri, ALE, pomnilnik, predpomnilnik

Odpravimo :

* z bolj zmogljivim in loéenim predpomnilnikom (,,Harvardska arhitektura“)
» vecje Stevilo FE

« stopnja EX v obliki cevovoda

Zakaj bolj previdno z odpravljanjem teh nevarnosti?

« drage resSitve
« odlog¢itve pri naértovanju

Praksa pokaze, da so te nevarnosti ,,... Se najmanj Skodljive ...“

OR - 4 — Povzetki predavanj 17 © 2025 Rozman - FRI
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4.2.2 Podatkovne (operandne) nevarnosti

,Ukaz potrebuje operand, ki Se ni dostopen”

Imamo zaporedje dveh ukazov:

° Ukaz 2: addf rl,r6,xr3 Prevzem ukaza  Dekodiranje ukaza Izvr$evanje Dostop do pomn. | Shranjevanje rez.

3 skupine podatkovnih nevarnosti :
« RAW - Read After Write
« WAR - Write After Read
« WAW - Write After Write

- RAR??

OR - 4 — Povzetki predavanj 18 © 2025 Rozman - FRI
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4.2.2 Podatkovne nevarnosti

4.2.2 RAW (read after write)
RAW (read after write)

[0 Ukaz 2 bere operand preden ga ukaz 7 shrani, zato prebere napacno
vrednost.
m To je najpogostejSa vrsta podatkovne nevarnosti in jo v vecini primerov
lahko odpravimo s premosCanjem.

MA WB

R u W revzem ukaza ekodiranje ukaza § je Dostop do pomn. Shranjevanije rez.

L2: sub r3,r4,r5
add rl,ro6,r

MA WB

Dostop do pomn. Shranjevanije rez.

Ukaz add bere operand v registru r3 preden ga ukaz sub shrani, zato
prebere napacno vrednost

ResSitve :
[0 cevovodno razvrs¢anje (prevajalnik)
[1 zaklenitev cevovoda
[1 premoScCanje
OR - 4 — Povzetki predavanj 19 © 2025 Rozman - FRI
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4.2.2 Podatkovne nevarnosti

/" ~
- \
. v | Tw  $t1, 0($t0) Tw  $t1, 0($t0)
4.2.2 RAW (read after write) - reSitve | o 4(510) . '
| —— add $t3, $t1,
I - sw  $t3, 12($t0)
vy . I Tw ($t4)-8($t0) *,
* cevovodno razvrscanje (prevajainik) | BB 24 555 StL St add St5, 51, (5ed) |
sw  $t5, 16($t0) sw  $t5, 16($t0) |
" I
e zaklenitev cevovoda
WM. .o = w ws
|
: R zaklenitev b EX MA WB
|
v v " \
* premoscanje T T T T T T e T T s s == — =
o e e e e e e e o e e m  — m m m — — — m m  — — — — — — — — — — — — —
’
{ \pjgx
|
: _IF D EX
|
|
1 IF [») EX MA wB
I Prevzem ukaza  Dekodiranje ukaza IzvrSevanje Dostop do pomn.  Shranjevanje rez.
|
\\
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4 2.2 Podatkovne nevarnosti

RAW (read after write)

Primer MiMo-Pipeline (v2)

Brez detekcije vs. zaklepanje

Ni detekcije nevarnosti Zaklepanje

test1
mov r1, #3 @cycle 5
mov r2, #3 @cycle 6

nop @cycle 7
nop @cycle 8
nop @cycle 9
cmpri, r2 @cycle 10
nop @cycle 11

streq r1, #3@cycle 12

test2
mov r1, #3 @cycle 5
mov r2, #3 @cycle 6
cmp r1, r2 @cycle 10
streq r1, #3@cycle 12

OR - 4 — Povzetki predavanj
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4 2.2 Podatkovne nevarnosti

RAW (read after write) : Primer MiMo-Pipeline (v2) :

zaklepanje vs. premoscanje

(testd)
Zaklepanje PremoSc¢anje
loop: @ stall | forwarding

mov r3, #3 @ 5, 22 | 5, 17
Cldr r1, [r2] @ 6, 23 | 6, 18

addr1, r1, #1 @ 10, 27 | 8, 20 (here one mandatory stall-get the value from MA)
(add r7, r7, #1 @ 11, 28 | 9, 21

strr2, r1 @ 14, 31 | 10, 22

subsr4, r3, r1 @ 75, 32 | 11, 23

addrb, r5 #1 @ 17, 34 | 12, 24

addr7,r7, #1 @ 18, 35 | 13, 25

addr6, r1,r4 @ 19, 36 | 14, 26

Jjne loop @ 20, 37 | 15, 27

OR — 4 — Povzetki predavanj 22 © 2025 Rozman - FRI



" I Programer
Cevovodno razvrSéanje o

m Spremeni vrstni_red, da bo manj zaklenitev cevovoda
m C programska kodaza; A = B + E; C = B + F;

Tw  $t1l, 0($t0) Tw  $t1l, 0($t0)

Tw ~4(5$t0) Tw
B add Tw

sw $t3, 12($t0) add $t3,

w ($t4)-8($t0) sw  $t3,
EEg - add StS, $t1,($t4)  add $t5,

sw $t5, 16($t0) sw $t5, 16($t0)

13 cycles 11 cycles

Potrebno znanje o delovanju konkretnega cevovoda !
(npr. ARM-Cortex M7 ne kaze teh razlik v internih pomnilnikih)

OR — 4 — Povzetki predavanj 23 © 2025 Rozman - FRI



4.2.2 Podatkovne nevarnosti 4.2.2 WAR (write after read)

WAR (write after read):

O Ukaz 2 piSe v register, preden ukaz 7 prebere vsebino registra. Ukaz 1 dobi tako
novo vrednost namesto stare.

WAR

L2: mov r3, r7
lw r8, (r3)
add r3, r3, 4
P W B
ble r8§, r9, L2 oo waza  torsmeni

MA

Dostop do pomn. Shranjevanje rez.

WAR (write after read) Ukaz add piSe v register r3, preden ukaz
Iw prebere vsebino registra. Ukaz Iw dobi tako novo vrednost namesto stare

Nastopa le :
O v nekaterih izvedbah cevovodov in
O pri dinamiCnem razvrsCanjem ukazov
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4.2.2 Podatkovne nevarnosti 4.2.2 WAW (write after Write)

WAW (write after write) :

O Ukaz 2 piSe v register, preden vanj piSe ukaz 7. Vrstni red pisanja v register je
drugaCen kot v programu, zato ima register vrednost od ukaza 7 namesto od 2.

WAW

L2: mov r3,~I"7 IF ID EX
lw 18, (r3)
add r3,7r3, 4
IF ID
lw r9, (r3)

ble r8, r9, L2

MA WB

Dostop do pomn. Shranjevanje rez.

WAW (write after write) Ukaz add piSe v register, preden vanj piSe ukaz mov.

Vrstni red pisanja v register je drugacen kot v programu, zato ima register
vrednost od ukaza mov namesto od add.

Nastopa le:

O v nekaterih izvedbah cevovodov (veC pisalnih stopenj) in
O pri dinami€nem razvrS€anjem ukazov
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4.2.2 Podatkovne nevarnosti

Analiza vpliva podatkovnih nevarnosti
NERLITUNS 10 PRE&R(sPEC Q)

Lo o teenosiv > .

Loepopsy | PODATKNEN. T i
[ Spazpn LOAD(ST0R=
o (2000 SN0 PARDLARJE

> gy 95 VSEH Jed2bY g oKD
Z‘%’tg% Pupe Do WEVAPNOZ(

o hksol 3 My, = b2y -013< 00EE
CP(p = (1-DuFb)-1 rpoust. 2= {056
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4.2.3 Kontrolne nevarnosti

Kontrolne nevarnosti se pojavijo pri vseh ukazih, ki spremenijo vsebino
programskega Stevca PC drugace kot po obi¢ajnem pravilu PC«—PC+4(1).

To se dogaja pri kontrolnih ukazih:
* pogojni skoki
» brezpogojni skoki, klici, vrnitve (krajse ,,skoki‘)

Slednji so ugodnejsi, ker prej zvemo novi naslov.
Pri pogojnih zvemo kasneje in ali se sploh skok izvede!

Delovanje pogojnih skokov (ob napovedi neizpolnjenega pogoja):

» Ce je pogoj za skok izpolnjen, se v PC prenese skocni ali ciljni naslov (v
primeru na sliki naslov ukaza 5); ze nalozeni ukazi se razveljavijo,
prevzemati se zacno ukazi z novega naslova...

« Ce pogoj ni izpolnjen, se izvrsijo ukazi, ki so ze v cevovodu — Cakanja ni.

Meritev na programih (10 programov iz Spec92):
 zaradi kontrolnih nevarnosti se CPI poveca za 21.8%!
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4.2.3 Kontrolne nevarnosti

|zvajanje ukaza za pogojni skok

pogoj izpolnjen

ukaz 1 - pogojni skok na ukaz 5 00g0j i izpolnjen

ukaz 2

ﬁ%?h

ukaz 3

ukaz 4

ukaz 5 4----------___5

ukaz 6
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4.2.3 Kontrolne nevarnosti

Pogoj ni izpolnjen

ukaz 1 - pogojni skok na ukaz 5
ukaz 2 |

ukaz 3

ukaz 4

ukaz 5 <

ukaz 6
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4.2.3 Kontrolne nevarnosti

Pogoj je izpolnjen
ukaz 1 - pogojni skok na ukaz 5
ukaz 2 '
ukaz 3 u

ukaz 4

u3

ukaz 5 4—-----______J:

ukaz 6

>
s
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4 .2.3 Kontrolne nevarnosti

m NajpreprostejSa resitev te nevarnosti:

v urini periodi, ko stopnja EX spremeni PC, v predhodne stopnje
vstavimo mehurcke.

m Skocna zakasnitev: Cakanje toliko urinih period, kolikor je ?.
Primer zakasnitve pri statiCni predikciji :

urine
perode T T, T, T, Ts Tg T, Tg T,

ukaz 1 IF, ID; EX,y MA, WB,

ukaz 2 Fy W% | Fezpoment pogor
ukaz 3 )8

ukaz 5 IF; IDs EXs MA; WBs
ukaz 6 IF¢ 1Dy EXs MA; WBg
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4.2.3 Kontrolne nevarnosti

4.2.3.1.1 StatiCna predikcija neizpolnjenega pogoja (,branch not-taken®)

IF ID EX MA WB

Prevzem ukaza  Dekodiranje ukaza lzvrSevanje Dostop do pomn.  Shranjevanje rez.

m Primer ARM 9:

[0 StatiCha napoved neizpolnjenega pogoja

1 Bxx (npr. BNE):
m Pogoj xx neizpolnjen :

0 ?? tope urine
periode T, T, T, T, Ts T¢ T, Tg T,

ukaz 1 IF, 1D, EX, MA; WB,

m Pogoj xx izpolnjen :
0 ?? tope

— -
ukaz 2 IF, )%J/— fr:ZizF;%Tn?:nT:ogoj“
= B (npr. BNE): ukaz 3 DK
s Brezpogojni skok ;  4kaz> IFs 1Ds EXs MA; WB;
1?7 tcpe ukaz 6 IFs 1Dg EXs MA; WBsg
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4.2.3.1 ZmanjSanje zakasnitev pri kontrolnih nevarnosti

Pri gradnji cevovoda naredimo, da:

* Se preverjanje pogoja za skok izvaja Cim bolj na zaletku cevovoda, saj
je tako manj ukazov, ki bi jih morali zavreci

» se tudi izraCun skoCnega naslova izvaja ¢im bolj na zaCetku cevovoda

SkocCne zakasnitve pa se lahko zmanjsajo ali odpravijo tudi z
uporabo predikcije — napovedi:

* izpolnitve pogoja za skok in

« skocCnega naslova

Resitve (strojne ali strojne+programske) delimo v dve
skupini:
« statiCna predikcija:
« predpostavka neizpolnjenega pogoja (,branch not taken®)
« z zakasnjenimi skoki (,delayed branch®)
« dinamicCna predikcija (med delovanjem)
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4.2.3.1.1 StatiCna predikcija z zakasnjenimi skoki (,delayed branch®)

SkusSa prevajalnik (med prevajanjem) napovedati izid skoka:
* napoved se ne spreminja vec (,staticna”)

SkocCne reze :

« ukazi, ki sledijo skoku so v t.i. skoCnih rezah

« St. skoCnih rez je enako Stevilu stopenj cevovoda pred aktivho (EX)
stopnjo (2 pri 5 stopenjskem)

Vstavitev ukazov v skoCne reze:
« ukazi ne smejo vplivati na izid skoka
» Ce ni primernih, vstavi NOP-e
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4.2.3.1.2 Stati€na predikcija z zakasnjenimi skoki (,delayed branch®)

Primer: 2 skocCni rezi, kar ustreza nasemu primeru 5-stopenjskega cevovoda,
kjier je EX tretja stopnja:

LD
ZN SUB
ADD
SUB
BEQ
AND

R1,#100
R1, #4
R2,R4,R5
R7,R6,R5
R1,ZN
R8,R6,R5

ZN

LD

SUB
BEQ
ADD
SUB
AND

R1,#100

R1, #4

R1,2ZN pogojni skok

R2,R4,R5 skocna reza 1
R7,R6,R5 skocna reza 2
R8,R6,R5

m Ker se ukazi, ki se vstavijo v skoCne reze, vedno izvedejo, ne smejo vplivati na izid skoka.

m Ce prevajalnik v programu ne najde ukazov, ki bi jih lahko vstavil v skogne reze, ...

LD
ZN SUB
ADD
SUB
BEQ
AND

R1,#100
R1, #4

R8,R6,R5

ZN

LD

SUB
SUB
BEQ
ADD
NOP
AND

R1,#100
R1, #4

R6,R5
ZN

R2,R4 ,R5 skocna reza 1

skocna reza 2

R8,R6,R5

OR — 4 — Povzetki predavanj

35

© 2025 Rozman - FRI



"

4.2.3.1.1 Stati¢na predikcija z zakasnjenimi skoki (,delayed branch®)

Prednosti, slabosti:

+ preprosta
+ ucCinkovita pri krajSih cevovodih

- spremeni se program
- problem pri daljSih cevovodih

Meritev na programih (SPEC92):

 zaradi kontrolnih nevarnosti se CPI poveCa za 21.8%!

