

Audio

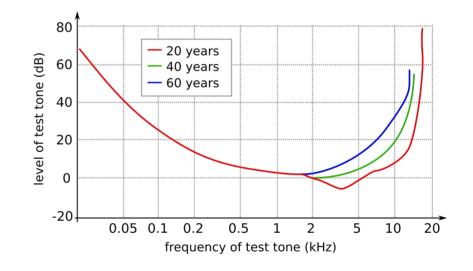
What is sound?

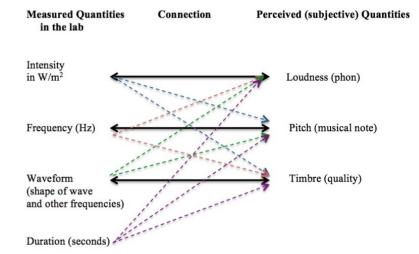
- Wave of pressure in medium
 - Particles repeatedly compressed and expanded
 - Longitudinal waves
 - Requires medium (air, water)
 - Electronic representation audio
- Wave phenomenon
 - Reflection bouncing
 - Refraction angle change when entering different medium
 - Diffraction bending around obstacle

Measurable sound characteristics


- Frequency (Hz)
 - Number of occurrences of a repeating event per unit of time
- Amplitude, pressure, intensity (W/m²)
 - Amount of change over a period
- Duration (seconds)
- Direction
- Speed
 - Speed based on medium
 - Air: ~331 m/s

Human auditory perception

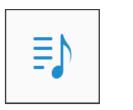

- Sound travels the ear canal to the eardrum that vibrates
- Ossicles amplify the vibration
- Cochlea contains liquid that vibrates
- Liquid shakes hair cells
- Hair cells are sensitive to different frequencies
- Responses are transmitted via auditory nerve


Human ear sensitivity

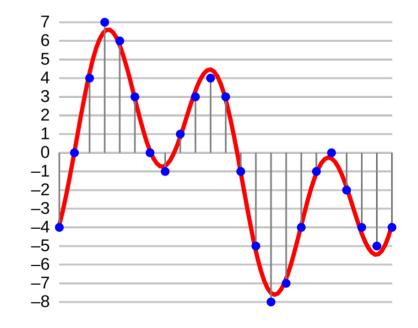
- Frequencies between 20Hz and 20kHz
 - Some have to be louder than other
- Threshold of hearing
 - Amplitude where a pure tone is detected with 50% accuracy

Perception of sound

- Pitch (low/high)
- Loudness (loud/soft)
- Timbre, tone color
 - Combination of multiple frequencies
 - Change over time
- Sonic texture
 - Multiple sources
 - Unison, polyphony, homophony, cacophony
- Spatial location

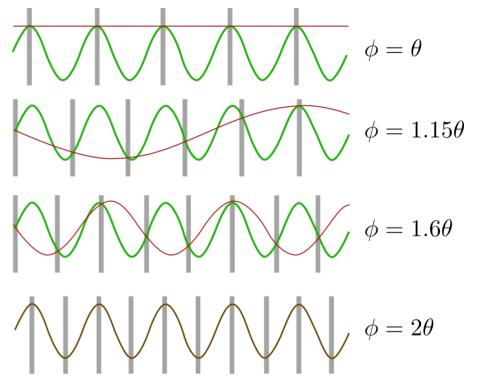


Signal-to-noise (SNR)


- Random fluctuations in signal (noise)
 - Ratio between power of signal and noise (voltage)
 - Measured with decibels (tenth of a *bel*) $SNR = 20log_{10} \frac{V_{signal}}{\tau}$
- Everyday usage
 - Comparison to just-audible sound of 1kHz
 - Conversation: 60 dB
 - Train: 90 dB
 - Pain: 140 dB

Digital audio

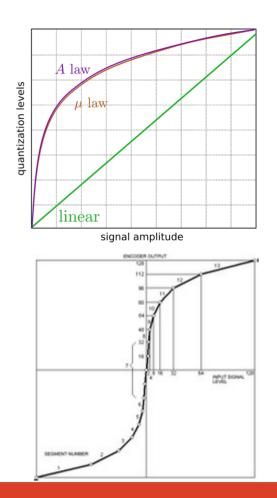
- Digital processing and storage
- Source is an analog signal
- Sampling observe pressure at fixed intervals
 - Aliasing artifacts due to low sampling
- Quantization encode values with fixed interval of integers
 - Quantization noise loss due to rounding



