STM32H7

Vhodno / izhodne naprave

USART Serijska komunikacija
Z uporabo DMA krmilnika

rrl OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

Fri

STM32H750XB

ELE
ITCREWCLE
ITDCSKTD, JTDY,
TRICGEGH
TRAGEGHI

LCDL RT3 LCD G{T-0
LCD BT LCD_HEVMC,
LED_WEYKE, LCO_DE, [00_CLK

30, LD CH,

BOBAC: D7) EDMME_DET J\pj
SDMMC_ [Nk, SOMMC_Dar
Chimin

HEYNC, VEFNC, PINCLE. O{134]
[
et

0, 508, 15, WGLK, DERY,

0,500 F5, WELK. S92 T]
B0, B FE, WELK, w‘ﬂ
et
[
1ol char [T 7_EHING |

1 chun. (TIWHT_CHA, BN s AE]
gt s TH, G

Eooegl chon (TS5 _CHI| 1 T
2 chan. [TR_CHIS(1, SR A
ha b, S0, WSS 58 A
WML M0, B NS |

00, 50, G, V5, WCK. a5 A

e 1 TR TS AR

AL T, 508, TS, IS A

4 ol chen, (TIV1_CHA1I1 AR
o (L

A ctan [TRA_Col[14ETS]

U0 10 17 g i
oaren kAL a2

[ESTER]

]

D, B0 P2, WCLF]

Ok £, G431 e

P P, e]
SN 0T 5.

LTIV O e AF
LETILAG O pa A
LETIVG_CLIT 58 A5

BCL, D, EMBAL m AT

WOS, WIS, SCK PSS
S0, B0, 04, W, WAL o AF

P, TH, K

LPTIG 1, LFTIME 2 i
LPTIE_CUT,

. RS m AT

Fa— &

oo | fes]

i m]

[ooty bieex k:;l
=

HATIM

DFSDMT

a3

SA12 L

T 3

SFI5

TIMAT
TIME

TIMIG

BRI

EPI11ZE1
o, WRARTH
=y ARTT

TIMUFW

TIMBFWNN

ofF o o,
e /

T &,
METLLRTER OF D800

[Ao e
[GFI0 PORTA. J|un

GP 10 FOATE

ShM
COMP AT
LTS
LTS
LFTi3

Ce
SPIBAREE
TPUARTT

E
5 LIRS
E]] [, 1 s, ETR o8 AF
3 g o T s ETaF
ThT
[| L K This v, ETR i AF
| | = i
R
s -
|- g TIMRZ evaviatn AT
ez 200 I ETE] ——
[TIE res——
TSR T,
I usARTE T e
o, T S0
1 T TS
UART4 RX, T msAF
I UARTS R, T amAr /
URRTT W T
I UARTE . TG 88 AF
| WD, 5O, MES
SPanz32 DO, BN, GK W,
1 .
- S0,
= (EEE 501 O VRN 35 AF
H TeamE| | (g
o
E EEE UL S06 S aF
-) o, won
e TT-FOCANT]] T AK
FOCANE |5 K
E USECR
ElS ERDIFF T 1k
=i =
HOMI-CED CEC o hF
]1 OAC 1, DR EATE a AF
Ao I FTINT]
Reset & |
conircl I CIPAMPLEY
T
b] R L [rotanac o = 1 6w 3 v
v Vo v 4%
; m oo = 1 awian'
£ 33t 1Y s

S

BTC

NHLFS B
MSwS06E3E

Centralna
procesna enota

——
—
Registri

Vhodno~izhodni

Glavni
pornnilnik

Vhodno—izhodne
naprave

OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

Delo na STM32H7 razvojnem sistemu
Prikljucitev :
» Mikro USB priklop na daljsi stranici (nad LCD, sredniji

')

Poseben zacetni projekt (github) in info za STM32H7 (e-ucilnica):
 dodajanje vsebine (Main.s):

E CubelDEWorkspace - stm32h7-asm/Core/Src/Main.s - STM32CubelDE
File Edit Source Refactor Navigate Search Project Run Window Help,

il g | ® > | v G@iw| R R A Bryefr @ v HvO R y® Iy HETHYFroDE
5 Project Explorer % S5 Y 70 @Mains % 8 startu / stm32h750xbhx.s
~ 1 CubelDE_Workspace 12

L3/LPTLLETTEITIIIET LRI LTI E LA L E LTI TP T

O stm32f4-asm-gemu
= Delo
= ARM9Template

14 // Definitions

IS//ILEEEEITTTTI LI LT P I TE LRI T E LA LTI LI TP EI L LR R T I L E i
16 // Definitions section. Define all the registers and

IE stm32f4-asm (in STM32AsmTemplate) 17// constants here for code readability.
18

= ARM9Te late.zi
?mpa“'p 19// Constants
[E Node_V4 (in node_v4) 20
v 2 Sluzba 21
I CAN_IEX_Module 22// Start of data section