« HiP: ob uporabi stati€ne predikcije (zak.skoki) se CPIl poveca le Se za
8.7%!
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Primer pohitritve kode z uporabo cevovodnega razvrs€anja, zakasnjenih skokov in

razpeljave Zank Loop:||[LD FO, O(R1) ;FO - array ?lement
for (i=1 . 1<=1000: i++) ADDD |[F4, FO, F2 ;add scalar in F2
Al =x01+ s = St e
it ! s ;8 bytes (per double)
v v . BENZ |[R1, Loop ;branch R1 != zero
m Cevovodno razvrscanje
Without any scheduling Scheduled
Cycles Cycles
Loop: LD FO0, O(R1) 1 Loop: LD FO0, O(R1) |
stall 2 stall 2
ADDD F4, F0.F2 3 ADDD F4, F0, F2 3
stall i SUBI RI,RI1,#8 4
stall 5 BENZ R1,Loop 5 ;delayed branch
SD O(R1), F4 6 D $(R1), F4 6 ;altered and interchanged with
SUBI R1, R1,#8 7 ' SUBI
BENZ RI, Loop 8
stall 9
9 cleck cycles per element 6 clock cycles per element

Vir: https://web.archive.org/web/20201019124610/http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html
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https://web.archive.org/web/20201019124610/http:/web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

H Vir: https://web.archive.org/web/20201019124610/http://web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

Primer pohitritve kode z uporabo cevovodnega razvrsCanja, zakasnjenih skokov in razpeljave

zank: for (i=1;1<=1000; +4) by = 5 S
X[I] = X[I] +S; SD O(R1), F4 ;store result
v v ] n :
m Razvezava zanke + razvrs§Canje s et
BENZ |IR1, Loop :branch R1 != zero
[ Without any scheduling Scheduled
Loop: LD F0. 0(R1) 1
Loop: LD FO. 0(R1) 1 LD F6. -8(R1) 2
stall 2 1D F10.-16(R1) 3
ADDD F4.F0,F2 3 LD F14.-24(R1) 4
stall 4 ADDD F4,F0, F2 5
stall 5 ADDD F8, F6. F2 6
SD O(R1). F4 6  :drop SUBI &BNEZ ADDD F8. F6. F2 7
LD F6. -8(R1) 7 ADDD F16,F14,F2 8
stall 8 SD 0(R1), F4 9
ADDD F8.F6.F2 9 sD -8(R1).F8 10
stall 10 SD -16(R1),F12 11
stall 11 SUBI R1,R1,#32 12
SD -8(R1). F8 12 drop SUBI &BNEZ BENZ R1, Loop 13
LD F10.-16(R1) 13 SD 8(R1).F16 14 :8-32=24
stall 14
ADDD FI12F10.F2 15
stall 16
stall 17
SD -16(R1). F12 18 :drop SUBI &BNEZ
LD F14.-24(R1) 19
stall 20
ADDD Fl6F14.F2 21
stall 22
stall 23
SD -24(R1).F16 24
SUBI RI1.R1.#32 25
BENZ RI. Loop 26
stall A
27 clock eyeles per iteration: 14 clock cyeles per iteration:
27/4 = 6.8 clock cycles per element 14/4 = 3.5 clock cycles per element



https://web.archive.org/web/20201019124610/http:/web.cs.iastate.edu/~prabhu/Tutorial/PIPELINE/loopUnrolling.html

"
4.2.3.1.2 DinamiCna predikcija skokov

Napoved se spreminja med delovanjem
« uporabi se informacija o delovanju skoka do seda;

Uporablja se vecC vrst dinamiCne predikcije:

« 1-bitna prediktorska tabela:
* (branch prediction (history) table, prediction buffer)

« 2-bitna prediktorska tabela
» korelacijski prediktor

« turnirski prediktor
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.._ Primer: 1-bitna prediktorska tabela s 6-biti naslova

1
4.2.3.1.2.1 1-bitna prediktorska tabela 9x4000003c: BEQZ R2,/abel
- najenostavnej$a oblika =P Predictor
* 1-bitni pomnilnik : 111100 e
* naslov: = i
« spodniji biti naslovov skoCnih ukazov (nepopolni naslov)
e vsebina:

» izid zadnjega skoka s tem naslovom (1..izpolnjen, 0..neizpolnjen pogoj)

Delovanje:
 prevzem ukaza v skladu s prediktorskim bitom
« Ce napoved napacna:

« se prevzeti ukazi zavrzejo

» prediktorski bit invertira 1 bit prediction table
Zanka: L
« dve obvezni zgresitvi: na zacetku in koncu h——[ L —

b
[ee—"1, B —

« zato boljSa vecCbitna tabela
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" N
4.2.3.1.2.2 2-bitna prediktorska tabela i

A RAM 8 x 2

4|—L ofooo0o000 |
2- bitna prediktorska tabela: [should_predict— Hur se)]
. . v . CLK L '
. naj_enpstavn_ejs_a oblika oo bt apame— | of~—{Mse
e 2-bitni pomnilnik :

* naslov:

« spodniji biti naslovov skoCnih ukazov (nepopolni naslov)
* vsebina je lahko 0-3:

« 2-3: napoved izpolnjenega pogoja

* 0-1: napoved neizpolnjenega pogoja

Delovanje:
* prevzem ukaza v skladu s predikcijo
* Ce pogoj izpolnjen, se vrednost poveca za 1 (maks.vr. 3)

» Ce pogoj ni izpolnjen, se vrednost zmanjSa za 1 (min.vr. 0)

Meritev na programih (SPEC92):
» 2-bitna tabela s 4096 naslovi: 7% napacnih napovedi

OR - 4 — Povzetki predavanj 41 © 2025 Rozman - FRI



" N

Predikcija skoka

Prehajanje stanj pri 2-bitnem prediktorju

Pogoj je bil
izpolnjen

Pogoj ni bil
Pogoj bo izpolnjen Pogoj bo
Izpolnjen |zpolnjen
0 Pogoj je bil -
izpolnjen o
e Pogoj DI Pogojjebil
izpolnjen izpolnjen
Pogoj ni bil
izpolnjen
Pogoj ne
bo izpolnjen
00 Pogoj je bil
izpolnjen

Pogoj ni bil
izpolnjen
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" J
Predikcija skoka

Primerjava MiMo-Pip (v2) : 1-bitna vs. 2-bitna tabela (test1)

@this is a revised example showing the efficiency of a 2-bit predictor over a 1-bit predictor
/* b=1
while (true){
ifla % 2 == 0){jump1} TNTNTNTNTNT
at+}
a =>r0, r1 => used for counting jump1 calls*/

text
loop: ; . L
i) 1), using 1-bit predlctor.. .
no predictions are correct
cmp r0, #0 : . .
00 iump1 using 2-bit predictor:
J j o{ 0 P 0. #1 50% of predictions are correct because it starts in state 00
aaa rv, v, (Strong Not Taken)
J loop
Jjump1:
add ro, ro, #1
addr1, r1, #1
J loop test1-1bit_vs_2bit.txt
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2- stopenjski prediktor]ji

4.2.3.1.2.3 Korelacijski prediktor (m,n) — 2. stopenjski adaptivni pred.

Korelacijski prediktor (m,n) uporabi:
« informacijo o (lokalnem) sko€nem ukazu
° n_bltna predlktorska tabela spodnji naslovni biti skoénega ukaza

« informacijo o globalnem obnasanju T ‘
Zadnjlh m-SkOénlh ukazov itiri 2—bitne prediktorske tabele
0 1 2 3
TipiCni korelacijski prediktor (2,2): w=)
§tiri (22) 2-bitne prediktorske tabele XX XX ({poras: za napoved)

0,1,2,3

* glede na izpolnjenost pogoja zadnijih
dveh skokov se uporabi razliCna
napoved (ena izmed tabel 0,1,2,3). | | ! |

Delovanje: \

* prevzem ukaza v skladu s predikcijo (0] 1]

» v izbrani 2-bitni tabeli: 2-bitna glebaina zgodovina
Ce pogoj izpolnjen, se vrednost poveca za 1 (maks.vrednost 3)
Ce pogoj ni izpolnjen, se vrednost zmanjSa za 1 (min.vrednost 0)

Meritev na programih (SPEC92):
* (0,2) : 2-bitna tabela s 4096 naslovi: 7% napacnih napovedi
* (2,2): 4x 2-bitna tabela s 1024 naslovi: 4.3% napacnih napovedi
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2- stopenjski prediktor]ji

4.2.3.1.2.3 Korelacijski prediktor (m,n) — 2. stopenjski adaptivni pred.

Primerjava na skupini programov

1% B 4096 entries:
NASA7 (1)0;" 2 bits per entry
0
b 0% B Unlimited entries:
matrix300 0% 2 bits per entry
i 0% O 1024 entries:
™ 1% (2.2)
tomcatv 0%
| 1%

5%

doduc

spice

feppp

SPEC89 benchmarks

gcc

espresso

18%

eqntott 18%

10%
10%

5%
0% 2% 4% 6% 8% 10% 12% 14% 16% 18%
Frequency of mispredictions

Figure 3.3 Comparison of 2-bit predictors. A noncarrelating predictor for 4096 bits is first, followed by a noncor-
relating 2-bit predictor with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024
entries. Although these data are for an older version of SPEC, data for more recent SPEC benchmarks would show

similar differences in accuracy.
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Predikcija skoka

Primerjava MiMo-Pip (v2) : 2-bitna tabela, LHT, Korelacijski prediktor

text

loop:

rem r0, r0, #2

cmp r0, #0

Jjeq jump1 @2nd instruction

afterjump1:

add ro, r0, #1

addrb, r5, #1

addrb, r5, #1

addrb, r5, #1

addrb, r5, #1

addrb, r5, #1

cmp ri, #1

Jjeq jump2 @ 10th instruction, same last 3 bits as
Jjump1

add r4, r4, #1

remr2, r2, #2

cmp r2, #0

Jjeq jump3 @another jump, independant to the last 2

afterjump3:
addr2, r2, #1
J loop

Jjump1:
add r3, r3, #1
| afterjump1

jump?2:
mov r7, #15

Jump3:
addré, ré6, #1
J afterjump3 test4_correlating 2by2.txt

2-bit predictor: 34/100 predictions incorrect
LHT predictor: 18/100 incorrect

Correlating 2by?2: '4/100 incorrect

Tournament predictor: 19/100 incorrect
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- Hibridni prediktoriji

4.2.3.1.2.4 Turnirski prediktor — ,hibridni“ prediktor;ji

napacne
napovedi

» veC prediktorjev (tabel) in -
» za vsak skoé€ni ukaz ugotavlja, kateri prediktor (tabela) ‘“’"j""'
daje boljSi rezultat. ]

{0,2) .
Turnirski prediktor uporablja: Q%ﬂ

welilost

30 kbit

Turnirski prediktor sestavljajo trije deli:

» globalni prediktor (podoben korelacijskemu prediktorju)

* lokalni prediktor

» selektor (izbere napoved globalnega ali lokalnega
prediktorja)

Ko se ugotovi resnicna izpolnjenost skoCnega pogoja:
* Se po potrebi osvezi vsebina obeh prediktorjev
e Se osvezi vsebina selektorja samo, Ce sta razlicho

napovedala. _
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Primerjava enostavnejsin pre

napacne
napovedi .
F ___,/ {0.2}
8% ‘f (2.2)
?CVO ...................................... S 4
Local 2-bit predictors ™ turnirski
6% = | _
Scyo ............................................................................................................................................................... ‘ ue”kost
30 kbit

4%

|
Correlating predictors
30/0 .............................................................................................................................................................

Tournament predictors-

Conditional branch misprediction rate

1%— ................................................................................................................................................................

0% L I 1 I 1 T 1 T L] I I I I L] T 1
0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
Total predictor size

Figure 3.6 The misprediction rate for three different predictors on SPEC89 versus the size of the predictor in
kilobits. The predictors are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of
global and local information at each point in the graph, and a tournament predictor. Although these data are
for an older version of SPEC, data for more recent SPEC benchmarks show similar behavior, perhaps converging
to the asymptotic limit at slightly larger predictor sizes.
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- Hibridni prediktoriji

4.2.3.1.2.4 Turnirski prediktor — ,hibridni“ prediktor;ji

Branch history Branch address

Global predictors Selector Local predictors
Y
=m
u — Prediction
X

Figure 3.5 A tournament predictor using the branch address to index a set of 2-bit selection counters, which
choose between a local and a global predictor. In this case, the index to the selector table is the current branch
address. The two tables are also 2-bit predictors that are indexed by the global history and branch address, respec-
tively. The selector acts like a 2-bit predictor, changing the preferred predictor for a branch address when two mis-
predicts occur in a row. The number of bits of the branch address used to index the selector table and the local
predictor table is equal to the length of the global branch history used to index the global prediction table. Note that
misprediction is a bit tricky because we need to change both the selector table and either the global or local predictor.
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Predikcija skoka

Primerjava MiMo-Pip (v2) : 2-bitna tabela, LHT, korelac., turnirski prediktor

text

loop:
add ro, ro, #1
rems r2, rO, #8
Jjne jump1
afterjump1:
remr2, r0, #8
cmp r2, #2
Jjne jump2
afterjump?2:
remr2, r0, #8
cmp r2, #4
Jjne jump3
afterjump3:
remr2, r0, #8
cmp r2, #6
Jjne jump4
J loop

Jjump1:
add rb, r5, #1
J afterjump1

Jjump2:
add ré, r6, #1
| afterjump?2

Jump3:
addr7, r7, #1
J afterjump3

Jjump4:
addr4, r4, #1
Jloop

test5 tournament.txt

2-bit predictor: 22/112 predictions incorrect
LHT predictor: 27/112 incorrect

Correlating 2by2: 39/112 incorrect
Tournament predictor: 28/112 incorrect
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Predikcija skoka

Primerjava MiMo-Pip (v2) : Bubble sort - vsi prediktorji (test 6)

@ Bubble sort algorithm sort_inner:
.data cmp r1, #0 @ Check if inner loop is done
.word 10 @array size beq sort outer dec @ Exit inner loop if r1 ==
.word 42, 17, 88, 23, 54, 75, 12, 67, 31, 99 @array
Idrr3, [r2] @ Load array]j]
text Idrr4, [r2, #1] @ Load array[j+1]
Idr rO, #0 @ r0 ->size and cmp r3, r4 @ Compare arraylj] and array[j+1]
outer loop counter ble sort_inner next @ Skip if arrayfjJ<=array[j+1]
sub ro, r0, #1 @ size = size - 1 strrd, [r2] @ Swap arrayfj] and
array[j+1]
sort_outer: strr3, [r2, #1]
cmp r0, #0 @ Check if outer loop is test6-bubble_sort.txt
done
beq sort_done @ Exit if size == /I;Ir%,gg% 22 .{ncorrect. Number of cycles:
mov r1, rO @ r1 inner loop counter Zobl'; re5dziction: o ';Obl; 4 eéigtion: 605
, -bit: -bit:
mov r2, #1 @ r2 points to array 2-bit- 32 2-bit: 600
correlating LHT: 37 correlating LHT: 605
correlating 2 by 2: 24 correlating 2 by 2: 592
tournament: 80 tournament: 598
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Nekateri novejsi prediktorji
,LOop counter®:

« Steje in doloCa periodo ponovitev zanke
« obicCajno del hibridnega prediktorja

Vrnitveni prediktor:
* Povratni naslovi znani - > preprost sklad

Nevronske mreze (MLP)
« AMD Ryzen, Exynos

G-Share (korelacijski)

TAGE (hibridni)
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4.2.3.1.2.5 Prediktorji — trenutno stanje e
. 10-bit shift register %
Aktualni: :2:3:.';°;".;:;12;Lm :
10 10 < %
13 - L] - c Z P 4
« ,gshare” prediktor (korelacijski) g e / S
g —e— bimodal predictor %
H H (13 113 -bil i i
« kombinira ,lokalno“ in ,globalno " e dlosal preste
j —A— gshare predictor
75 T T T T T \
1 10 100 1000 10000 100000 1000000
Predictor Size (bytes)
FIGURE 5. Branch prediction accuracy in function of predictor size for bimodal, global history, local history, and gshare
prediction scheme.
Prediction
Figure 3.4 A gshare predictor with 1024 entries, each being a standard 2-bit predictor.
® TAG E p red I kto r ( rl d n I ) pc  h[0:L(1)] pc  h[0:L(2)] pc  h[0:L(3)] pc  h[0:L(4)]
|
« vecC dolzin zgodovine - o N L
P(0) P(2) P(3) P(4)
| | | i
g pred i tag pred i tag pred i tag pred i tag
a 1 i i i
2 : | | |
@ i i i i
21}
» Perceptron

History Register 0x004 if (x) { ... }

Table Of OxOFF if (y) { ... }

Perceptrons

0xBFO if (x && !y} { ... }

Prediction

WoW,W,W,,W,| 4

Figure 3.7 A five-component tagged hybrid predictor has five separate prediction tables, indexed by a hash of
the branch address and a segment of recent branch history of length 0-4 labeled “h” in this figure. The hash can
history size be as simple as an exclusive-OR, as in gshare. Each predictor is a 2-bit (or possibly 3-bit) predictor. The tags are
/history {input) typically 4-8 bits. The chosen prediction is the one with the longest history where the tags also match.

n / ‘whts (perceptron)

Taken/Not Taken = W Z XiW,
i=1

bias weight (indepen. of history)
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2.3.1.2.5 Prediktorji — trenutno stanje
|zhodiSca:

Malo informacij o podrobnostih
Do sedaj ,gshare” prediktor

Trenutno najverjetneje TAGE prediktorji ali druge hibridne kombinacije

AMD: hibridni (Zen 2)

» Perceptron (hiter) + TAGE (boljSa napoved)

» Perceptron hitro napove, TAGE kasneje preveri

| B TAGE [ gshare |

Misses per one thousand instructions

SPECfp SPECint MultiMedia

Server

Figure 3.8 A comparison of the misprediction rate (measured as mispredicts per 1000 instructions executed) for
tagged hybrid versus gshare. Both predictors use the same total number of bits, although tagged hybrid uses some
of that storage for tags, while gshare contains no tags. The benchmarks consist of traces from SPECfp and SPECint, a

series of multimedia and server benchmarks. The latter two behave more like SPECint.
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4.2.3.1.2.5 Prediktorji — trenutno stanje

3.13 Branch prediction in AMD Zen

Branch prediction in Zen is based on perceptrons. My tests show that loops with a repeat
count of up to 12 are predicted very well in Zen 1 and 2. Zen 3 and 4 can predict loops with
a count of up to 64. Loops with higher repeat counts usually have one misprediction after
the last iteration. Nested loops and branches inside loops are predicted well. Repetitive
patterns are predicted very well, with no apparent limit to the length of the period. Multiway
branches in the form of indirect jumps or calls are also predicted, though not as efficiently as
conditional jumps.

The Zen 2 has three levels of branch target buffer (BTB). The three levels of BTB have 16,
512, and 7168 entries, respectively, with a latency of 0, 1, and 4 clock cycles, respectively.

The Zen 3 has a level-1 BTB with 1024 entries and a level-2 BTB with 6656 entries. It has

an additional predictor for indirect jumps with 1536 entries. The Zen 4 has a level-1 BTB
with 2*1536 entries and a level-2 BTB with 2*7168 entries.

The average misprediction penalty was measured to approximately 18 clock cycles for Zen
1-3. The misprediction penalty varies from 15 - 18 in Zen 4.

The return stack buffer has 32 entries.

3.
The microarchitecture of Intel, AMD, and
VIA CPUs

An optimization guide for assembly programmers and
compiler makers

By Agner Fog. Technical University of Denmark.
Copyright © 1996 - 2023. Last updated 2023-05-26.

3.8 Branch prediction in Intel Haswell, Broadwell, Skylake, and other Lakes

The branch predictor appears to have been redesigned in the Haswell and later Intel
processors, but the design is undocumented.

Reverse engineering has revealed that the branch prediction is using several tables of local
and global histories of taken branches [Yavarzadeh, 2023].

These observations may indicate that there are two branch prediction methods: a fast
method tied to the pop cache and the instruction cache, and a slower method using a
branch target buffer.

BTB organization
The organization of the branch target buffer is unknown. It appears to be reasonably big.

Misprediction penalty
The branch misprediction penalty varies a lot. It was measured to 15 - 20 clock cycles.

Prediction of function returns

The return stack buffer has 16 entries for near returns in Haswell, Broadwell, and Skylake,
and 22 in lce Lake and Tiger Lake.
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4.2.3.1.2.5 Prediktorji — trenutno stanje

Predictors

BTB

Gshare

Squash

TAGE

6.375 Complex Digital Systems
Francis Wang, Shana Mathew

Multi-tiered branch predictor for pipelined processors

Some modern processors employ a tiered strategy to branch prediction. There is a
hierarchy of prediction structures where each predictor is slower, larger, and more
accurate than the last. Closest to the fetch stage is the Branch Target Buffer (BTB). The
BTB is very tightly coupled to the fetch stage and it predicts the next address before the
instruction is even fetched from memory. When an instruction is identified as a branch,
the first level branch predictor kicks in and redirects the instruction flow if it believes the
BTB to bein error. As the instruction goes through the pipeline, more sophisticated branch
predictors are consulted and the instruction flow is redirected as is appropriate. These
branch predictors may take several cycles to compute their results but make use of longer
history records or are specialized to recognize certain program behavior such as loops or
function returns. The combination of small and fast predictors and large and slow

predictors allow designers to strike a good compromise between latency and accuracy.

Train

Squash

Figure 1. Pipeline diagram with predictors
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3.

" A
The microarchitecture of Intel, AMD, and

4.2.3.1.2.5 Prediktorji — pogled naprej VIA CPUs

An optimization guide for assembly programmers and
compiler makers

By Agner Fog. Technical University of Denmark.
Copyright © 1996 - 2023. Last updated 2023-05-26.

Potenciali: - _
https://www.agner.org/optimize/microarchitecture.pdf

* izpopolnitev hibridnih prediktorjev ?
. . History Register x WO D
 izvedba obeh vej ? 1 [Mlollmln )
Table Of OxOFF if (y) { ... }
« perceptroni —AMD ? AL CACA LA Perceptrons °"T° D
« ,context switch® WoW, W, W, W, ..(fish_j

* tudi prediktorji ? 8

history size
history {(input)

n / ‘ﬂ;hts {perceptron)

Taken/Not Taken = W Z XiW;

3.13 Branch prediction in AMD Zen i=1
Branch prediction in Zen is based on perceptrons. My tests show that loops with a repeat
count of up to 12 are predicted very well in Zen 1 and 2. Zen 3 and 4 can predict loops with bias weight (indepen. of history)

a count of up to 64. Loops with higher repeat counts usually have one misprediction after
the last iteration. Nested loops and branches inside loops are predicted well. Repetitive
patterns are predicted very well, with no apparent limit to the length of the period. Multiway
branches in the form of indirect jumps or calls are also predicted, though not as efficiently as
conditional jumps.
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4.2.3.1.3 Skocni predpomnilnik

Za napoved skoka poleg napovedi pogoja rabimo Se napoved

skoCnega naslova (sicer Se vedno skoCna zakasnitev):

« potrebujemo skoCne naslove zadnjih nekaj skokov, kjer je bil
pogoj za skok izpolnjen

« to je vsebina skoCnega predpomnilnika.

V stopnji prevzema ukaza se hkrati zgodi:

 prevzem ukaza in

» dostop do skoCnega predpomnilnika:
« Ce zadetek, se prebere skocni naslov in prenese v PC.
« Ce zgresitev, predpostavimo neizpolnjen pogoj
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4.2.3.1.3 Skocni predpomnilnik

Skocni predpomnilnik

PC

Naslov skoCnega ukaza

Prediktorski
Naslovi sko¢nih ukazov Napovedani skoCni naslov biti
0 |
1 |
2
3
4
n -1
/v\ Da — uporabi se skoCni naslov
Ne — predpostavimo l v l
neizpolnjen pogoj PC
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4.2.3.1.3 Skocni predpomnilnik

Ce sta napoved izida skoka ali sko¢ni naslov napaéna, se mora
ukaze, ki so bili v cevovodu, zavrecCi (zamenjati z mehurcki)

Pri danasnjih superskalarnih racunalnikih, ki lahko istoCasno

prevzamejo veC ukazov, je namesto prve stopnje cevovoda (IF) enota
za prevzem ukazov.

Enota za prevzem ukazov

Skocni
prediktor

Ukazni predpomnilnik 32 KB

Prevzem ukazov pri procesorjih Intel Core
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4.3 lzvajanje operacij, ki trajajo vec urinih period

m Zakaj vec urinih period?
11 Ce bi pri kompleksnih operacijah kot so npr. celosteviléno mnozenje in deljenje ter
operacije v plavajocCi vejici, zahtevali, da se izvrsijo v eni urini periodi, bi

m morala biti urina perioda zelo dolga (nizka frekvenca ure) ali
m morali uporabiti zelo obsezno in kompleksno logiCno vezje.

m Noben od teh nacinov ni dober, raCunalniki se gradijo tako, da se:
1 vecina ukazov izvrsi v eni urini periodi,
1 pri kompleksnih operacijah pa traja izvajanje ukaza vecC urinih
period:

» Ce tak ukaz za pride v stopnjo EX, bi se moral cevovod ustaviti in akati
toliko urinih period, kolikor bi trajalo izvajanje v enoti EX

m Zato: veC stopenj EX ~ funkcijskih enot (FE)
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4.3 lzvajanje operacij, ki trajajo ve€ urinih period

Primer: petstopenjski cevovod s Stirimi dodatnimi funkcijskimi enotami,
Ki izvajajo operacije, ki trajajo razlicno Stevilo urinih period.

m Primer: IzvrSevanje v prvi funkcijski enoti (ALE1) traja eno urino
periodo, v vseh ostalih pa vec urinih period.

=\
=

Vecperiodne FE:
* povzrocCajo strukturne nevarnosti
» vel podatkovnih nevarnosti
* vec€ ukazov hkrati v MA,WB

* (vrstni red!)
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4.3 Izvajanje operacij, ki trajajo ve¢ urinih period

ResSitev: cevovodna realizacija (N ciklov = N stopenj)

+ odpravi strukturne nevarnosti

- ostanejo podatkovne nevarnosti (ni premoscanja med FE, veC ukazov -> veC€ nevarn.)
- veC ukazov v MA, WB (lahko drugacni vrstni red — WAW, WAR

o HEHEE
amegds

Resitev za boljso izkorisCenost FE enot -> dinamiCno razvrsCanje ukazov
OR — 4 — Povzetki predavanj 63 © 2025 Rozman - FRI
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4.3 |zvajanje operacij, ki trajajo ve€ urinih period

Problemi cevovodne realizacije FE:

m veC ukazov hkrati v stopnjah MA in WB:
0 v isti urini periodi lahko v stopnjo MA pride veC ukazov
[0 je treba vec rezultatov shraniti v registre v stopnji WB.
0 v stopnjo WB rezultati prihajajo tudi v drugacnem vrstnem redu kot v programu.

m podatkovne nevarnosti :
0 v obdelavi je ve€ ukazov hkrati -> ve€ podatkovnih nevarnosti

[0 premosc¢anje pri podatkovnih nevarnostih tipa RAW iz notranjosti cevovodne funkcijske enote
ni Mozno.

m vsiti problemi prinesejo dodatne Cakalne periode, tako da so lahko nekatere
funkcijske enote nekaj Casa neizkorisCene:

00 Npr: zaporedje ukazov povzroci 10 ¢akalnih period (skupaj se izvaja 18 period):

Urina perioda
Ukaz =2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

FLD F4,0(R2) IF ID EX MEM WB

FMUL FO,F4,F6 IF 1D © M1 M2 M3 M4 M5 M6 M7 MEM WB
FADD F2,FO,F8 IE & (@ B O e DO i Ok A A2 A3 A4 MEM WB
FST O(R2),F2 IF G DL e alD Blan@in @ @ MEM
m reSitev kako ¢im bolj zaposliti funkcijske enote je v dinami¢nem razvrS€anju
ukazowv.
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4.4 Odpravljanje podatkovnih nevarnosti z
dinamicnim razvrsCanjem ukazov

m DinamiCno razvrscanje: nacin delovanja CPE, pri
katerem se strojno spremeni vrstni red izvrSevanja
ukazov, da bi se zmanjsalo Stevilo cakalninh urinih period.

m Pri naslednjem zaporedju ukazov mora ukaz IDIV Cakati, dokler se
ne razresi podatkovna nevarnost prejsnjih dveh ukazov:

IMUL 23, R4 R2¢R3*R4

ADD R6¢«R2+R5 RAW
IDIV R7,R8,R5 R7<R8/R5

OR — 4 — Povzetki predavanj 65 © 2025 Rozman - FRI



" N

4.4 Dinami¢no razvrs€anje ukazov

Realizacija:
m |D - stopnjo za dekodiranje ukazov je potrebno razdeliti v dve
stopnii:
[ izstavljanje : (,in-order®)

m ta stopnja dekodira ukaz
m ugotavlja strukturne nevarnosti

[0 branje operandov: (,out-of-order”)
m tu se preverjajo podatkovne nevarnosti
m operandi se berejo ko ni podatkovne nevarnosti, sicer Cakanje

m EX - izvrsevanje ukazov (,out-of-order®)
s (MEM,WB) shranitev rezultatov v registre ali pomn. (,in-order)
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4.4 Dinami¢no razvrs€anje ukazov — Tomasulov algoritem

Ohrani
odvisnosti

|zstavljanje ukazov v Enota za prevzem ukazov
nespremenjenem in dekodiranje

vrstnem redu

Rezervacijske Rezervacijske Rezervacijske Ukazi/ opera ndi
postaje postaje postaje za izvrsitev

Rezervacijske
postaje

Izvr§evanje
ukazov v . g
drugaénem  [Hstine Funkcijska Funkcijska Funkcijska Rezultati vsem
vrsthem enota enota enota enota . kaJOéIm
redu :
RPjem
Shranjevanje

rezultatovv Enota za potrjevanje
prvotnem, nespremenjenem in zapis rezultatov

vrstnem redu Priskrbi operande

za izstavljene
Poskrbi za ukaze
pravi vrstni red 67 © 2025 Rozman - FRI




4.4 Dinami¢no razvrs¢éanje ukazov — Tomasu

4.4 Dinami¢no razvrs€anje ukazov

Tomasulo algorithm simulator (protoype)

This simulates Tomasulo's algorithm for a floating-point MIPS-like instruction pipeline, demonstrating out-of-order execution. The source is on
GitHub.