Signal sampling

- Uniform sampling (Dirac comb)
- Nyquist-Shannon theorem
 - Avoid aliasing
 - Band-limited signal
 - Sample rate twice the maximum frequency
 - Low pass filter (< f/2) + Sampling with frequency f

 $\theta \dots$ signal frequency $\phi \dots$ sampling frequency

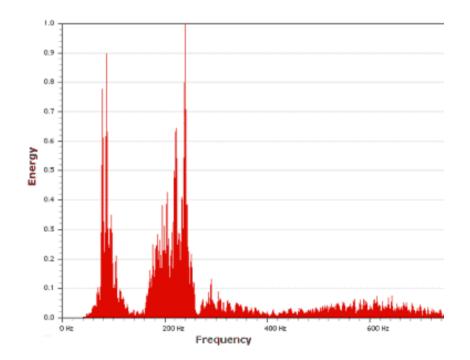


Signal quantization

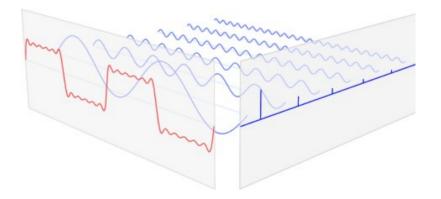
- Assign integer values to measured ones
 - $[-V \dots V] \rightarrow [0 \dots N]$
 - Quantization error (rounding)
- Signal-to-quantization noise (SQNR)
 - Higher is better (more signal vs. noise)
 - Worst case (peak signal) $SQNR = 20 \log_{10} 2^N = 6.02 \times N(dB)$
 - Statistical independence $SQNR = 6.02 \times N + 1.76(dB)$
- 12 bit fine for adequate reproduction
- Dithering
 - Small amount of noise added to the signal
 - Quantization errors are more random and less noticeable

Pulse-code modulation

- Formal term for sampling + quantization
- Linear quantization
 - Uniform levels
- Non-linear quantization
 - Better signal-to-noise ratio for low-amplitude signals
 - A-law, µ-law algorithm
- (Adaptive) Differential Pulse Code Modulation
 - Encode difference to previous value
 - Encode difference to predicted value

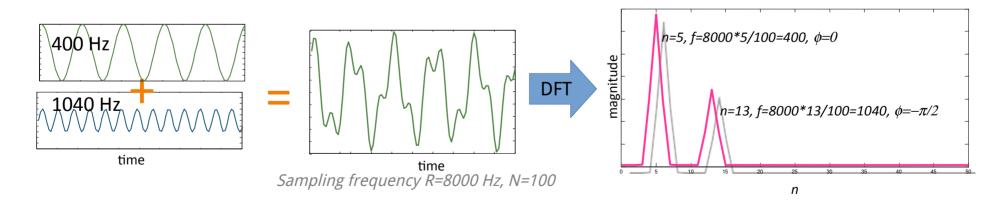


Frequency spectrum


- Linear combination of basis functions
 - Sinusoidal (sine and cosine) repeatability
 - Coefficients presence of individual basis functions

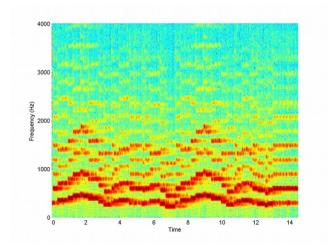
Fourier analysis

- General functions represented/approximated by sums of simpler trigonometric functions
- Decomposing signal into base sine waves
 - Frequency distribution
 - Simplifies certain operations
 - Fourier transform
 - Inverse transform


Discrete Fourier Transform

• N point signal described with N coefficients

$$\{x_0, x_1, \dots, x_{N-1}\} \to \{X_0, X_1, \dots, X_{N-1}\} \qquad X_k = \sum_{n=0}^{N-1} x_n \cdot \left[\cos(2\pi kn/N) - i \cdot \sin(2\pi kn/N)\right]$$


• Fast implementation (FFT) $O(n^2) \rightarrow O(n \log n)$

Short-term Fourier Transform

- Computed for a time window
 - FT captures overall signal properties
 - STFT Captures changes in the signal
- Windowing function
 - Type, size, hop
- Visualization
 - Spectrogram
 - Log-scale, colormap

Analog vs. digital audio processing

- Analog processing
 - Continuous signal electrical current or voltage
 - Processing done via electronic components
- Digital processing
 - Sampled signal
 - Processing done on general purpose computers
 - More powerful and efficient