STM32H750B-DK Discovery kit with STM32H750XB MCU

v = ORLab-STM32H7 2:31 -data
* [stm3zh7-asm 25 .align @ | QRLab-STM32H7 - GitHub repozitorij
Binaries 26
il Includes 27STEV1: .word @x18 // 32-bitna spr. B User Manual Discovery kit stm32h750xb Uploaded 11/11/22, 10.15
v & Core 28STEV2: .word ©x4e // 32-bitna spr.
. 29VSOTA: .word 2] // 32-bitna spr.
& sre 38 . B Datasheet_stm32h750xb Uploaded 11/11/22, 10.16
[8 Main.s §31
v & Startup 32// Start of text section ﬁ Reference Manual rm0433-stm32h750xb Uploaded 11/11/22, 10.17
18 startup_stm32h750xbhx.s 33 Jtext
& Debug B .) = Programming_Manual_pm0253-stm32h750xb Uploaded 11/11/22, 10.17
= out 35 .type main, %function
) 36 .global main ﬁ
L& makefile 37 Errata_es0396-stm32h750xb Uploaded 11/11/22, 10.19
= README.md 38 .align
E STM32H750X.svd 39main
N % STM32H750XBHX_FLASH.Id 2? ig" "23 =S;EV1 M{/VNE;!O" od STE‘I’l -> "96 .
& STM32HT50XBHX RAM.Id ps rril, [re] sebina iz naslova v r >
& READMEmd 43 ldr re, =STEV2 // Naslov od STEVL -> r@
v = RALab-STM32H7 44 ldr r2, [re] // Vsebina iz naslova v r@ -> r2
[stm32h7-asm_RA_LED 45
= READMEmd :s add r3,ri,r2 // rl +r2 ->r3
[T STM32_USB _Key_AdvDebug a8 ldr r@, =VSOTA // Naslov od STEV1 -> re
[STM32_USB _Key FreeRTOS_AdvDebug 49 str r3,[re] // iz registra r3 -»> na naslov v re
= STM32Cubel DE_Adv_Debug 50
1= STM32F4_Discovery_VIN_Projects 51__end: b __end

FFil OR - Organizacija racunalnikov 3

http://www.fri.uni-lj.si/si

STM32H750B-DK - Schematic

Figure 5. STM32H745!-DISCO and STM32H750B-DK Discovery board bottom layout

®
TAG connector ARDUINO® connectors

STMod+ connector

o GG (CN2, CN8)
- USB power connector
: Ethernet connector NS o e
ﬁ[;-} MEMS microphone (CNT) STLK USB connector
R (CN14) I
N N N 4
[
Reset button . . § Power header (JP8)
(B2) r g
'] = H < .
L B
] Ms 3= RGB LCD connector USB OTG FS connector
- 88 N} (U33) (CN13)
— | [=% -
23 o= 5_} ARDUINO® connectors
Q’r%- = 35:) . MCU (CN3, CNT)
S8 @5 o (UB) |
£ > EH: Power header =r— FDCANS (U21, U22)
‘ee ™ P
L - SDRAM — eMMC (U11)
- } (u7) .] Line in connector (CN8)
: : i
Ethernet 00"':'8?}‘1’; — g: "fJ E E Audio codec (U15)
-] Q-SPI ! ‘!' H I?I!I iy pee b2 B Line out connector (CN9)
= !_:'S{::| (U1, U2) X §_adig
R T ° |
User LED: STMod+ STDC14
ser S
connector connector
(LD6/LD7/LD8) (P1) (CN14)

rrl OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

. P, ow, 5T,
pp— SIS e
PN, vEuE
pariphas PIUI: :’;nnf he f ,
wiou | [orow [oo [_
A RS EHY PHY
OTG_HY |OTG_FSH
Aem GRU P -
T Corme-MT e ey
ITCRSCLE racma AR WMHZ
ITDCESMD, JTDY
TRACECK
TRACEDHLE
051020 B B
cormen 1o A1 4.2
=
[Eer canirn
LCD_AIF3, LD GIT21 [, T vt ETR i AF
LG BT LGD HEYSC, AAVASE (D0
LGD_¥EYKC, LGD_DE, LGD_CLK g TIME A . ThiE v, ETR i AF
T gy TN vt ETH i AP
BOMC DT Ls.(uut. k] SWIFMI
DG DO, SO
‘G, chns o5 rﬁ¢ m VM5 s
e [y TIMNZ vty naAF
— T S
N TIME § el na AF
HEYNC, VEFHE, FCLK 012 — o —
WRTIRA_CHEA &) USART, X T SCE, GTE,
RTRT_FLT}E)) HRTIMA FTS an AF I
I _FLT]3AL b, 575 = R]
ST CHEAS USARTS o
CESDMI_CATARE: .':] DFSDM1 I . TS, TS A
DFECR Y CHIMA S
5D, 5O, 5, WOLK, DTH: 1) -::l aal3 I UART4 K, T muhF I
e LARTS K TE
B0 B0, P, MGLK \xpuu.-\.c] saz l e I 1
3’.\.83*.‘&.!.:::;]'0.'.3;’ Bal 3 UARTR . TX J!lfﬂ
WIS BISD, 50N KES a8 AF EFIS SRENZEZ e :—;‘ -
o ptena_tHw
|M|TTMT;';:||1 umu.-.rl] TIM7 EoE] WL MO, BRI
1 cormpd. o [T E_CHIR T
Vst [TIWN1E_CHY, BN A [FREE SCL I, SURAL 31 AF
F onegl ohan T 35_CHI[ERL TIKIG § f
Zchar, [TR_CHIZ1 7] BRI aa. i TSN £ BOL S04 ML 4atF
W v, 505, KBS 04 AF SPH — o H
_ MOGLMEG, 5OK Nes | =T ; ECLEMELE] B Bl M e tF
5050, R e WCH a4 AT Mo, W
' RE T SR, OTR RTS M AF o, WRARTH = —
X e
" . i I
- FTE S0 CTS T e USARTH I Ty -
3 TFAM 1o s [weeen |
TIMEFWM @t! 54 K8 ERAM I—"‘E&‘W—‘ EPDIFRAT 1) o AF
HOMICEC CECamAF
o2 = =
3 U, AC CUT2 e A
LS] BP0 PORTA.. J 2
PHIT) G FORTE RoC LETIM i
Resct & _
canirel CFAMPLEL
SAH]
COMP1AT
LFTRS
VREF
LFTIA
BYSCFG
LETIMG CLIT a8 AF LT3 WAL 2 bl
EXTI WHUP 4
SCL, 5D, SNBAL m AT 1204 L1~
B IWOE Bachup registers
WO, MED, SCK NS5
3 516258 e
i e Vel bl Temperaie o [las L
' R, TH CK, CT5 TS mmar LEUARTT snsor P
—r T, T P, LATTZ co__FERE__| VRLAT = 113 36
e s =
o1 | IR T _..
[n G_BuT
XN
=
EUFPLY SUPERVISION
i1 [(eey=
- & N WEUHS
M S S0EIE