Click instructions on the right to issue and execute them. Instructions will only execute if all of their data dependencies have been resolved, but
they may issue in any order (though at least issuing them in order is recommended). Currently, loads have two-step execution and still require a
writeback cycle. Regs[x] is the value at location x from the register file.

Color codes are as follows: destination source occupied source occupied destination.

Reservation stations Instruction Status

Name Busy op Vi vk Qj Qk A Result Instruction Issue Execute Write result
Load®e true L.D Regs[R2] L.D F6,32(R2) true

Load1l true L.D Regs[R3] L.D F2,44(R3) true

Adde true ADD.D Regs[F8] ’\ MUL.D FO,F2,F4 true

Add1 true SUB.D Load1l Loade ADD.D F1@,F12,F8 true

Add2 true ADD.D Add1 Loadl SUB.D F8,F2,F6 true

Multe true MUL.D Regs[F4] Loadl DIV.D Fl@,F@,F6 true

Multl true DIV.D Multe L\) Loade ADD.D F6,F8,F2 true

Storee true 5.D Add2 Regs[R2] + 32 S.D F6,32(R2) true

Storel false

Spletna demonstracija:
m http://nathantypanski.github.io/tomasulo-simulator/
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4.4 Dinami¢no razvrs€anje ukazov

Slabosti dinami€nega razvrs€anja ukazov:

m Se povecajo tezave pri kontrolnih nevarnostih:

1 veC ukazov v urini periodi :
m Vv primeru napacne predikcije -> tezko povemo, katere je potrebno razveljaviti

1 reSitev: Cakanje do izida skoka in s tem naslednjega ukaza

Cimmanj teh éakanj do izida skokov ->
resitev: Spekulativno izvajanje ukazowv....
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4.5 Spekulativno izvréevanje ukazov

Spekulacija: nadin izvajanja ukazov, ki dovoljuje prevajalniku ali
procesorju, da ugiba o lastnostih ukaza in s tem omogoci pogojno
izvajanje ukazov, ki so odvisni od ukaza o katerem se Spekulira.

Primera:

m Spekuliranje o izidu sko&nega ukaza, tako da se ukazi za skokom
lahko prej izvedejo.

m Spekulacija je lahko tudi predvidevanje, da STORE in LOAD ukaz ne
dostopata do iste lokacije in lahko zamenjamo vrstni red njunega
izvajanja.
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4.5 Spekulativno izvr$evanje ukazov

Tezava pri Spekulativnem izvrSevanju ukazov:
m Spekulacija (spekulacija ~ ,manj zanesljiva napoved®) je pogosto
hapacna.

. i .o . nadaljuj kljub
Potreben mehanizem, ki vkljucuje: nerazre$enim odvisnostim

1 nacin za preverjanje, ali je bila
predpostavka pravilna.

1 nacin za izniCenje vsega, kar so

naredili napa¢no napovedani in Napoved prava : Napoved NI prava :
. . . zavrzi stare vrednosti, zavrzi nove vrednosti,
izvedeni ukazi. uveljavi nove vrednosti uveljavi stare vrednosti

m Spekulativno izvrdevanje lahko izvaja prevajalnik (programsko - SW)
in/ali procesor (strojno - HW).
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4.5 Spekulativno izvr$evanje ukazov

Procesor s Spekulativnim izvrSevanjem ukazov obiCajno izvaja
kombinacijo omenjenih pristopov:

Dinamicno predikcijo skokov, pri kateri se kljub skokom izberejo ukazi, ki
gredo v izstavljanje.

Dinami¢no razvr$€anje ukazov.

Spekulativno izvr§evanje ukazov brez predhodnega ¢akanja na
preverjanje pravilnosti skoCne predikcije in z moznostjo izniCenja vpliva
napacno izvrsenih ukazov pri napacni napovedi.

Da se prepreci vpliv izvrSenih ukazov na stanje programsko dostopnih
registrov dokler ni potrjena pravilnost napovedi skoka, se uporablja

preureditveni izravnalnik — PI (,,ReOrder Buffer” - ROB)
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4.5 Spekulativno izvréevanje ukazov ROBS5

F4 nastane v

Preureditveni izravnalnik (ROB):

ponor

ukaz-vrsta - veljavnost
Done?

h__

ROB5

ST 0(R3),F4

FO

\.|ADDD FO/¥4,F6

F4

YLD F4, 0 (R3)

BNE F2,<.>

F2

DIVD F2,F10,F6

FF10

ADDD F10,F4,F0

FO

m FIFO vmesnik, ki vsebuje ukaze (operande in rezultate), dokler niso

dovrseni (potrjena pravilnost Spekulacije)

m loCi ,novo” in ,staro” stanje

m Kkoraki, ki so potrebni pri Spekulativnem izvrSevanju ukazov:

LD FO,10 (R2)

2|l2|2|2|12|2

|zstavljanje, Branje operandov, lzvrSevanje, Zapis rezultata, Dovrsitev
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4.5 Spekulativno izvr$evanje ukazov

Cakalna vrsta ukazov

Ukazno vodilo UV

Skupno podatkovno vodilo SPV

/

/

Rezervacijske Rezervacijske
postaje postaje

Funkcijska Funkcijska
enota enota

Rezervacijske
postaje

Funkcijska
enota

Rezervacijske
postaje

Funkcijska
enota

Operandno vodilo OV

Preureditveni izravnalnik

Programsko dostopni registri

aRwbd =

Izstavljanje
Branje operandov
IzvrS§evanje

Zapis rezultata
Dovrsitev
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4.5 Spekulativno izvr$evanje ukazov — primerjava z dinamiénim razvr§éanjem ukazov

4.4 Dinamicno razvrs€anje ukazov — Tomasulov algoritem

Izstavljanje ukazov v
nespremenjenem
vrstnem redu

Enota za prevzem ukazov
in dekodiranje

Rezervacijske
postaje

Rezervacijske Rezervacijske

postaje postaje

Funkcijska
enota enota

Rezervacijske
postaje

Enota za potrjevanje
in zapis rezultatov

lzvrievanje
ukazov v _ )
drugacnem Funkcijska Funkcijska
vrstnem enota
redu
P
Il Shranjevanje
1 rezultatov v
1 prvotnem, nespremenjenem
1 vrstnem redu
\

4.5 Spekulativno izvréevanje ukazov

Cakalna wsta ukazov

Ukazno vodilo UV

l Skupno podatkovno vodilo SPV ‘

Rezervacijske
postaje

Funkcijska
enota

Rezervacijske Rezervacijske
postaje postaje

Funkcijska Funkcijska
enota enota

Rezenvacijske
postaje

Funkcijska
enota

| Operandno vodilo OV |

Izstavijanje

Branje operandov
lzvr§evanje

Zapis rezultata
Dovrsitev

apwN=

Preureditveni izravnalnik

Programsko dostopni registri

N —m—-
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4.5 Spekulativno izvr$evanje ukazov

Koraki pri spekulativhem izvajanju ukazov:
m lzstavljanje (UV):
Ukazi se iz Cakalne vrste jemljejo v enakem vrstnem redu kot v programu.

m Ukaz se prenese (Ce je prostor) v:
RP (rezervacijsko postajo) pri funkcijski enoti, ki jo ukaz potrebuje
in v Pl (preureditveni izravnalnik).

m Strukturna nevarnost:

Ce ni prostora v preureditvenem izravnalniku ali v RPju funkcijske enote

m Branje operandov (OV):
Operand, ki ga potrebuje ukaz, se lahko nahaja v:
m preureditvenem izravnalniku
m ali v programsko dostopnem registru.
Operand lahko da Se ni na voljo — oznaCimo mesto, kjer se bo pojauvil
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4.5 Spekulativno izvr$evanje ukazov

m lzvrsevanje (RP,FE,SPV):
Ce v ukazu manjka eden ali oba operanda, ukaz v RP Caka, dokler se operand ne
pojavi na skupnem podatkovnem vodilu (SPV).
Ko ima ukaz vse operande:
m gre v izvrSevanje v funkcijsko enoto,
m rezervacijska postaja pa se izprazni.

m Zapis rezultata (SPV):
Ko je na izhodu funkcijske enote rezultat ukaza, se prenese (SPV):
m Vv vse rezervacijske postaje, ki Cakajo nanj
m in v preureditveni izravnalnik, v ukaz ki Caka na ta rezultat.
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4.5 Spekulativno izvr$evanje ukazov

m Dovrsitev (PI):
Ko se na izhodu preureditvenega izravnalnika pojavi veljaven ukaz, se dovrsi.
m skocCni ukazi: preveri se pravilnost napovedi:

Ce je napoved pravilna, je skoéni ukaz izvren.

Ce pa je napoved napacdna:
» se izbriSe celotna vsebina preureditvenega izravnalnika in vsebina Cakalne

vrste ukazov.

*» Prevzame se ukaz s pravilnega naslova.

m ALE ali LOAD ukazi: se vrednost zapiSe v programsko dostopni register.
m STORE ukazi: se vrednost zapiSe v pomnilnik.

Ce ukaz dovrsen, se izbride iz PI:
m vsebina Pl se pomakne navzdol
m izhod:
se pojavi naslednji ukaz v vrsti
= na vhodu:
se sprosti prostor za novi ukaz
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4.5 Spekulativno izvr$evanje ukazov

Velikost preureditvenega izravnalnika doloCa najvecje stevilo
ukazov, ki se lahko Spekulativno izvrsijo — ukazno okno.

I I I
AMD Opteron

60 60RP za 11 FE

w 128 36RP za 12 FE

ridged): 168 54 RP za 12 FE

Tip

192 64 RP za 20 FE

224 97 RP za 22 FE

Intel Core iX (»Sunn »--392 entries might be equivalent
352 >125 (???) to as much as 525 uOPs...“
Cove«): I. 2019

Intel Core iX (»Golden 512 ?

Cove«): |. 2021

Intel Core iX (»Lion
Cove«): |. 2024 576
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4.5 Spekulativno izvr$evanje ukazov

Spletna demonstracija delovanja Pl :
http://www.ecs.umass.edu/ece/koren/architecture/ROB/rob simulator.htm

Prednosti Spek. izvrSevanja ukazov:

* Ukaz #4 (DIV.D) se zacne izvajati 1. cikel pred
MUL.D, ki ¢aka na rezultata obeh LD ukazov

« Ukaz DIV.D koné&a izvedbo Ze v 45. ciklu (brez SI
Ln-order“ bi konc¢al v 56. ciklu)
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4.6 Vecizstavitveni procesorji

Z znanimi metodami:
dinamicno predikcijo skokov,
Spekulativnim izvrSevanjem in
dinamicnim razvrsCanjem ukazov

se CPI (povprecno stevilo urinih period za izvedbo ukaza) pribliza 1.

CPI se lahko zmanjSa pod 1, Ce se v vsaki urini periodi prevzame in
izstavi v izvrSevanje veC ukazov.

Pri takih procesorjih se obiCajno uporablja enota IPC (instructions
per clock) to je povprecno Stevilo izvrSenih ukazov v urini periodi.

PC—1

CP/
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4.6 Vecizstavitveni procesoriji

Delovanje n-kratnega vecizstavitvenega procesorja:

m Pri prevzemu n-ukazov mora ukazni predpomnilnik dostavljati n ukazov v
urini periodi v ¢akalno vrsto.

m |z Cakalne vrste se prevzame n ukazov v enakem vrstnem redu kot so v
programu.

m Ce predpostavimo, da med prevzetimi ukazi ni skokov, je potrebno
preveriti odvisnost med operandi.
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4.6 Vecizstavitveni procesoriji

Strojno ugotavljanje medsebojnih podatkovnih odvisnosti je
zahtevno za realizacijo:

m Poleg HW reSitve se pojavi Se programska

Vecizstavitvene procesorje tako delimo v dve vrsti:

VLIW procesorji — Stevilo ukazov, ki so prevzeti in izstavljeni v eni

urinj periodi je doloCeno s programom (prevajalnik) vnaprej in se
med delovanjem ne spreminja.

Superskalarni procesorji — Stevilo prevzetih in izstavljenih ukazov
se med izvajanjem programa dinamicno spreminja in ga dolocCa
logika v procesorju.

OR — 4 — Povzetki predavanj 84 © 2025 Rozman - FRI



4.6.1 Superskalarni procesorji

|zraz superskalarni procesor:

m prvic uporabljen pri IBM projektu America, ki je bil osnova za serijo
procesorjev IBM RS/6000 (Power1),

m nekateri viri: ,da je bil Ze superracunalnik CDC 6600 leta 1963
superskalarni®.

Superskalarni procesor dinami¢no dolocCa, kateri ukazi se v eni urini
periodi izstavijo v izvrSevanje.
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4.6.1 Superskalarni procesoriji

n-kratni superskalarni procesor:

m Za ugotavljanje medsebojnih podatkovnih odvisnosti je pri n tri-operandnih registrskih
ukazih potrebnih n? —n primerjav.