Audio filter

- Analog audio filter
 - Medium that transmits and modifies audio signal
 - Electronic components
 - Speakers cannot cover entire spectrum
 - Mouth cavity changing shape
- Digital audio filter
 - Algorithm that operates on digital signals
 - Approximation of analog filters
 - Better SNR

Filter taxonomy

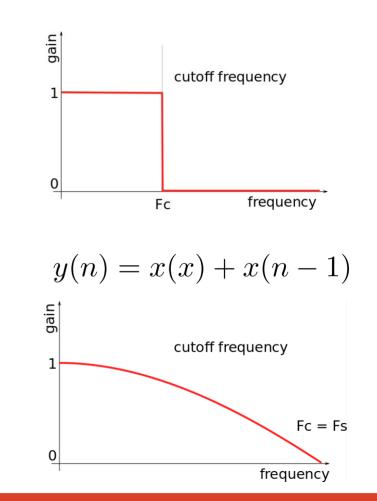
- Linear filters / Non-linear filters
 - Is the output result of a linear difference equation?
 - Non-linear filters create additional frequency components, not present in the original signal
- Causal / Non-causal
 - Is the output result only of past values?
- Time-invariant / Time-variant
 - Is the output the same if we send it to the filter a bit later?

Linear filters

$$y(n) = b_0 x(n) + b_1 x(n-1) + b_2 x(n-2) + \dots - a_1 y(n-1) - a_2 y(n-2) - \dots$$

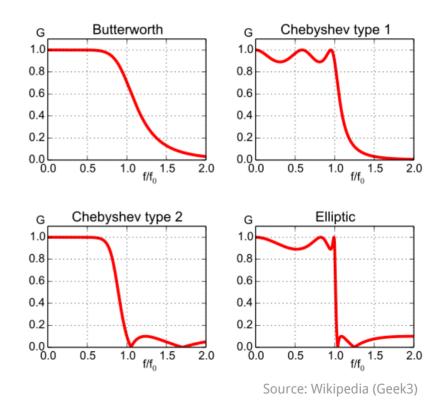
Output Input Past output

- Non-recursive filters (FIR): $a_n = 0; \forall n > 1$
 - Finite response
- Recursive filters (IIR)
 - Potentially infinite response
 - Implementations more compact

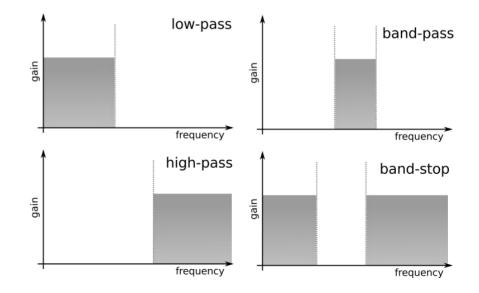

Frequency-response analysis

- Compare input and output frequency spectrum
- Only possible for LTI filters
 - Retain sinusoidal signal
 - Observe parametric properties of elementary inputs

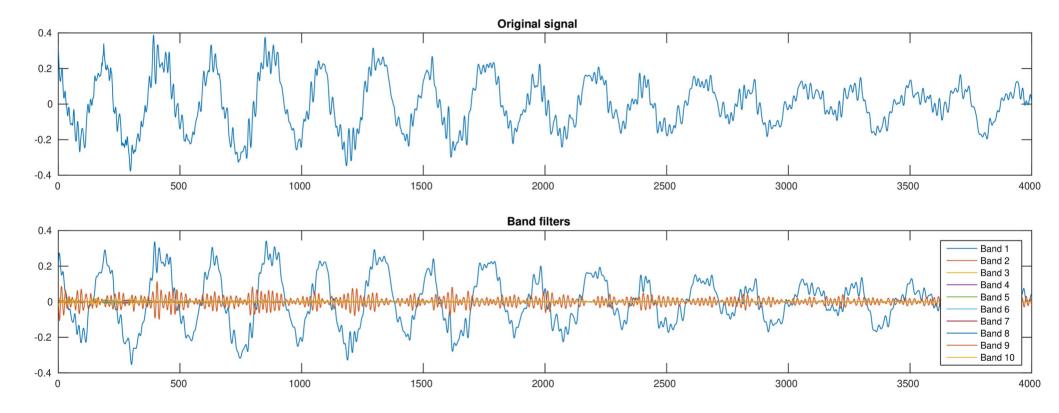
Low-pass filter


- Ideal low-pass filter
 - Requires infinite signal
- Simple low-pass filter
 - Cutoff is Fs / 2
 - Transition is very gradual
- Low-pass filter design
 - Delay (see into the future)
 - Computational complexity