rrl OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

DMA- SplosSno

Primer 1: CPE opravlja prenose V/I <-> pomnilnik
+ Caka na zastavico
 IdrRx, ... instrRx, ...

Processor
Core

Register

load store

Peripheral

Data Register

Primer 2: DMA opravlja prenose V/I <-> pomnilnik :
* CPE nastavi DMA krmilnik za prenos :

* Vrsta prenosa, naprave Processor
* Naslovi vira in ponora Core
* Velikost in Stevilo podatkov

» Sprozi prenos Register

* DMA krmilnik (neodvisno od CPE):
» Caka na zastavico

CPE zasedenost

brez DMA

z DMA

Hitrost komunikacije

Peripheral

Data Register

* Prebere in shrani podatek
* odSteva preostale podatke in zakljuci prenos

* CPE izvaja svoj program

rri OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

Fri

DMA- SplosSno

Case1: In this example, filling the first and the third buffer took the exactly the same time, while copying the first buffer
to the second one took slightly less time:

FillMemory()

CopyMemory () 842 pS

CalculateFibonacci()

While the DMA cannot be used to compute Fibonacci numbers, or initialize arrays with non-constant values, it can be

used for copying data between 2 memory locations.
Now the DMA operation ran in parallel with the CalculateFibonacci() function, reducing the overall program time by

21%:

FillMemory()
661 uS
oo
D s
Case2: CRC calculation case: UART Duart |
The results are in: 2C Fo

80 DMA CRCs per second.
63 manual CRCs per second

On my processor, DMA gives a 27% advantage over iterative memory assignment. | think it is because everything
is done with a hardware mover that doesn’t have to increment, involve registers, gotos, branch less than, and so on.

OR - Organizacija racunalnikov 7

http://www.fri.uni-lj.si/si
https://visualgdb.com/w/wp-content/uploads/2019/06/timing1.png
https://visualgdb.com/w/wp-content/uploads/2019/06/timing2.png

FRI-SMS: DMA Krmilnik (PDC — Peripheral DMA Controller)

MASTER s— 5 AVE

\ g

S

{:‘-‘

&
-:»&ﬂﬁf%k "Sﬁ & eﬁé:e, S é%@g g‘iﬁﬁi e ‘:ﬁoﬁ
LA ¢¢¢¢¢¢¢¢¢ 1118 1‘ ¢¢ ¢¢
TET —3 c?r?éull-nlar TR Sskcion and Boundary Scan |
Fio] | = A \ \§\+T|rn+atltmu tor ¢T¢¢¢TTH T 'L'l¢l
1RO IR .":’ AR ELS Processor 10100 Ethernet Image LsB
DRI <> [—— 0BG \ ﬁ&{ﬁ Mac Inerfacs ORI
Lot | b S s |\ | S
[FMC _ B Wahce LA CikdA CikdA
PLACA —»] FLLA 1 \ \ |:|\|] ‘l
ot) — |
wor T emr \ &-layer Matrix

OECEEL —m

4GPRE
)

N2 —M ome | n — _\“
]
] |
-

[Fce || I

| ricz |||

WDDCORE ——

MRAST o

APE

Y 1

parpheml | | 22-channal
Bridgs Parphsml
CMA

Y

1y

v

v

N\ v

LSARTD
LISARTH
LISART2
LISARTL
USARTS
USARTS

SH0
SPH

TCO
T
T2

TC3
T4
TCE

v

xvvey v Tyl

reveeer Lve v vwelvy 11

cee
4-channel USE
10+ bit ADC .
Transcsiver

Do-D15

ALUNBSE0

EBI

ATMBS2NWRE2

-A1S, A18-AX0

IF be=hi

NAND F k=h

YYYYYYYY
"B

==
[¥]

CE1EDes
3 MRLFCFOE

- MWRNNWE/CFWE

SDRAM

Cantraler

Shatic

Memory
Conteler

ECC
Controlier

&> NOSACFos0
g NOESICFCRA
g ADEICFRNW

3 CFCEI-CFCER
g NCE2, NCSE, NOST
> NCSANDCS

GO 4%

SN

&

&

Fri

R

ﬁ?@"