Pri predpostavki, da so vsi operandi registrski in da ima vsak ukaz dva vhodna in en izhodni
operand, je pri n ukazih potrebnih n?— n primerjav.

m Prin=6jeto 30 primerjav, ki jih je tezko narediti v eni urini periodi. Zato se pri
superskalarnih racunalnikih to primerjanje opravi v veC stopnjah cevovoda.

m Ko so morebitne medsebojne odvisnosti operandov ugotovljene, se nadaljevanje
izstavljanja ukazov ne razlikuje bistveno od Spekulativnega izvrSevanja ukazov.

m Razlika je, da se v eni urini periodi namesto enega, v rezervacijske postaje izstavi do
najveC n ukazov.
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4.6.1 Superskalarni procesoriji

] ukazno |Stoprija 20 Stopnjo 10
. | D okno | izstaviley 2 EX E L povezovanje[ 7]
I ukazov o = E i -
| l'_ i X % E umikanje W B
preimenovanje [ 7] B 5 g —2
reqistrav oY g

Poenostavljena shema superskalarnega procesorja

m Ce ved ukazov potrebuje isto funkcijsko enoto ali pa je preureditveni
izravnalnik poln, pride seveda do strukturne nevarnosti, kar povzroci

Cakanje.

m Zato je pri superskalarnih procesorijih:
-1 stevilo funkcijskih enot obi¢ajno vecje od najvecjega Stevila ukazov, ki so
izstavljeni v eni urini periodi,
1 vedji pa je tudi preureditveni izravnalnik.
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4.6.1 Superskalarni procesoriji

Lastnosti nekaterih superskalarnih procesorjev

Prevzeti-izstavljeni-dovrSeni Stevilo funkcijskih
Procesor .
ukazi enot
IBM RS/6000 (1990) 2-2-2 2
Digital Alpha 21264 (1998) 4-4-11 6
Intel Pentium 4 (2000) 3-3-4* 7
IBM Power5 * (2003) 8-4-8 8
AMD Opteron X4 * (2007) 9-6-4* 11
Intel Core iX * (2008) 6-6-4* 12
Intel Core iX * Haswell (2013) 8- > 20
12-10 -7 **
% 5

Intel Core iX * SunnyCove (2019) e ;
Intel Core iX * LionCove (2024) 8-12-12 18

*

Pri veCjedrnih procesorjih se podatki nanasajo na eno jedro
** Velja za p-operacije
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4.6.1 Superskalarni procesoriji

m Preureditveni izravnalnik je pri superskalarnih procesorjih
zelo zapleten.

Rezultate, ki pridejo iz funkcijskih enot je potrebno v isti urini
periodi zapisati v vse ukaze, ki v izravnalniku Cakajo nanje.

V koraku branje operandov je potrebno operande, ki so ze v
izravnalniku, prenesti v rezervacijske postaje.

Ob izvrsitvi ukazov je treba operande zapisati v registre.

Primer: Pentium IlI: :
m Pl porabi 27% celotne energije !!!
m ,PrevecC zapleteno, preve¢ porabe!”
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4.6.1 Superskalarni procesoriji

NovejSi procesoriji (po letu 2000) zato obiCajno razSiriena
uporabljajo eksplicitno preimenovanje registrov: mnoZica registrov

m razsSirjena mnozica registrov:

procesor ima poleg programsko dostopnih registrov Se precej
(za€asnih) registrov
Oboji skupaj tvorijo razSirjeno mnozico registrov.

dodatnih

m preimenovalna tabela:
doloca ali je nek register v doloCeniurini periodi:
m programsko dostopen,

m prost ali
m zaseden

m preureditveni izravnalnik se poenostauvi:
zagotavlja le dovrSitev ukazov v enakem vrstnem redu kot so v

programu in =
) e . . ) o mnozZzica programsko
v njem ni ve€ zacCasnih rezultatov, so v zaCasnih registrih dostopnih registrov
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Preimenovanje registrov — osnovni pristop

Zelimo izvesti 2 operaciji :
« M[1024] + 2 -> M[1032]
« MJ[2048] + 4 -> M[2056]

# Instruction

1| R1 = M[1024]

o B W
e
'_I.
[
=
%
=
Hem
8]

Neucinkovita izbira R1 za
obe operaciji -> odvisnost!!

=

Instruction # Instruction
Rl = M[1024] 4| R2 = M[2048]
Rl = R1 + 2 5 RZ = RZ + 4

M[1032] = R1 6| M[205¢6] = R2

UcCinkovita izbira R1,R2 za
obe operaciji -> neodvisnost!!
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4.6.1 Superskalarni procesoriji

RazreSi /WAR
Preimenovalna tabela RAW ostanejo
Prvotni ukazi rl —rz r3 Prosti reg. Preimenovanje reg.
11 12 13 14,15,16,17
add r2,r3 14 12 13 15,16,17 add 14,12,13
sub 3 rl 14 12 15 16,17 sub 1:},‘14
mul rl ,r3 16 12 15 17 mul 1@5
div rz\,“fl,ﬂ 16 17 15 div l}tlﬁ, 5
RAW 4x RAW 4x
WAW 1x WAW -
WAR 5x WAR -

Preimenovalna tabela tako v vsaki urini periodi vsebuje informacije v katere
registre razSirjene mnozice so preslikani programsko dostopni registri.
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H B
] 4.6.2 VLIW procesoriji - ,Very Long Instruction Word"

|deja v 80. letih, najprej na bolj specializiranih (DSP: TI C6000 Se danes)

Znacilnosti:
m t.i. dolgi ukazi:

[1 so sestavljeni iz veC enostavnejSih ukazov, ki se izvedejo paralelno
[0 vsak enostavnejSi ukaz zaposli eno FE, tipiCno:

Ukaz za
funke. enoto 1

Ukaz za
funke, enoto 2

Ukaz za
funkc. enoto 3

)

Ukazr za
funke. enoto n

m 3 celostevilCni ukazi, 2 FP ukaza, 2 dostopa do pomn. in 1 skok.

m prevajalnik oz. program dolocCi in razvrsti ukaze v dolge ukaze tako, da

so FE Cimbolje izkoris€ene (Ce ne najde -> NOP)

m Potencialne prednosti:

1 logika v procesorju enostavna :
= ni preverjanja odvisnosti
= ni detekcije nevarnosti

1 prevajalnik vidi SirSo vsebino (kot ukazno okno pri superskalarnih)
1 odvisnost se preveri le enkrat (ob prevajanju programa)...
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J 4.6.2 VLIW procesoriji - ,Very Long Instruction Word"

THE REX NEO ARCHITECTURE
Slabosti VLIW iz prakse: !

m vecja dolZina programov ¢ [ s ]
0 Prevajalnik vstavlja tudi NOP ! T11

" fogost o [o[oTo]e]
7 Enote delujejo ali stojijo hkrati AT

m staticna® odloCitev I I B P
0 Prevajalnik naredi pred izvajanjem programa -
. 1997: HP, Intel predlagata EPIC: = e
m Explicitly Parallel Instruction Computing* wo [ wiea |
m Intel: Itanium 1, 2 http://rexcomputing.com/

THE TINY CHIP THAT COULD DISRUPT EXASCALE COMPUTING

Praksa ponovno pokaze:
m VLIW niso ni€ manj zapleteni od superskalarnih
m Fcpe se ni dvignila v skladu s pricakovaniji
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4.7 Primeri izvedbe cevovodov

TipiCni primeri izvedbe cevovodov:

HiP 5-stopenjski cevovod

ARM9TDMI 5-stopenjski cevovod (FRI SMS)
MiMo v2 — cevovodna razliCica

ARM Cortex A8 cevovod

ARM Cortex M7 (ST-H7) cevovod

Core i7 cevovod

AMD Zen mikro-arhitekture
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" JE
4.7.1 HIiP 5-stopenjski cevovod
HiP_cevovod OR_v3.pdf (brez premoscanja)

Program:
HIP — shema cevovoda brez premostitev LOZE Lol b
ADDI R1,R1.#1
SW 0(R2).R1
SUB R4.R3.R2
= BNE R4, LOOP
{ Lkornt predpormitc L ——
E mxﬁ—"—"\ E relive Emi . . .
bt 1 e ' Fpell B R HiP 5-stopenjski cevovod :
O P | 5 wd-n31 oo-o31 g o ]
152] <5 : Yemmmuns PR e — ° brez premoscanja 19 tcpe
I * s premoscanjem 11t
IF /I : £ /MEM MEM /WB
i ! /M M/
|
|
— : — —
el TS H) 52 3 5 wt
RCA 7 1 L ¢ }—,4—; 1 ;
T2
"I lllllllll
- . - ||
4
1z 4 32 31
?i’ II!Q o fﬂ
.
_”?'lus Farairie ]
37 - . i} 2 37
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"
4.7.1 HiP 5-stopenjski cevovod

HiP_cevovod OR_v3 premoscanja.pdf

(premoscanja)

HIP — shema z logiko za podatkovne nevarnosti in premoscanje

Operonani  predpomnilnik

T N

BZero Praliv
r )

i - detekcija nevarnosti ;

L neslowni g pedatkowni
: : | | 6e - primerjalnik |
I O
I H
i : vstavljanje mehurékoxj
IF /1D D/EX | | EX/MEM MEM/WB e
™ 1 | ! ] ] i - premoscanje
I I
_— — ‘| 7 : _— —
zl + JP oMl = 2 L]
PC s pe1 sz ol vt ¢ Y @«H ct F
: 2+ : : -2 X
= o I b :,ra: 1 =1
L Reglod ,“i 4 32 32 . . .
Registri - A HiP 5-stopenjski cevovod :
| v v .
N - * brez premoscanja 19t
L |% v v .
" Clones NI s premoscanjem 11t
£
JEIE f o
= (1A 1 _Rl\n.ua G
R & Il
IR + ,1 ¥ IR2 £ IR3
L™ LTI Py ﬂu. LTS
: - £ - 3 ] s | |5 pE
g = 1T 7 | L L
...... .
CloReg
rr————————————————————————————— Ui
e onia
| . 2
H multiplekserjey H
e 3[R
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m Harvardska arhitektura

povecCa VN ozko grlo z loCitvijo: ..
m ukazni predpomnilnik

m operandni predpomnilnik
hkratni dostop do obeh "

m 5-stopenjski cevovod

m premoscCanje

pPOgoj” :

m statiCnha predikcija ,neizpolnjeni

BNE traja 1t (pogoj ni izpolnjen)
BNE traja 3t (pogoj je izpolnjen)

m Realni (merjeni) CPIl ~1.5

pc+4

MOV pc
SUBS pc

LDR pc

pc +8

I-cache

fetch

| decode

(}r15

AV 4

instruction

register read

decode

immediate

[t >

fields

r
shift

execute

forwarding
paths

load/store
address

buffer/
data

PAN

OR — 4 — Povzetki predavanj

99

©2

register write

write-back




4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

ARM7TDME:  Fetch Decode Execute
instruction il Thumb ARM reg | _ reg
fetch {decompress ~ decode [iread shiftt ALU 1\ rite ;
ARM9TDMI: \ \ )/)/ \J
instruction . read| _ data memoryé reg
oo W secge | T Y| awess [jwie,

Fetch Decode Execute Memory Write

m ARM9TDMI podatki:

Process 0.25um Transistors 110,00(; MIPS 220
Metal lavers 3 Corearea 2.1 mm Power 150 mW
Vdd 2.5V  Clock 0to 200 MHz MIPS/W 1500
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4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

Instruction address pPc¢ pc—=4  pc—-8  pc—12  pc-16

Action LS1

L

load/store —
load/store 8/16-bit data

« No hazard, 2 cycles

ADD  r0, r0, rl m PremoscCanje reSi podatkovno nevarnost

ADD rO, rO, r2
« One-cycle interlock

LDR  rl, [r2, #4]
ADD 0, r0, rl
™ 10, I stall

Pipeline
Cycle 1
Cycle 2
Cycle 3

m LDR : dobirezultat Sele v LS1 !

LDR

bu})ble

101
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4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

Instruction address pPc¢ pc—=4  pc—-8  pc—12  pc-16
Action LS1

L

load/store —
load/store 8/16-bit data

» One-cycle interlock, 4 cycles

LDRB rl, [r2, #1]
ADD r0, r0, r2 ; no effect on performance
EOR r0, r0, rl

Pipeline
Cycle |
Cycle 2
Cycle 3
Cycle 4

m LDRB : dobirezultat Sele v LS2 !
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4.7.2 ARM9TDMI 5-stopenjski cevovod (FRI SMS)

Instruction address pPc¢ pc—=4  pc—-8  pc—12  pc-16
Action LS1

L

load/store —
load/store 8/16-bit data

» Brach takes 3 cycles due to stalls

MOV  rl, #1

B casel

AND rO, rO, rl
EOR r2, r2, r3

casel

SUB ro0, r0, ril

Pipeline
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5

Za B ukazom je potrebno sprazniti cevovod
(vstaviti mehurcke) !
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4.7.3 ARM Cortex-A8 Cevovod (poenostavljen)

FO F1 F2 Do D1 D2 D3 D4 EO E1 E2 E3 E4 E5
Branch mispredict
penalty =13 cycles Instruction execute and load/store
|
Instruction z [ ALU/MUL pi BP
fetch _ % N Pipe O update
AGU RAM ’12f—enrt]ry > | ] d d i g I
+ etc _—
e P queus R nstruction decode ccgb_ b ALU pipe 1 y %Zte
BTB > 2 p .
GHB —
RS & P LS pipe O or 1 up%Zte
m 14 stopenjski (3 delni) superskalarni N
Cevovgd jski ( ) sup m 3 sekcije:
_ L . . Fetch
dinamicni vec-izstavitveni Decode
stati¢ni ,in-order” cevovod Execute
SRR _
m pomembna vlioga prevajalnika ! m Execute - 3 poti :
m odprava kontrolnih nevarnosti: 1x LOAD/STORE
2-stopenjska predikcija 2x ALE
m odprava podatkovnih nevarnosti:
polno premoscanje med EX cevovodi.
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4.7.3 ARM Cortex-A8 Cevovod v celoti

13-Stage Integer Pipeline 10-Stage NEON Pipeline
F1 F2 oo 01 D2 OB B4 B0 B EZ BEi B4 EX MO M1 M2 il M1 M2 MNa Mg NS MNB
Branch mispredict penalty - ]
Instruction Execute and Load'Store [NECIM MEOM register writeback
Replay penalty Integer register writaback | ]
+ - -
o ALU piped Inteqer ALLI pipe
& )
= Integer MUIL pipe
> 2 MUIL piped L & [ = e
il ! NEOH ; Integer shift pipe
Instruction ) | 2 b AL pipet ) Instruction || - N
Fetch ) Instruction Decode 8 Decode & MorlIEEE FP ADD pipe
- =
—N E A m
K LS pipedort NorIEEE FP MUL pipe
L1 instruction cache miss T IEEE FF engine
L1 data cache miss | L1 data Load and store —H LS pemute pipe
L4 data | data queue —H
| |
=TI pipeline | MEQOHN store data
i J' Embedded Trace Macrocell
L1 L2 L3 |(Ls W L7 L8 Lo
L2 Tag Aray |2 Data Aray TOT1T T2 T3 T4 T8 TB T/ T8 T9 T10T11 T12 T13
I T
External trace pl:lri
L3 memaory system
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4.7.3 ARM Cortex-A8 Cevovod — Minnespec Benchmarks

Meritve CPI na Minnespec Benchmarks:
« poenostavljen SPEC2000 (bistveno manjsa koli€ina vhodnih podatkov)

6.00
Memory hierarchy stalls -1
500 ———— M Pipeline stalls 8
M |deal CPI
4.00 B
3.00

2.00

185
1 41 1.63 6 1.70
il N I 1 l I

twolf b::|p2 gzip parser gap perlbmk gcce crafty vpr vortex

|ldealni CPI = 0.5, v praksi pa izmerimo : 18Lmef
SPEC CPU2000 Benchmark Description File
* 1.4 (mln)_ Benchmark Program General Category
. 2.0 (med|an) Combinatorial optimization / Single-depot vehicle
R 5 2 (max) scheduling
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4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750) STM32H7- ARM® Core

ARM Cortex-M7 — Dua| -issue ARM Cones T G

Execute

----------------------------------------

Load/Store 1
i Fetch ||Decod (2x320) ‘
. . Load/Store 2 life.augmented

. . o
ALU2
% #1 DECODE
fi MAC
e g " (32 x 32b + B4b) Cortex-M7
64-bit instruction per cycle
e

Code memories
57 EEEN -

DTCM

v - . I-Cache
Znacilnosti: D-Cache
m ,Dual issue in-order 6 stage pipeline” e I

o Fetch 3 stopnje, Execute 3 stopnje e
m Pomnilnika hierarhija —"
m Prefetch enota s sko¢no predikcijo External SRAM & FLASH
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4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

* ARMV7E-M architecture

* Harvard architecture, 6-stage pipeline

» Dual-issue superscalar architecture!