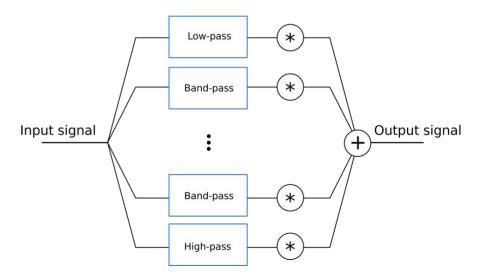
Low-pass filter implementations


- Butterworth
- Chebyshev
- Elliptic

Frequency filtering

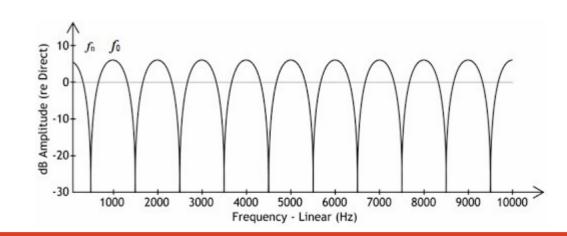

- Combinations of prototype low-pass filter
- Pass only frequencies in passband
 - Low-pass
 - High-pass
 - Band-pass
 - Band-stop

Splitting frequency bands



Audio equalization

- Multi-band signal can be combined back
 - Split signal into multiple bands
 - Weight individual bands
 - Combine signal again

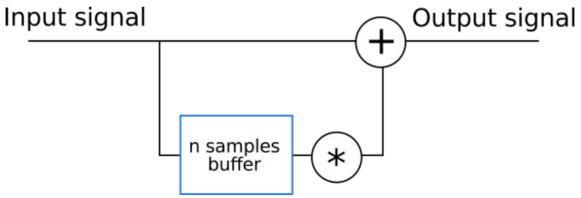


Comb filter

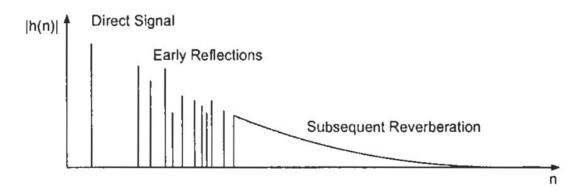
• Basic building block of many effects

$$y(n) = x(n) + \alpha_1 x(n - t_1) + \alpha_2 y(n - t_2)$$

- Constructive, destructive interference
- Feedforward (FIR)
- Feedback (IIR)

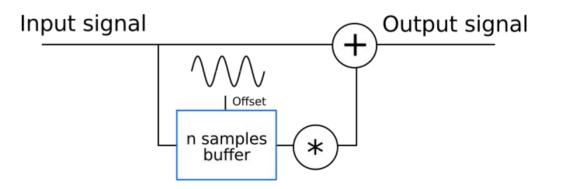


Delay


- A time-shifted signal is added to the original
- Delay below 50-100ms is not perceived as delay

Echo

- Echo filter simulate acoustics of a room
 - Multiple decaying delays early reflections
 - Subsequent reverberation random signal



Flanger and phaser

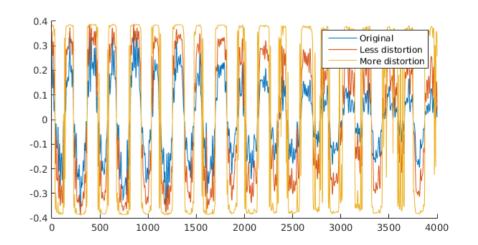
- Delay varies with low frequency
- Feedback loop
- Time-variant filter

Chorus

- Sounds with almost same time and similar pitch
- Naturally: choir, string orchestra
- Similar to flanger
 - Longer delay times
 - Different combing effect