FITE T3 LI '¢ J
S ﬁﬁ@ﬁ%\:ﬁﬁﬁﬁ@w*@ de S oo &

SPI0_, SPI_

OR - Organizacija racunalnikov

e

AT A R

¢¢

‘iﬂ

http://www.fri.uni-lj.si/si

DMA V/ prenos

FRI-SMS: DMA Krmilnik o

CPE Pomnilnik +
DMA krmilnik

« 22 DMA kanalov

Inicializacija DMA krmilnika vodilo
a prenos

Ukaz za prenos

* V/l naprave z DMA kanali
« DBGU, SPI, USART, SSC, MCI, EMAC, ISI, ADC

* Hkratno dvosmerne V/I naprave (full duplex) imajo dva DMA kanala

* Enosmerne in izmeniéno dvosmerne (half duplex) V/I naprave imajo po
en DMA kanal

* Preprosto programiranje. Potrebno je vpisati le:
* zacetni naslov in
* dolzino bloka za prenos

* DMA krmilnik je dostopen preko naslovnega prostora vsake naprave
posebej od odmika 0x100 dalje

FFil OR - Organizacija racunalnikov 9

http://www.fri.uni-lj.si/si

DMA- STM32H7 (stikalna matrika)

Primer 1 (brez DMA): CPE opravlja prenose V/I <-> pomnilnik

» Caka na zastavico Flash m
X Memory
(]
Idr Rx, ... in strRx, ... 2 Store data to RAM
Cortex-M 4 LCD USART2 USB20FS
Processor Core / AHB to APB APB1 TIM2 USART3 DAC1
G * Bridge 1 TIM4 SPI2 DAC2
m\ —_L 42 TIM6 12C1 USB RAM
~_ AHB TIM7 12C2 WWDG
~+ 1 BusMatrix 1. Load data to
= CPU registers
S e - ;| USART1 ADC
. AHB to APB EXT TIM9
DMA Engine ¢ ¢ Bridge 2 WKUP TIM10
SPI1 TIM11
A A
DMA Request
DMA Request
Primer 2 (z DMA): DMA opravlja prenose V/I <-> pomnilnik :
* CPE nastavi DMA krmilnik za prenos :
Flash
* DMA krmilnik (neodvisno od CPE): Mernory
) . . Cortex-M : LCD USART2 USB2.0FS
« CPE Izvaja SvOj program Processor Core . AHB to APB | APB1 | TIM2 USART3 DAC1
- * > Bridge 1 TIM4 SPI2 DAC2
registers \ TIM6 12C1 USB RAM
Store data to RAM TIM7 12C2 WWDG
HllE \ _without involving CPU
Bus Matrix N g
— —A—PB; USART1 ADC
. AHB to APB EXT TIM9
DMA Engine = = Bridge 2 WKUP TIM10
SPI1 TIM11
A A
DMA Request
DMA Request

rri OR - Organizacija racunalnikov 10

http://www.fri.uni-lj.si/si

DMA - STM32H7

3 Figure 1. System architecture for STM32H742xx, STM32H743/53xx and STM32H750xB devices
S ITCM ~ Nz S
2 ITCM-RAM AHBP z]lg e 2 ||z |22
AHBS Nalla W=l 2 [IPT]PT
\ [l o =] cﬁ (=] i
==L 7
HIEF
SDMMC1 |IMDMAJIDMA2D||LTDC D1-to-D2 AHB busl I
2 “HEEE
e 2 Blz| BZ
< Vs 1
[0 APB3
. !
AHB E |
o 424 faves < |— : : ,
o ° AXl " Flash a .)
Bank 1 -
Bank 2"
Y 1 J AXI
2 . .
& I\)| AX| o/ AXI .
] 1 | SRAM
P
@ - - {]
< GPV 64-bit AXI bus matrix
~ D1 Domain
D2-to-D1 AHB bus {
32-bit AHB bus matrix
D2 Domain
D2-to-D1 AHB bus
D2-to-D3 AHB bus
flash memory bank 2 is not available on STM32H750xB devices. D1-to-D3 AHB bus BDMA
jm]
Legend i
TCM AHB
32-bit bus |AX| | APB] 0 AHB40—i] APB4
64-bit bus Lmmmmm) Master interface |
[] Bus multiplexer (BRI, Siave interface l-
32-bit AHB bus matrix | Bckp SRAM ||
v D3 Domain
\

aInjoa)iyaJe snq pue Aowa

CEVONY

rri OR - Organizacija racunalnikov 11

http://www.fri.uni-lj.si/si

DMA - STM32H7 + USART3

CHE T T

- = = =

i tj}uww #o0 TX

Ok 2% DB 4 7 P’f

rri OR - Organizacija racunalnikov 12

http://www.fri.uni-lj.si/si

Ponovitev OR-LAB 10: USART
Viri USARTJ3 : User & Programming manuals, vezalna shema