« DIV in 12 cycles (max.), SIMD instructions

* Memory Protection Unit (MPU)

+ Single- and Double-precision Floating Point Unit (FPU)
= Included in current STM32 products based on ARM Cortex®-M7

One step closer to DSPs

ARM

Cortex®

ARM Cortex M? = Dual -issue

Cortex-M7 processor overview i

-M7

Nested Vectored Wake-up Interrupt
Interrupt Controller Controller

CPU
ARMv7-M

Memory Protection Unit DSP FPU

2x
AHB-Lite

I-Cache

D-Cache

ETM Trace

Darta

MM Trace  \aoe hpoint ITAG

Breakpoint

Unit Serial Wire

D-TCM I-TCM ECC

AXI-M

One step closer to Real-Time processors

| Load and store in parallel with arithmetic
| operations

Tightly Coupled Memories

Zero overhead loops

AXI-M interface with Cache memory

Lys

fe.ougmented
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4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

ARM Cortex-M7 — Dual -issue

Execute

The prefetch unit (PFU) provides one 64-bit instruction

per cycle to the Data Processing Unit (DPU).

It includes:

» a buffer of 4 entries of 64 bits each to enable fetching
ahead of the DPU

» and Branch Target Address Cache (BTAC) for single o
Cycle branCh prediction 64-bit instruction per cycle

Load/Store 1
(2x 32b)
Load/Store 2

ALU 1 (Main)

ALU2

MAC

(326 x 32b + 64b)

BRANCH

‘_1; Code memories ’ . . . . - ‘

The Cortex®-M7 core has a 6-stage dual-issue pipeline
for efficient operation. It brings the ability to process 2
instructions in parallel if certain criteria are fulfilled.

When an instruction reaches the Issue stage, it is split

. . : . The data processing unit (DPU) is split into several
into micro-operations and based on the needed operation

: . i : pipes:
and registers used. It is then issued to the appropriate « Two ALUs, with one ALU capable of executing SIMD
blocks further in the processing pipe. operations

» Single MAC pipeline with one MAC per cycle capability,

» One floating point pipe supporting single and double
precision operation.

OR — 4 — Povzetki predavanj 109 © 2025 Rozman
- FRI



" N
4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)
—< 1.

Zero overhead loops

+ Conditional loops need increment/decrement + branch execution 4 2.

+ On Cortex-M7: 1 cycle needed thanks to branch prediction and superscalar

dual-issue architecture 3
Update from DPU x

Prefetch

T o Lys
As a branch can also be dual issued, it can be executed
in parallel with computation.

Branch Target Address Cache or BTAC predicts whether Tig
the branch can be taken or not and reacts accordingly. It
remembers the conditions and, based on the processing,

it predicts the next address to fetch. ITCM RAM
(64 Kbytes)

Forwarding of flags from the DPU to the PFU allows early
resolution of direct branches in the decoder and first

: . DTCM RAM
execution stages of pipeline.

(128 Kbytes)

STM32H7

Superscalar — 2 instructions in 1 cycle
Branchin 1 cycle

Cache system to compensate slow memories

. High system bandwidth for every application

htly coupled memories (TCM)

+ Critical code
 Interrupt service routines
+ Highly deterministic

« Frequently used data
- Stack/Heap
- DSP coefficients
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4.7.4 ARM Cortex M7 mikroarhitektura (STM32H750)

first:

r0 81 @ DWT CYCCNT (difference in cycles end-start)

r2 33 @ DWT_CPICNT - less stalls on further executions

r3 0 @ DWT_EXCCNT

rd O @ DWT SLPCNT

r5 5 @ DWT LSUCNT - 4 load,stores extra in code before disabling counters
ro 52 @ DWT_ FOLDCNT

r§ 95 @ Calculted num. of. instr.

second and further:

r0 56 @ DWT CYCCNT (difference in cycles end-start)
r2 8 @ DWT_CPICNT - more stalls on first execution
r3 0 @ DWT_EXCCNT
r4 0 @ DWT SLPCNT
r5 5 @ DWT LSUCNT - 4 load,stores extra in code before disabling counters
ro 52 @ DWT_FOLDCNT
r8 95 @ Calculted num. of. instr.
/I Register Addresses

.equ DWT_BASE, 0xE0001000 / DWT Base address

.equ DWT_CTRL, 0x00 // DWT_CTRL reg (RM0433, pp.3209)
.equ DWT_CYCCNT, 0x04 //increments on each clock cycle when the processor is not halted in debug state.
.equ DWT_CPICNT, 0x08 // additional cycles required to execute multi-cycle instructions, and instruction fetch stalls
.equ DWT_EXCCNT, O0x0C // count the total cycles spent in interrupt processing
/I (cycles spent performing exception entry and exit procedures)
.equ DWT_SLPCNT, 0x10 // count the total number of cycles during which the processor is sleeping
/I (cycles spent sleeping)
.equ DWT_LSUCNT, 0x14 // counts the total number of cycles that the processor is processing an LSU operation
/I (cycles spent waiting for loads and stores to complete
/I For example, an LDR that takes two cycles to complete increments this counter one cycle.
/I Equivalently, an LDR that stalls for two cycles (and so takes four cycles),
/I increments counter three times.
.equ DWT_FOLDCNT, 0x18 // count the total number of folded instructions
/I (cycles saved by instructions which execute in zero cycles
/I This counts 1 for each instruction that takes 0 cycles.
/I instructions executed = DWT_CYCCNT - DWT_CPICNT - DWT_EXCCNT - DWT_SLEEPCNT - DWT_LSUCNT + DWT_FOLDCNT

ARM Cortex-M7 — Dual-issue

i \
: e~ DATA PROCESSING LoanisTore ]
{ UNIT ] UNIT ;

Execute
Update from DPU

Load/Store 1

Prefetch 1004 | Fetch ||Decode| Issue (2x325)

. .H [ Load/Store 2
I .-1. o
e

—lp | 32-1 ALU2

MAC
(320 x 32 + 64b)

BRANCH

from VI
64-bit instruction per cycle

Ei Code memories W‘

[ == subs,bne —-——---———————————-
// ldr r5,=N

/) —mmmmm—————— odsek kode --—--—---———————-
// tloop: subs r5,r5,#1

/! bne tloop

/] = konec kode --------—-————--
/%

// Timings - usually in second or more repet

N DWT CYCCNT (1st)| DWT CYCCNT (1st)
Upd. 12/2024

50 56 (78) 56 (81)
100 106 (128) 106 (131)
200 206
500 506

1000 1006

64000 64006 (64028)
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https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements
https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements
https://github.com/LAPSyLAB/ORLab-STM32H7/tree/main/DWT_Cycles_Measurements

m 4.7.5 Core i7 superskalarni cevovod - poenostavljen

Front End

i
Al
N

4-6 pops

Execution Engine

~N-

Reorder Buffer

pops

.

Memory

1.Instruction Fetch (16bajtov)
2.Predecode Stage (baijti->x86 ukaze)

3.u-op decode (x86 ukazi -> y-op)

5.1zstavitev py-op -> ROB in RP

6.l1zvedba p-op

7 .DovrSitev
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4.7.5 Core i7 superskalarni cevovod

14 stopenjski superskalarni

cevovod:

m dinami€ni ve¢-izstavitveni (6 p-
op/cikel)

m  dinami¢ni ,,out-of-order* cevovod

m  Spekulativno izvajanje ukazov

Osnovni proble

CISC ukazi
-> p-operacije

-> cevovod
m znadilnosti: /
o PI(ROB)

[0 ekspl. preimenovanje reg:

m kazni' v t, ciklih:
1 15 napacno napovedan skok
0 10 predp. L1 zgreSitev
1 35 predp. L2 zgreSitev
0 135 predp. L3 zgreSitev
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1.Instruction Fetch (16bajtov)

2.Predecode Stage
(bajti->x86 ukaze)

3.u-op decode (x86 ukazi -> u-op)

4.Loop Stream Detection

5.1zstavitev py-op -> ROB in RP

6.1zvedba p-op

7 .DovrSitev
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4.7.5 Core i7 superskalarni cevovod

Resource i7 920 (Nehalem) i7 6700 (Skylake)
Micro-op queue (per thread) 28 64
Reservation stations 36 97
Integer registers NA 180
FP registefs NA 168
Outstanding load buffer 48 72
Outstanding store buffer 32 56
Reorder buffer 128 256

Figure 3.39 The buffers and queues in the first generation i7 and the latest
generation i7. Nehalem used a reservation station plus reorder buffer organization.
In later microarchitectures, the reservation stations serve as scheduling resources,
and register renaming is used rather than the reorder buffer; the reorder buffer in
the Skylake microarchitecture serves only to buffer control information. The choices
of the size of various buffers and renaming registers, while appearing sometimes arbi-
trary, are likely based on extensive simulation.

140 (skupna)
>125 (?)

352
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4.7.5 Core i7 superskalarni cevovod

12.6 Macro-op fusion

The microarchitecture of Intel, AMD, and

An optimization guide for assembly programmers and

The processor can fuse an arithmetic or logic instruction and a subsequent conditional jump
instruction into a single compute-and-branch pop in certain cases. This works slightly
different from previous processors. The fusion is not done by the decoders but immediately
after the decode stage. The compute-and-branch pop is not split in two at the execution
units but executed as a single pop by the branch unit.

First instruction

can pair with these,
and the inverse

cannot pair with

cmp jz,jc, jb, ja, jl, jg is, jo, jp
add, sub, inc, dec jz, jc, jb, ja, jl, jg js, jo, jp
adc, sbb none

neg, not none

test all

and all

or, Xor none

shift, rotate none

Table 12.1. Instruction fusion

8.4 Micro-op fusion

There are two cases of pop fusion: read-modify instructions and write instructions. A read-
modify instruction needs one pop for reading a memory operand and another pop for doing
a calculation with this operand. For example, ADD EAX, [MEM] needs one pop for reading
MEM and one for adding this value to EAX. These two pops can be fused into one. A write
instruction needs one pop for calculating the address and one for writing to that address.

For example, MOV

ESI+EDI],EAX needs one pop for calculating the address

[EST+EDI] and one for storing EAX to this address. These two pops are fused together.

3

VIA CPUs

compiler makers

By Agner Fog. Technical University of Denmark.
Copyright © 1996 - 2023. Last updated 2023-05-26.
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191 — 1
4.7.5 Core i7 SuperSkaIarnl cevovod CORE |7 CORE |7
£163 €236
3 4 Cores, 8 Threads @2.66GHz, Nehalem. About 4 Cores, 8 Threads @3.4GHz, Skylake.
Release date: Q3 2008, Release date: Q3 2015,

w7 G?Prg |7 920

2.67

Cycles per instruction

astar bzip2 gcc gobmk  h264ref  hmmer libguantum  mcf omnetpp perlbench  sjeng  xalancbmk

Figure 3.40 The CPI for the SPECCPUint2006 benchmarks on the i7 6700 and the i7 920. The data in this section
were collected by Professor Lu Peng and PhD student Qun Liu, both of Louisiana State University.
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4.7.5 Core i7 cevovod
Meritve na SPEC2006 :

mcf —
kombinatoriéna ucinkovitost napovedi in
optimizacija v . . . .
CPI ,: Spekulativhega izvajanja
.' Branch misprediction %  m Wasted work %
S I Stalls, misspeculation 2 W T a5
= Ideal CPI = gl Libquantum | M
Lo 1 - ima najbolj o
212 a0y, 1-L-predvidlive. ____|_________________________ N
o e skoke!
S h T OREEREE T ISR
.', 2%
L T T 20% - ool -

Idealni CPI = 0.25, v praksi pa izmerimo : Branch misprediction: |
«  0.44 (min), delez napacnih skocnih napovedi
* 0.79 (median) 0% (min), 2% (median) 10% (max)
«  2.67 (max)... Wasted work:

delez zavrzenih p-operacij
1% (min), 18% (median) 39% (max)
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r
L Front End Instruct
\ front End | Cache Tag| L1 Instruction Cache
. HOP Cache 32KiB 8-Way | Instruction
4.7.5 Core i7 Tag L.