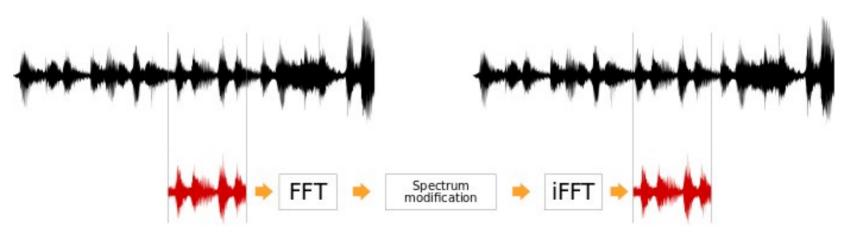
Non-linear filters

- Not describable by a LDE
- New frequencies in the signal
- Noise removal
 - Median filter
- Dynamic range compression
 - Companding handling dynamic range
 - Clipping amplitude clipping
 - Distortion non-linear amplitude modificaton


Distortion

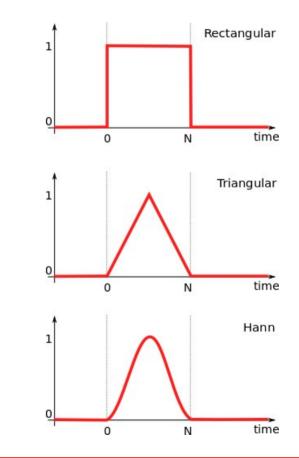
- Overdriven guitar effect
- Clipping of high energy frequencies
 - Soft clipping
 - Hard clipping

$$y(n) = \frac{(1+k)x(n)}{1+k|x(n)|}$$

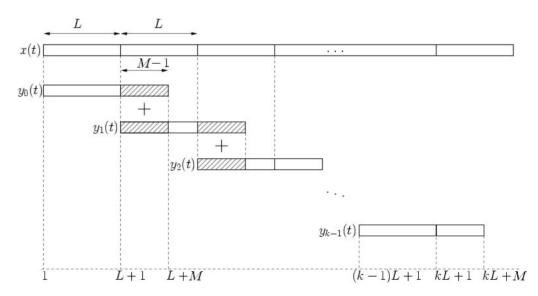

Changing playback speed/pitch

- Sample rate conversion
 - Timing is changed
 - Transposed pitch (chipmunk effect)
- Frequency domain
 - Process windows (STFT)
- Time domain

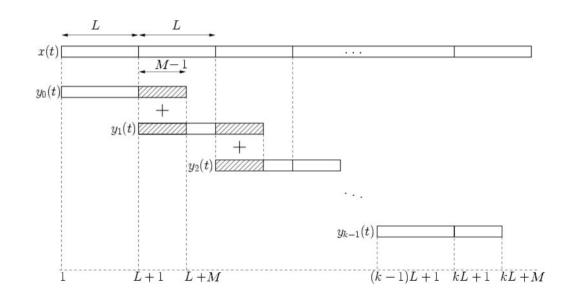
Spectrum Analysis


- Process signal in small segments
 - Simulates human perception (10-20ms segments)
 - Computationally efficient (STFT)
 - Transient events (e.g. percussion)

Extracting a segment


- Window function
 - Filters out a short segment of signal
 - Zero outside the interval
 - Symmetric (typically)
- Spectral leakage
 - New frequency components
 - Time-variant functions (windows, Dirac)
 - Side-lobes, cross-talk
 - Windows distribute leakage differently

Overlap-Add


- Combine frames back to a signal
- Constant Overlap-Add
 - Hop size
 - Overlap size

Convolution with Overlap-Add

- Efficient convolution implementation
 - Interval size L
 - Filter size M
- Convolution is multiplication in Fourier domain

Vicos suaignitive ystemslab

Time stretch

- Short, smoothly windowed block of samples
- FFT transform
- Processing to the Fourier transform
 - Resampling the FFT blocks
- Inverse STFT
- Combine blocks (overlap-add)

Pitch shift

- Preserve time, shift pitch (frequencies)
- Using time stretching
 - Stretch time
 - Re-sample to original length
- Modification of sinusoidal model

Filter banks

- Set of filters that decomposes signal into components
 - Efficiently implemented using STFT
 - Shared computation
- Vocoders
- Compression (MPEG)

Common digital sound parameters

Use case	Sampling rate	Bits per sample	Frequency band (Hz)
Telephony (GSM)	8.000 Hz	8	200-3400
G.722 (voice over IP)	16.000 Hz	14	50-7000
Audio CD	44.100 Hz	16	5-20k
Digital Audio Tape, Dolby AC-3	48.000 Hz	16	5-20k
High-quality acquisition and reproduction. Supported in DVD-Audio , Dolby TrueHD, DTS- HD	96.000 192.000 Hz	24 (max)	0-96k (max)