IS71 UM2488 ‘,’ e uamented RM0433

Reference manual

. — : advanced Arm®-based 32-bit MCUs
Discovery kits with STM32H745X| and STM32H750XB microcontrollers : X
48 Universal synchronous/asynchronous receiver
transmitter (USART/UART) i 2039
- :’h'”:::R?SM_ FI'_°:1rf — vl GOM port of the PG e 6 the STLINKAS 49 Low-power universal asynchronous receiver
e serial interrace Is directly available as a virtual port ol e , connected 1o the - =
USB connector (CN14). The virtual COM port settings as the following: transmitter (LPUART) """"""""""""""""""""" 2127
+ 115200 baud ()
8-bit data Tapla 8. Register boundary addresses'"’ (continued)
No parity Boundary address Peripheral Bus ‘ Register map
1 stop bit
no flaw conirol 0%40005000 - 0x400053FF UARTS Section 48.7: USART registers
APB1
0x40004C00 - Ox40004FFF UART4 (02) Section 48.7. USART regisfers
0x40004800 - 0x40004BFF USART3 Section 48.7: USART registers
Ve za I na s h ema 0x40004400 - 0x400047FF USART2 Section 48.7: USART registers
Table 395. USART/LPUART features
USART modes/features(!) USART1/2/3/6 UARTA4/5/7/8 LPUART1
DEBUG ST Hardware flow control for modem X X X
L a Rl
< 2 TR Continuous communication using DMA X X X
¢ SWCLE i icati
20t . Multiprocessor communication X X X
5
§ |h?|l|.1| % L_ITD Synchronous mode (Master/Slave) X -
¢ VT T Smartcard mode X - -
_VCP TN Single-wire Half-duplex communication X X X
RESET
g ”m'l_":_."\l B3 SR OSC TM IrDA SIR ENDEC block X X
LIN mode X X
Dual clock domain and wakeup from low-power mode X X X
Receiver timeout interrupt X X
VCP TX Pl IJLN Modbus communication X X
— PBI10
VCP RX P12 PBI1 Auto baud rate detection X X
ren per Tia Driver Enable X X X
USART data length 7,8 and 9 bits
Tx/Rx FIFO X | X | X
Tx/Rx FIFO size 16

1. X =supported.

https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface %28USART%29/index.html

rri OR - Organizacija racunalnikov 13

http://www.fri.uni-lj.si/si
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html

USART — krmiljenje

1. INIT_USARTS - Inicializacija USART3 naprave (prejSnja LAB vaja)
Potrebni koraki za krmiljenje USART naprave:

1. Vklop USART3 naprave
. RCC_APB1LENR : b,g=1 (USART3 Enable Clock)
2. Nastavitev GPIOB priklju¢kov 10,11 na AF7(Alt. Function?)
. RCC_AHBA4ENR (Peripheral Clock Register): b,=1 .. Port B Enable
. GPIOB_MODER (Mode Register): 0b10, AF on pins PB10,PB11
. GPIOB_AFRH (AF Register): 0x07700 AF7 on pins PB10,PB11
3. Nastavitev hitrosti delovanja (BaudRate)
. USART3_BRR (BaudRate Register): 64M/115200 = 556
4. Sprozitev delovanja

. USART3_CR1 (Control Register 1): ©b1101 TX, RX, USART Enable bits

5. Delovanje
—Oddaja-znaka: DMA omogoc€a delo z nizi znakov !

rri OR - Organizacija racunalnikov 14

http://www.fri.uni-lj.si/si

Vir DMA: Reference manual

Razlike v primerjavi s Cortex M4 (STM32F4):
- DMAMUX omogoca poljubne preslikave

naprav na 16 DMA kanalov

RM0433

K’I f¢-augmented Reference manual

STM32H742, STM32H743/753 and STM32H750 Value line
advanced Arm®-based 32-bit MCUs

Universal synchronous/asynchronous receiver

° DMA napraVi (DMA1 ,DMAZ) delujeta 48.5.19 Continuous communication using USART and DMA
samo v SRAM pomnilnik(e)

* Pozor pri zagonu kode iz RAM-a !

RM0433

transmitter (USART/UART) oot e e e e s 2039
Universal synchronous/asynchronous receiver transmitter (USART/UART) RM0433
15 Direct memory access controller (DMA) 635
15,1 DMAintroduction it e 635
17 DMA request multiplexer (DMAMUX)cccoviunn.. 693
171 Introduction e 693

Table 8. Register boundary addresses(! (continued)

Boundary address Peripheral Bus Register map
0x40024400 - 0x400247FF Reserved AHB1 |Reserved
0x40022000 - 0x400223FF ADC1 - ADC2 (D2) | Section 25.7: ADC common registers
0x40020800 - 0x40020BFF DMAMUX1 Section 17.6: DMAMUX registers
0x40020400 - 0x400207FF DMA2 Section 15.5: DMA registers
0x40020000 - 0x400203FF DMA1 Section 15.5: DMA registers
Kys RM0433 Rev 7 133/3319
__|

OR - Organizacija racunalnikov

15

http://www.fri.uni-lj.si/si

USART + DMA — krmiljenje

Potrebni koraki za krmiljenje USART naprave s pomoc¢jo DMA naprave :

1. INIT_USARTS3 - Inicializacija USART3 naprave
. Enako kot za samostojno delovanje naprave USART3 (OR Vaja 10)

. za sprejem ali oddajo posameznega znaka

2. INIT_DMA - Inicializacija DMA in dodatne nastavitve USART3
. RCC: vklop DMA1 naprave
. Izklop DMA kanalov (RX, TX) in njune nastavitve

. Splosne nastavitve za prenose :
- smer prenosa (pomn.<-> naprava), povec¢evanje naslovov v pomnilniku
. DMAMUX1:
. Moznost poljubne preslikave med V/I napravami in kanali DMA krmilnika (angl. stream)