. 16 Bytes/cycle
superskalarni Branch

Predictaor Ins truction Fetch & PreDecode
o (16 B window)

B PU
cevovod (BPU) o e
| EucinQuese

MoP MoP MoP MoP MOP

/
9 Afgv9

wsmmEmEmEEE,

14-19 stopenjski { nteie |4 Sy Docode
superskalarni B O | 5 R R R (s )
Onooooe oooorY pal . . S S Engine
cevovod: ,Sunny ,====="- —— g | Hose |
« opeoses e e Pl ouors ez,
Cove 1| cssormave | \ -u 7

lloc ation Queue (IDQ) (140; 2x70 |.LOPs

(2019)

S —————— — <=

Checker &
Retirement (CRLU)
ROB 352 ister Allas Tables (RATs uop po P uo P HOP uoP uap
‘‘‘‘‘‘‘‘‘ Primary Shadow
| ( ) _________ RAT t’% Branch Order Buffer!
~~~~~ (BOB) (48-entry)

w

m centralnaRP (160) — wn
10izhodov [E= [ e e e [oevwans] rmra o D
e bt & b _E_£ 3 3 F___ B 5g
m 280 registrov (ekspl. % Integer physical Regisierffie  Scheduler Vector Physical Register F{l W 2 S
preimenovanje) : 2 ®

LSU
‘ Load Buffer | |Stnre Buffer & Farwarding
- (128 entries ) (T2 entrias) 2
l 64Bjeyele 64Bjeyele 64B/eyele 32B/eyele \E
o
L1 Data Cache E v

48KiB 12-Way
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https://en.wikichip.org/wiki/File:sunny_cove_block_diagram.svg

Primer x86 zbirnika :

function1:

1 pushl %ebp #

2 movl %esp, %ebp #,

3 subl $4, %esp #,

4 movl $10, -4(%ebp) #, A
5 leal -4(%ebp), %eax #,
6 addl $66, (%eax) #, A

void function1() {
intA=10;
A += 66;

}

1. push ebp

2. copy stack pointer to ebp

3. make space on stack for local data

4. put value 10 in A (this would be the address A has now)
5. load address of A into EAX (similar to a pointer)

6.add 66 to A

Vir: http://www.hep.wisc.edu/~pinghc/x86AssmTutorial.htm
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4.7.5 Cortex A8, Intel i7 (4.7.4), Cortex M7

ARM A8 Intel Core i7 920 ARM M7

Market

Thermal design power
Clock rate

Cores/Chip

Floating point?
Multiple issue?

Peak instructions/clock
cycle

Pipeline stages

Pipeline schedule

Branch prediction

1st level caches/core

2nd |evel caches/core

3rd level caches (shared)

Personal Mobile
Device

Server, cloud

Embedded

-----------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------

0.480 GHz
1-2
Yes (SP,DP)

Dynamic

------------------------------------------------------------------------------------------------

Static in-order

2-level
32KiB 1,32 KiB D

128-1024 KiB

14

Dynamic out-of-order with

speculation

2-level
32 KiB I, 32 KiB D

256 KiB
2- 8 MB

Static in-order

present, no info
16 KiB |, 16 KiB D
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4.7.6 AMD ,Zen“ mikroarhitekture

INDUSTRY-LEADINGIP
LEADERSHIP CPU AND GPU ROADMAPS

Novosti v ,Zen“:
m ,Design from scratch”

m 40% viSji IPC od predhodnika

m SMT

m |zboljSan predpomnilniski sistem
|

Evolucija: Zen+, Zen2, Zen 3, Zen 4, Zen 5
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4.7.5 Zen 2 mikroarhitektura — poenostavljen model

32 I |-Cache

B-way

|

Cecode

4 instructionsfcycle

G nWops dispatchec
INTEGER

Integer Rename

\ S 2 S | 4 ¥ ¥

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Integer Physical Register File

MOp Queue

Eranch Prediction

|

Op Cache

FLOATING POINT

Floating Point Rename

\

Scheduler

FP Reqgister File

v v ¥ ¥ ¥ ¥ ¥ \ 4 \ \ \

ALU ALU  ALU ALU AGU AGU AGU MUL  ADD MUL  ADD
I .
512KL2 (1+D)

Cache
8-way © 2025 Rozman

Load/Store 32K D-Cache
Queues B-way

2 loads +1 store per cycle




4.7.5 Zen 3 mikroarhitektura — poenostavljen model

32K I-Cache

“ZEN 3” OVERVIEW T o

2 THREADS PER CORE (SMT)

STATE-OF-THE-ART BRANCH PREDICTOR Op Queue

CACHES
I-cache 32k, 8-way
Op-cache, 4K instructions Dispatch
D-cache 32k, B-way L B B
L2 cache 512k, B-way 6 Macro Ops/Cycle Dispatched

4 Instructions/Cycle l 8 Macro Ops/Cycle

DECODE 1) b
4 instructions [ cycle from decode or 8 ops from Op-cache

h : 2 tege P
6 ops [ cycle dispatched to Integer or Floating Point i R Fioating Folutfeaname

EKI;CUTIDN CAPABILITIES ! # ‘ l’ l * l ' " ‘

4 integer units Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler
Dedicated branch and store data units

3 address generations per cycle l l l I I l l I I I I I

3 MEMORY OPS PER CYCLE Integer Register File FP Reglster File

Max 2 can be stores ', ', ' l, l, l * " 'r " " "

TLBs || acu || Aw || acu || Aw el | epeall | BT |
L164 entries | & D, all page sizes
L2 512 |, 2K D, everything but 10 L I |

§

TWO 256-BIT FP MULTIPLY ACCUMULATE / CYCLE 3 LOADS PER CYCLE Load/Store Queues 32K D-Cache 512K L2 (1+D) Cache
2 STORES PER CYCLE 8 Way 3Way

ALU BR ADD F2l

ST | MAC MAC

WHERE CAMING BECINS: AMD RYZEN | AMD CONFIDENTIAL AMDAI
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4.7.5 Zen 2 vs Zen 3 mikroarhitekturi — poenostavljena modela

32 K|-Cache o
Branch Prediction 32K I-Cache Branch Prediction
g.way 8 Way
Decode Dp-cache
Decode Op Cache
= Op Queue s
4 instructionsicycle LlOp QUEUE uops 4 Instructions/Cycle l 8 Macro Ops/Cycle
6 uOps dispatched z
e ————————— Dispatch
INTEGER FLOATING POINT 6 Macro Ops/Cycle Dispatched I
Integer Rename Floating Point Rename ‘ l’
* ’ ", # ‘ * ‘ * ¥ Integer Rename Floating Point Rename
Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler ‘ ' ‘ ‘ l ‘ l ‘ ‘ l
I I I I I I I I | | | I Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler
Integer Physical Register File FP Register File I I l I I I I I I I I I I I
Integer Reglster File FP Register File
2R 2NN 2R 2R R R L 20NN R B
& U o B R T o S | R S e S e S
ALU  ALU ALU ALU AGU AGU  AGU MUL  ADD  MUL  AD | aw Pt o F o ot it - 21 MUL L 1| [y |
BR I ST | MAC MAC
I — 1 i ! y
D = jpe——— * ————— T o o e e e e e o >
S12KE2 (RB)SY"5 | 5Aps pER CYCLE | 32K D-Cache | g | 512K 12 (1+D) Cache
2 loads +1 store per cycle Load/Store 32K D-Cache Cache sniisiipbepgll] | EES/SEONS QM b 8 Way s AR
Queues 8-way 8-way e i P ey
DADS + 1 STORE
8 CYCLE

AMDQ
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4.7.5 Zen 4 mikroarhitektura — poenostavljen model

Microarchitecture
Overview

Branch Prediction Improvements
Larger Op Cache

Larger Instruction Retire Queue
Larger Int/FP register file

Deeper buffers throughout the core

Power efficient AVX-512 support in the
Floating-Point Unit

Load/Store improvements

L2 Cache 1M, 8-way

OR — 4 — Povzetki predavanj
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32K I-Cache
8 way

!

Decode

Branch Prediction

e
i

Micro-op Queue <
4 instructions/cycle 9 macro-ops/cycle
6 ops dispatched

v v

Integer Rename Floating Point Rename

S R e RS IS R A \/

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

Integer Physical Register File FP Register File

iR el AR, R T et R L 208 20K 20K 2R /

AW aeu || aw || A A || BR MUL I oo | | MU ] apD || sT

BR SUL] AU [EAOU MAC MAC

Load/Store 32K D-Cache 1MB L2 (I+D) Cache
Queues 8 Way 8 Way
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4.7.5 Zen 3 vs Zen 4 mikroarhitekturi — poenostavljena modela

32K 1-Cache

8 Way

!

Op Queue

Branch Prediction

T

Dp-cache

4 Instructions/Cycle "

Dispatch

6 Macro Ops/Cycle Dispatched I

8 Macro Ops/Cycle

¢

Integer Rename

§= =3 y -3 3

Scheduler Scheduler Scheduler

Integer Register File

I-F-FA4-4-%

ALU ACGU ALY AGU

' ¥

Scheduler

-+ -1} 4

I 5T

i |
__.‘_____J pald

Scheduler

¥

Floating Point Rename

' i

Scheduler

FP Register File

= o e e ol

MuL MUL

MAC ADD MAC ADD F2

32K D-Cache

Load/Store Queues | W

- 512K L2 (1+D) Cache
8 Way
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32K |-Cache

8 way

!

= Micro-op Queue
4 instructions/cycle

Branch Prediction

)

6 ops dispatched

<
9 macro-ops/cycle

v

Integer Rename

. AR g 8

Scheduler

\ 2 /

Scheduler

v v

Scheduler

Integer Physical Register File

. IR Ry R O K R R

ALU
BR

Scheduler

AGU ALU A

o ol D T

Load/Store
Queues

ALU BR

| 32K D-Cache
8 Way

v

Floating Point Rename

\/

Scheduler Scheduler

FP Register File

L 200 208 2K 20K 2 |

F21 MUL MUL
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B _ j > mimo_32bit v2.1 - Zaklenitev.circ

i X ‘_5* mimo_32bit v2.2 - Premoscanje.circ
MiMo v2 - cevovodne razli€ice = ol J

L) mimo_32bit_v2.3 - Predikcije.circ

add rl, rl, #1 @ 10, 27 8, 20 (here

B test3-operand_forwarding.td E test3-correlating_lht.bxt

MiMo . Mcotpropranmes CPU Moel et f——
; “}a i =
= —— - Syl - .
2 L) mimo_32bit_v2.circ
8 - - ~
[
| . | ey
— -13] —tt . ——
EEEREEEE § Sy g
niylror ! -
=i =
[ N
=y =
=
IF il
TR « EFEEEEER
EIMIs 2 | —e iy SR
= - —
‘ oy |
. =
e I
mdre . ==
loop: @ stall | forwarding
mov r3, #3 @ 5, 22 | 5, 17 B test1-nops_needed.bd
1ldr rl, [r2] @ 6, 23 | e, 18 E test2-zaklenitev_with_no_nops.bd t_nested_loop.bd
|
add r7, r7, #1 @ 11, 28 | 9, 21
str r2, r1l @ 14 (written to operand memory on cycle 13, but left pip B testd-jumps_in_op_forwarding. bt B testd correlating 2by2.bet
subs r4, r3, rl @ 15, 32 | 11, 23 5 P E )
orwarding.td es (] me W
add r5, r5, 41 @ 17, 34 | 12, 24 9 test3_tournament.tt
add r7, r7, #1 @ 18, 35 | 13, 25 estf-stall_vs_forwarding_HIP_loop.txt B test6-bubble sort.bd
add r6, rl, r4 @ 19, 36 | 14, 26 l-encomposing-ldr it . - .
-encompaosing-ldr.td test7-HIP_loo ediction_con son.bd
Fm= Lo @ 20, 3|7 | 15, 27 € np g E = _loop_prediction_compari

E testd-all-encomposing-str.td

https://qgithub.com/LAPSyLAB/MiMo Student Release/tree/main/MiMo v2 Pipelined versions
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"
o-stopenjska cevovoda: HiP, MiMo v2 ,
rograi:
LOOP: LW R1.0(R2)

: .y . _ ADDI R1.R1.#1
HiP 5-stopenjski cevovod — ena izvedba zanke: SW 0(R2).R1

* brez premosCanja 19" t

* s premosCanjem 11t R R IE
ope BNE R4, LOOP
* Stejemo od BNE v EX stopniji, zato nastetih ciklov vec
MiMo v2 5-stopenjski cevovod — ena izvedba zanke:
* brez premoscanja 17 t,
* s premoscCanjem 11t.,
Zaklepanje PremoS$c¢anje
mov r3,#3 @5
loop: @ stall | forwarding
Idrri, [r2] @ 6, 19 | 6, 13
addri, r1, #1 @ 10, 23 | 8, 16 (here one mandatory stall to get value from MA stage)
strri, [r2] @ 14, 27 | 9, 16
subsr4, r3, r1 @ 15, 28 | 10, 17
Jne loop @ 17, 30 | 11, 18
OR — 4 — Povzetki predavanj 129 © 2025 Rozman
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4.8 Omejitve paralelizma na nivoju ukazov

|zrazita prednost:
1 transparentnost

m Slabost:

1 stopnja paralelizma na nivoju ukazov je omejena zaradi konCnega Stevila ukazov
med dvema napacnima napovedima.

KoliCina paralelnosti na nivoju ukazov v programih je omejena,
odvisna od algoritmov in ne tehnologije !
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4.8 Omejitve paralelizma na nivoju ukazov

m V raziskavah je bilo ocenjeno, da je povprecni IPC, ki bi bil dosegljiv na
resnicnem racunalniku, priblizno 5 do 10. To pa je veC kot danes
dosezejo najzmogljivejsi superskalarni racunalniki.

0.8 3 31stopen;j,
1.5 4 14stopenj

m Vzroka za nizek realni IPC pri P4 sta :
zelo dolg cevovod in
zgresitve v predpomnilniku.

m Vedji IPC Se ne pomeni nujno bolj zmogljiv procesor. Zmogljivost je
odvisna Se od frekvence ure f;pg.

m Stevilo ukazov, ki jih procesor izvri v eni sekundi je
St.ukazov/sek = fope X IPC

m Realnost:
vedji IPC pa je veCinoma mogoce doseci le z nizjo frekvenco ure fqpg.
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Primerjava Intelovih procesorjev :

Microprocessor Year | Clock Rate Pipeline Issue Out-of-order/ Cores Power
Stages width Speculation

i486 1989 25MHz 5 1 No 1 5W
Pentium 1993 66MHz 5 2 No 1 10W
Pentium Pro 1997 200MHz 10 3 Yes 1 29W
P4 Willamette 2001 2000MHz 22 3 Yes 1 75W
P4 Prescott 2004 | 3600MHz 31 3 Yes 1 103W
Core 2006 | 2930MHz 14 4 Yes 2 75W
Core i5(Nehalem) 2010 3300MHz 14 4 Yes 2 87W
Core i5(lvy Bridge) | 2012 3400MHz 14 4 Yes 4 7TW
Core i9(Coffee Lake) 2018 5000MHz 14 Yes 8 127W
Core i9(RaptorCove) 2022 5800MHz 12

m  kompleksnost dinamiCnega razvrsCanja ukazov in Spekulacije zahteva

dodatno logiko in porabo.
m morda je manj enostavnejSih jeder lahko kdaj tudi boljSa reSitev (ARM,...)
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" M

4.8 Omejitve paralelizma na nivoju ukazov

Prelomnica:

Intel P4 CPE: snovalici izbirajo med (okoli I. 2000):

m povecCanjem f_,,
0 (poraba, toplota)
m 2CPEna1cip
0 (dvojni stroski, ni programov)
m dodajanje FE
[0 (samo po sebi he pomaga)
m daljsi cevovod
0 (povecajo se nevarnosti)

m vechitnost (se zdi Se edina moznost):

1 izkoristimo HW, ki sicer stoji
0 5% ve€ povrsine->25% poveca zmoglj.
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4.8 Omejitve paralelizma na nivoju ukazov

Prelomnica [.2000 (Intel P4):

m V. mnogih situacijah (programih) obstaja paralelizem