. Nastavitve DMA kanalov 1,0 in povezava z napravo USART3 (St. 45 = RX, §t. 46 = TX)

. Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:
. Dodatna nastavitev USART3- vklop DMA krmiljenja prenosov na USART3 napravi

3. SND_DMA, RCV_DMA: Nastavitve DMA za vsak prenos

. za sprejem ali oddajo niza znakov
. Naslov podatkovnega registra V/I naprave, pomnilnika in §t. znakov za prenos
. Brisanje zastavic za prejSnje dogodke
. Vklop ustreznega kanala DMA (TX ali RX)

rrl OR - Organizacija racunalnikov 16

http://www.fri.uni-lj.si/si

2. INIT DMA - Inicializacija DMA in USART3
RCC: vklop DMA1 naprave

8.7.41 RCC AHB1 Clock Register (RCC_AHB1ENR)

This register can be accessed via two different offset address.

Table 66. RCC_AHB1ENR address offset and reset value

Register Name Address Offset Reset Value
RCC_AHB1ENR 0x0D8
0x0000 0000
RCC_C1_AHB1ENR 0x138

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
& &
=z - P4 -
N S8
0] w 0] w > >
s | & & 5| £ | E
= = =4 = T T
m] @ Q m o
5 8 3 2
2 2
w w W] o B o e
15 14 13 12 1" 10 8 8 7 6 5 4 3 2 ‘ 1 0 |
z |
g | 8 B |
= g | £ | £
£ 2 | @ o
w
™w w I w W)
N T C 4
Bit 1 DMA2EN: DMA2 Clock Enable
// Enable DMA1l Peripheral Clock (bit @ in AHB1ENR Set and reset by software.
register) 0: DMA2 clock disabled (default after reset)
ldr r6, =RCC_BASE // Load peripheral clock reg 1- DMA2 clock enabled
base address to r6 "'. """""""""""""""" N
ldr r5, [r6,#RCC_AHB1ENR] // Read its content to r5 1 Bit0 DMA1EN: DMA1 Clock Enable :
orr r5, #1 // Set bit @ to enable DMA1l clock : Set and reset by software. :
str r5, [r6,#RCC_AHB1ENR] // Store result in peripheral : 0: DMA1 clock disabled (default after reset) |
clock register ! 1: DMA1 clock enabled i
N e 2/

rri OR - Organizacija racunalnikov 17

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

Izklop DMA kanalov (RX, TX) in njune nastavitve

15.5.5 DMA stream x configuration register (DMA_SxCR)
This register is used to configure the concerned stream.
Address offset: 0x10 + 0x18 * x, (x =010 7)
Reset value: 0x0000 0000
31 30 29 28 27 2 25 24 23 22 21 20 19 18 17 16
MBURST[1:0] | PBURST[1:0] BﬂﬁF CT | DBM PL[1:0]
15 14 13 12 M 10 9 8 7 6 5 4 3 2 1 (0)
PINCOS | MSIZE[1:0] | PSIZE[1:0] | MINC | PINC | CIRC DIR[1:0] [PFCTRL| TCIE | HTIE | TEIE |DMEIE| EN !
w w | w w ‘ w w w w w ‘ w w w w w w w 1

ldr r6, =DMA1 BASE // Load DMA1 BASE address to r6

// Primer: DMA1 TX Settings
// Disable DMA TX Channel

Bit 0 EN: stream enable / flag stream ready when read low
This bit is set and cleared by software.
0: stream disabled
1: stream enabled
This bit may be cleared by hardware:

! FIFO bits

1dr r5, [PG,#DMA_SXCR_TX] // Read its content to rs - Ion a DMA end of transfer (stream ready to be configured)
. — if a transfer error occurs on the AHB master buses
bic r5 > #1 - when the FIFO threshold on memory AHB port is not compatible with the size of the
str r5, [r6,#DMA_SXCR_TX] // Store result burst
When this bit is read as 0, the software is allowed to g
. registers. It is forbidden to write these registers when the EN bit is read as 1.
WtO_ENO ° Note: Before setting EN bit to 1 to start a new transfer, the event flags corresponding to the
ldr r5, [r6,#DMA_SxCR_TX] // wait until bit is read as © stream in DMA_LISR or DMA_HISR register must be cleared.
tst r5, #1
bne wto_ENO
.equ DMA_USART3_TX_STREAM, © //Channel @ on DMA1l
.equ DMA_USART3_RX_STREAM, 1 //Channel 1 on DMAl
—
rri

OR - Organizacija racunalnikov

18

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

Izklop DMA kanalov (RX, TX) in njune nastavitve ' ustreza/o

15.5.5

This register is used to configure the concerned stream. -
Address offset: 0x10 + 0x18 * x, (x =0to 7)

Reset value: 0x0000 0000

DMA stream x configuration register (DMA_SxCR)

' .

: Nastavitve za
1

! spremembo

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MBURST[1:0] | PBURST[1:0] BLTJEF cT DBM PL[1:0]

w w w w w w w w 'w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PINCOS | MSIZE[1:0] PSIZE[1:0] MINC | PINC | CIRC DIR[1:0] PFCTRL| TCIE HTIE TEIE | DMEIE EN

w w w w w w w w w w w w w w w w
Bit 10 MINC: memory increment mode
This bit is set and cleared by software.
0: memory address pointer is fixed
1: memory address pointer is incremented after each data transfer (increment is done . q
g ; (Yy A— Primer: DMALl TX Settings

Fri

according to MSIZE)
This bit is protected and can be written only if EN = 0.

// Set MINC (increment memory pointer) and Direction

iR —— b10=1 (Memory->Peripheral)
its 7: ata transfer direction B . B
These hits.are seLand dieared by software. . povedevanje orr r5,r5,#(0b10001 << 6) // ble=1 and bit7,6 = 01
£ 00: peripheral-to-memory | naslova v pomn. str r5, [r6,#DMA SxCR TX] // Store result
1 Olzmemony-to-periphersl ,
10: memory-to-memory
11: reserved b7 6=
These bits are protected and can be written only if EN=0. ’ 01 TX
. 00 RX
OR - Organizacija racunalnikov 19

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

Izklop DMA kanalov (RX, TX) in njune nastavitve

15.5.5

DMA stream x configuration register (DMA_SxCR)
0 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Bits 24:23 MBURST[1:0]: memory burst transfer configuration

These bits are set and cleared by software.

00: single transfer

01: INCR4 (incremental burst of 4 beats)

10: INCRS (incremental burst of 8 beats)

11: INCR16 (incremental burst of 16 beats)

These bits are protected and can be written only if EN = 0.

In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN = 1.

Bits 22:21 PBURST[1:0]: peripheral burst transfer configuration

These bits are set and cleared by software.

00: single transfer

01: INCR4 (incremental burst of 4 beats)

10: INCRS (incremental burst of 8 beats)

11: INCR16 (incremental burst of 16 beats)

These bits are protected and can be written only if EN = 0.
In direct mode, these bits are forced to 0x0 by hardware.

Bits 17:16 PL[1:0]: priority level

These bits are set and cleared by software.

00: low

01: medium

10: high

11: very high

These bits are protected and can be written only if EN = 0.

Bit 15 PINCOS: peripheral increment offset size
This bit is set and cleared by software
0: The offset size for the peripheral address calculation is linked to the PSIZE

1: The offset size for the peripheral address calculation is fixed to 4 (32-bit alignment).

This bit has no meaning if bit PINC = 0.
This bit is protected and can be written only if EN = 0.

This bit is forced low by hardware when the stream is enabled (EN = 1) if the direct mode is
selected or if PBURST are different from 00.
Bits 14:13 MSIZE[1:0]: memory data size

rr

These bits are set and cleared by software.
00: byte (8-bit)

01: half-word (16-bit)

10: word (32-bit)

11: reserved

Bits 12:11 PSIZE[1:0]: peripheral data size

These bits are set and cleared by software.

00: byte (8-bit)

01: half-word (16-bit)

10: word (32-bit)

11: reserved

These bits are protected and can be written only if EN = 0.

Bit 9 PINC: peripheral increment mode

This bit is set and cleared by software.
0: peripheral address pointer fixed

1: peripheral address pointer incremented after each data transfer (increment done
according to PSIZE)

This bit is protected and can be written only if EN = 0.

Bits 7:6 DIR[1:0]: data transfer direction

These bits are set and cleared by software.

00: peripheral-to-memory

01: memory-to-peripheral

10: memory-to-memory

11: reserved

These bits are protected and can be written only if EN = 0.

Bit 5 PFCTRL: peripheral flow controller

This bit is set and cleared by software.

0: DMA is the flow controller.

1: The peripheral is the flow controller.

This bit is protected and can be written only if EN = 0.

When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this bit is

automatically forced to 0 by hardware.

These bits are protected and can be written only if EN = 0.

In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as
EN=1.

20

3
— o~ e T TNy
MBURST[1:0)) | 'PBURST[1:0] | oo | CT DBM PL[1:0] : Default naStaVItve, kl :
w I w w l w w w w w] w I . . I
15 4 13 12 1 10 9 8 7 6 5 4 3 2 1 0 |‘ UStrezaIO (pOdrObnele) ,l
PINCOS | MSIZE[1:0] PSIZE[1:0] | MINC | PINC | CIRC DIR[(1:0] |PFCTRL| TCIE | HTIE | TEIE |DMEIE| EN S e - ———————————
w w w w w w w w w ‘ w w w w w w w

http://www.fri.uni-lj.si/si

Fri

2. INIT_DMA - Inicializacija DMA in USART3

Izklop DMA kanalov (RX, TX) in njune nastavitve

Nastavitev direktnega nacina (ze nastavljeno na 0)
15.5.10 DMA stream x FIFO control register (DMA_SxFCR)

Address offset: 0x24 + 0x18 * x, (x =0 to 7) | Default nastavitve, k,
Reset value: 0x0000 0021 l ustreza/o
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
FEIE FS[2:0] DMDIS FTH[1:0]
w r r r w w w

Bit 2 DMDIS: direct mode disable
This bit is set and cleared by software. It can be set by hardware.
0: direct mode enabled
1: direct mode disabled
This bit is protected and can be written only if EN = 0.
This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in

DMA_SxCR are 10) and the EN = 1 in DMA_SxCR because the direct mode is not allowed

in the memory-to-memory configuration.