tudi na visjem nivoju, ki ga na nivoju ukazov ni mogoce
izkoristiti.

m [0 je paralelizem na nivoju niti, kjer se izvrSevanje
razdeli v veC loCenih poti (niti):
Zakaj (1.2000) ?:
m 5% veC povrsSine prinese 25% povecanje zmogljivosti
m |. 2000 je bila to Se najbolj sprejemljiva resitev
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4.9 Paralelizem na nivoju niti (vecnitnost)

m Nit (,thread”) je zaporedje ukazov, ki se lahko izvrSuje neodvisno od
drugih ukazov. Nit je lahko:

del programa, ki ga sestavlja veC procesov
samostojen program

m Vecnitnost ni transparentna !

poskrbi programer (razen program = nit )

m Vecnitnost na strojnem nivoju (Hardware Multithreading) omogoca,
da si vec niti deli funkcijske enote enega procesorija.

m Vsaka nit v procesorju mora imeti svoje stanje, ki je neodvisno od
stanj drugih niti.
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4.9 Paralelizem na nivoju niti

m Stanje vsake niti mora imeti svojo kopijo:

programsko dostopnih registrov,

programskega Stevca (PC) in

potrebnih programsko nedostopnih registrov ter
svoje tabele strani.

m Vse niti si delijo pomnilnik in predpomnilnike:
pri Cemer uporabljajo mehanizem navideznega pomnilnika.

m \V/saka nit vidi kot da sama uporablja procesor:
en procesor je tako videti kot vecC logicnih procesorjev.

m Preklop med nitmi je bistveno hitrejsi (t.j. trenuten) od
preklopa med programi v multiprogramskem nacinu, Ki
lahko traja od nekaj sto do tisoC urinih period.
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4.9 Paralelizem na nivoju niti

m Obstaja veC nacCinov realizacije strojne vecnitnosti:
-1 Casovna veénitnost

m drobnozrnata
m grobozrnata

1 IstoCasna vecCnitnost (vecCizstavitvene CPE)
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4.9 Paralelizem na nivoju niti

Primer vecCnithega programa :

/* standard I/O routines

#include <stdio.h>

*/

#include <pthread.h> /* pthread functions and data structures */

#include <stdio.h> /* standard I/O routines

#include <pthread.h> /* pthread funcs & structures

/* function to be executed by the new thread */

void* do_loop (void* data)

{

int
int

int

for

/*

e /* counter, to print numbers */
78 /* counter, for delay */
me = *((int*)data); /* thread ID */

(1=0; i<10; 1i++) {
/* delay loop */
for (j=0; j<500000000; j++);
printf ("'$d' - Got '%d'\n", me, 1);

terminate the thread */

pthread exit (NULL) ;

Opis: funkcija do_1loop:
se izvaja v dveh nitih in Se v glavnem programu,

Vsaka nit z drugim IDjem (1,2,3)

*/
*/

/* like any C program, program's execution

int main (int argc, char* argv[])

int thr idl,
pthread t p thread;
int a

int b

int c

/* create a new thread & execute

thr_idZ;

/*
/*
/*
/*

/* thread

thread's
thread 1
thread 2
thread 3

begins in main */

ID - new thread */
structure =/
id */
id */
id */

'do_loop()' */

thr idl = pthread create (&p_thread, NULL, do_loop, (void¥)s&a);

/* create a new thread that will execute 'do_loop () =
thr _id2 = pthread create(&p_thread, NULL, do_loop, (void*)é&b)

/* run 'do loop()' in the main thread as well */

do_1loop ((void¥*) &c) ;

return 0;

povsod z zakasnitvijo Steje do 10 in potem se koncCa
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4.9 Paralelizem na nivoju niti

4.9.1 Drobnozrnata vecCnitnost
(,fine-grained multithreading®).
Procesor preklaplja med nitmi vsako urino periodo.

Niti se preklapljajo enakopravno ena za drugo.

Niti, pri katerih se pojavi Cakanje zaradi kateregakoli vzroka, se
preskocijo.

Za vsako nit se mora pri preklopu shraniti poleg registrov tudi
popolno stanje cevovoda.

Dobra stran tega nacina je, da se prikrije Cakalne periode, ker se
takrat izvajajo ukazi drugih niti.
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4.9.1 Drobnozrnata vednitnost

|zvajanje treh niti posamezno pri drobnozrnati vecCnitnosti :

Nit A

Nit B

Nit C

A1 | A2 A3 | A4 | AS A6 | A7 | A8
B1 B2 B3 B4 (B5|B6 | B7 |B8
C1|C2|C3|C4 C5 | C6 C7|C8

Urine periode —»

—

1
Niti posamezno = 36 t;p¢

Posamezne niti: 18 t;pg =6 (do A4) + 8 (do B4) + 4 (do C4)

Drobnozrnata vecnitnost (primer do A4,B4,C4)

A1

B1

C1

A2

B2

C2

A3

B3

C3

A4

B4

C4

Urine periode —»

Vecnitnost: 12 t.pe
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4.9.1 Drobnozrnata vednitnost

Idealna situacija — 5 stopenjski cevovod in izvajanje petih niti pri
drobnozrnati vecCnitnosti :

MEM  WR clock

5 threads 1n execution: IF
Al |A2 |A3 | A4 | A5 |A6| ... | | EI
Bl |B2 B3| B4 |B5|B6| .. IF
Cl|C2|C3|C4|C5|C6]| ... | 1A2
D1 |D2|D3|D4|D5|D6 -
E1 |E2 | E3 |E4 |E5 |E6| .. | —py

Nevarnosti ?

D EX

DI Cl1 Bl (1 Al
D EX MEM WB
El DIl Cl Bl
D EX MEM WB
A2 El D1 Cl

Pogosta situacija ?
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4.9 Paralelizem na nivoju niti

4.9.2 Grobozrnata vecnitnost
(,coarse-grained multithreading”).

Procesor preklopi na naslednjo nit samo kadar pride do daljSega
Cakanja, kot npr. pri zgresitvah v predpomnilniku L2.

Procesor je enostavnejsi, ker ob preklopu ni treba za vsako nit

shraniti celotnega cevovoda, ker lahko poCakamo, da se
Izprazni.

Preklopov je manj in so zato lahko poCasnejsi.

|lzvrSevanje posamezne niti se ne upocasni, ¢e nima daljSih
Cakan;.
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4.9.2 Grobozrnata ¢asovna vecnitnost

Slabost tega nacina je, da ne prikrije krajSih Cakanj. Pri krajSih
Cakanjih procesor stoji.

Ob preklopu se mora cevovod napolniti z ukazi nove niti.

Grobozrnata vecCnitnost je zato uporabna pri daljSih Cakanijih, kjer
je Cas polnjenja cevovoda zanemarljiv v primerjavi s Casom
Cakanja.
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4.9.2 Grobozrnata ¢asovna vecnitnost

|zvajanje treh niti posamezno in pri grobozrnati vecCnitnosti

NitA | A1 | A2 A3 | A4 | A5 A6 | A7 | A8
Nit B | B1 B2 B3 |B4|B5|B6| B7 B8
NitC|[C1[C2|C3|C4 C5 | C6 C7|C8

Urine periode —»

[ 1
36 urinih period

Posamezne niti: 15 topg =6 (do A4) + 3 (do B1+) + 6 (do C4)

A1

A2

B1

C1

C2

C3

Cc4

A3

A4

""" 32 urinih period

Urine periode —»

Primer do A4,B1,C4:

Vecnitnost: 12 tpg
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4.9 Paralelizem na nivoju niti

Ugotovitve in primerjava:
m Drobnozrnata vecnitnost:

lahko pri k-stopenjskem cevovodu in k-nitih cevovod deluje s polno hitrostjo brez
Cakanja, ker je v vsakem trenutku v cevovodu samo po en ukaz vsake niti.

m Grobozrnata vecCnitnost:
Pri majhnem Stevilu niti je boljSa grobozrnata vecCnitnost.

m Pri obravnavi drobno in grobozrnate vecnitnosti smo predpostavijali,
da procesor izstavi samo en ukaz vsako urino periodo.

m Pri vecCizstavitvenih procesorjih z dinamicnim razvrsCanjem
(superskalarni procesorji) pa je mozna istoCasna vecnitnost.
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4.9 Paralelizem na nivoju niti

4.9.3 IstoCasna vecnitnost
(SMT-“Simultaneous MultiThreading®, Intel: ,Hyperthreading®).

Pri superskalarnih procesorjih je obi€ajno na voljo vecC funkcijskih enaot,
kot jin lahko izkoristi ena nit.

Zasnova superskalarnega procesorja omogoca, da se lahko izstavlja ve¢
ukazov, ki lahko pripadajo razlicnim nitim.

Med ukazi razli¢nih niti ne more priti do medsebojnih odvisnosti, kar
poenostavi izstavljanje ukazov.

Ukazi vsake niti pa se morajo dovrsiti posebej, zato ima vsaka nit svoj
preureditveni izravnalnik.

IstoCasna vecnitnost je podobna drobnozrnati veCnitnosti, vendar se niti
ne izmenjujejo v vsakem ciklu, temvecC ko pride pri niti do Cakanja.
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Paralelizem na nivoju niti

|zvajanje treh niti (vsake posebej) pri 2-izstavitvenem superskalarnem procesorju
(brez isto€asne vecnitnosti)

NitA | A1 | A2 A3 | A4 | A5 AG | A7 | A8
Nit B | B1 B2 B3 (B4 |B5|B6 | B7|B8 3*12=36 urinih period
NitC|C1|C2|C3|C4 C5 | Cob C7|C8

1 12
Urine periode —»

L LA A3 | A5 A6 | A8 . _
Nit A 9 urinih period
A2 A4 A7
Nit B B1 B2 B3 | B5| B7
I . . .
B4 | B6 | B8 9 urinih period
Nit G C1|cC3 C5 c7
it . :
C2|ca C6 cs 8 urinih period
2*9+8=26 urinih period
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Paralelizem na nivoju niti — Primerjava pristopov

Primerjava: vecnitnost pri 2-izstavitvenem superskalarnem procesorju

Nit A | A1 | A2 A3 | A4 | A5 A6 | A7 | A8
Nit B | B1 B2 B3 |B4 |B5 | B6 | B7 | B8 3*12=36 urinih period
NitC|C1|C2|C3|C4 C5|C6 C7|C8
1 12
Urine periode —»
A1 |(B1|C1|A3|B2|C3|A5|B3|C5|A6 |B5|C7| A8 | B7 .. .
Drobnozrnata L 14 urinih period
vecCnitnost | A2 [ )C2 | A4 C4 B4 | C6 | A7 | B6 | C8 B8
(i;o?o_frnaﬁ A1 |B1|C1|C3 | A3| A5|B2 | C5| A6| A8|B3 | B5|B7| C7 | 14 urinih period
ecCnitnos
(,preventiva®) A2 ( C2 |C4 | A4 C6 | A7 Sl Rl e .. .
” — 22 urinih period
Grobozrnata | A1 B1 C1|C3 A3 | A5 B2 C5 A6 | A8 B3 | B5 | B7 C7
Vecnitnost Il 1, c2 | c4 A4 cé A7 B4 | B6 | B8 c8
(,daljsi zastoj*)
Istoéasna A1 ’Bl C2|c4|A4|B2|C6 |A7 (B3 |B5|B7|C7 12 urinih period
veénitnost A2 (c1)c3|A3|As |cs | a6 |As|Ba|Bs | B8 |Cs P
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4.9 Paralelizem na nivoju niti

Ker je veCina danasnjih procesorjev superskalarnih, je najvecCkrat
uporabljena istoCasna vecnitnost.

Smatramo lahko, da istoCasna vecnitnost poveCa zmogljivost
superskalarnih procesorjev.

Niti si delijo vire v procesorju na razlicne nacCine
m Viri so lahko fiksno razdeljeni med nitmi
m vire si lahko delijo po pravilu “kdor prvi pride, prvi melje”

m dodeljevanje virov je lahko dinamicno — drugacna pravila
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4.9 Paralelizem na nivoju niti

IstoCasna vecnitnost ali ,Hyperthreading® na Core i7

ITI —-— PC

=
=

VY

l-cache and Fetch  Allocate/ Reorder Scheduler Registers Execution  D-cache Register Retirement
micro-op cache queue renaming  buffer write queue

Niti si delijo vire v procesorju na razlicne nacine
= Viri so lahko fiksno razdeljeni med nitmi
= Vire si lahko delijo po pravilu “kdor prvi pride, prvi melje”

= dodeljevanje virov je lahko dinami¢no — drugac¢na pravila
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4.9 Paralelizem na nivoju niti

IstoCasna vecnitnost ali ,Hyperthreading® na Core i7
Primerjava ,SMT" vs ,non-SMT"

2.007 Recall that anything above 1.0 for
energy efficiency indicates that the
feature reduces execution time by

‘ O Speedup —— Energy efficiency ‘

1.75 4 more than it increases average
power.

i7 SMT performance and energy efficiency ratio

Figure 3.33: The speedup from using multithreading on one core on an i7 processor
averages 1.28 for the Java benchmarks and 1.31 for the PARSEC benchmarks
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4.9 Paralelizem na nivoju niti

Primer (kaze tudi na slabosti vecnitnosti):

Dve niti, ki za dobro delovanje potrebujeta vsaka
predpomnilnika.

= Ce se izvajata lo&eno:

delujeta dobro, z malo zgreSitvami v predpomnilniku, ki pa povzrocajo
Cakanje.

s Ce tecdeta istodasno:

je pri vsaki veliko Stevilo zgresSitev v predpomnilniku in je delovanje
lahko precej slabSe kot brez vecnitnosti
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4.9 Paralelizem na nivoju niti

Intelovi procesorji :

m Intel je prviC uporabil istoCasno vecnitnost (,hyper-
threading”) v 2-nitnem procesorju Pentium 4.

m Realizacija je zahtevala za 5% vec tranzistorjev, po
Intelovih podatkih pa se je hitrost povecala za 15 do 30%.
(pri nekaterih programih pa tudi zmanjsala).

m Pri Core (Intel Core2) mikroarhitekturi je Intel vecCnitnost
opustil, pri mikroarhitekturi Nehalem (Intel Core iX) pa je
zopet uvedel istoCasno vecnitnost z dvema nitma.

OR — 4 — Povzetki predavanj 153 © 2025 Rozman
- FRI



4.9 Pregled dosedanjega razvoja

50 Years of Microprocessor Trend Data
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Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Vir: https://raw.githubusercontent.com/karlrupp/microprocessor-trend-data/master/50yrs/50-years-processor-trend.png
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4.9.4 Nasledniji korak: vecjedrni procesorji:

Naslednji korak izkoriSCanja paralelizma na nivoju ukazov so vegjedrni
procesorji:

m procesi se izvajajo bolj loceno

m Si ne delijo veC naprav !!!!

m imajo na Cipu veC neodvisnih CPE (jeder)

m niti teCejo na svojih CPE -> prava paralelnost

Veéjedrnost :

m korist za proizvajalce :

[1 ceneje duplicirati

[0 »uporabniki naj se naucijo paralelnega programiranja«
m manj koristi za uporabnike:

01 »raje imam CPE z IPC=4, kot pa 8-jedrni procesor«
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