[/ -=------ Primer: DMA1l TX Settings

// Enable direct mode

ldr r5, [r6,#DMA_SxFCR_TX] // Read its content to r5
bic r5, #06b100

str r5, [r6,#DMA SxFCR_TX] // Store result

OR - Organizacija racunalnikov 21

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

DMAMUX1:
Nastavitev preslikave DMAMUX1 (naprava <-> stream)

17.6.1 DMAMUX1 request line multiplexer channel x configuration register
(DMAMUX1_CxCR)

Address offset: 0x000 + 0x04 * x (x = 0 to 15)
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SYNC_ID[2:0] NBREQ[4:0] SPOL[1:0] SE
15 14 13 12 11 10 9 8 7 06 5 4 3 2 1 0%
EGE | SOIE DMAREQ_ID[6:0] :

RM0433 Block interconnect

Bits 6:0 DMAREQ_ID[6)\0]: RMA request identification

Table 101. DMAMUX1, DMA1 and DMA2 connections! (continued) - .)
Selects the inplf DMA request. See the DMAMUX table about assignments of multiplexer

Source Destination .
Comment inputs to resourcgs.
Dumain‘ Bus| Peripheral| Signal Signal Peripheral| Bus| Domain
i2c1_rx_dma dmamux1_req_in33 .
D2 APB1| I2¢1 RM0433 DMA request multiplexer (DMAMUX)
i2Zc1_tx_dma dmamux1_req_in34
i2c2_rx_dma dmamux1_req_in35
D2 |APB1| 12C2 202 b dma | dmamuxt_req_in36 Table 121. D X1: assignment of multiplexer inputs to resources
spil_rx_dma dmamux1_req_in37 DMA DMA DMA
Dz |APB2 SPI1 spil_t_dma | dmamuxi_req_in38 request Resource request Resource request Resource
== = — MUX input MUX input MUX input
spi2_rx_dma dmamux1_req_in39
bz APB1l - SPI2 spi2_tx_dma dmamux1_req_ind0 1 dmamux1_req_ger§q 44 usart2_tx_dma 87 saila_dma
usart!_rx_dma | dmamux1_req_in41 2 dmamux1_req_gen1 N5 usart3_rx_dma 88 sailb_dma
D2 |APB2 USART1 -
usart!_tx_dma | dmamux1_req_in42 3 dmamux1_req_gen2 \ 46 usart3_tx_dma 89 sai2a_dma

usart2_rx_dma dmamux1_req_ind3
D2 | APB1 USART2

usart2_tx_dma dmamux1_req_ind4

usart3_rx_dma dmamux1_req_in45
D2 APB1| USART3

usart3_tx_dma dmamux1_req_ind6

‘,’ RM0433 Rev 7 599/3319

rri OR - Organizacija racunalnikov 22

http://www.fri.uni-lj.si/si

Fri

2. INIT_DMA - Inicializacija DMA in USART3

DMAMUX1:
Nastavitev preslikave DMAMUX1 (naprava <-> stream)

17.6.1 DMAMUX1 request line multiplexer channel x configuration register
(DMAMUX1_CxCR)
Address offset: 0x000 + 0x04 * x (x = 0 to 15) _ B
Bits 6:0 DMAREQ_ID[6:0]: DMA request identification
Reset value: 0x0000 0000 Selects the input DMA request. See the DMAMUX table about assignments of multiplexer
inputs to resources.
31 30 29 28 27 26 25 24 23 22 21 20 19 /8 17 16
SYNC_ID[2:0] NBREQ[4:0] / SPOL[1:0] SE
w | w | w rw | w w w | ﬁ w w w
15 14 13 12 11 10 9 8 7 76 5 4 3 2 1 0%
EGE | SOIE DMAREQ_ID[6:0] :
w [ol L [[[D
RM0433 K\ DMA request multiplexer (DMAMUX)
Tabhlq\mkMAMU)ﬂ: assignment of multiplexer inputs to resources
DMA \ DMA DMA
request Resobic request Resource request Resource
MUX input MUX input MUX input
// _____________ DMAMUX1 Settings 1 dmamux1_req_gé\0\\ 44 usart2_tx_dma 87 saila_dma
// Set channels to devices translations (multiplexing) 2 ““““Lmqgﬂp§§45 usartd rx. dma | 88 saib_dma
3 dmamux1_req_gen2 46 usart3_tx_dma 89 sai2a_dma
ldr r6, =DMAMUX1_BASE // Load reg base address to ré [S72 RM0433 Rev 7 50973319
mov r5,#46 // USART3_TX DMA Device Nr. is 46
str r5, [r6, DMAMUX1 COCR]// DMAREQ for Channel © to USART3 TX
mov r5,#45 // USART3 Rx DMA Device Nr. is 45
str r5, [r6, DMAMUX1_C1CR]// DMAREQ for Channel 1 to USART3_RX

OR - Organizacija racunalnikov

23

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:

rri

Izklop, vklop delovanja USART 3 (za konfiguracijo CR3)

48.7.2 USART control register 1 [alternate] (USART_CR1)
Address offset: 0x00
Reset value: 0x0000 0000

The same register can be used in FIFO mode enabled (previous section) and FIFO mode
disabled (this section).

FIFO mode disabled

1 30 29 28 27 2% 25 24 23 22 21 20 19 18 17 16
FIFO 1 w1 | EOBIE | RTOIE DEAT4: :
o [4:0] DEDT4:0]
15 14 13 12 1 10 g 8 7 6 5 4 3 2 1 Moy
OVERE| CMIE | MME | M0 | WAKE | PCE | PS | PEIE | TXEIE | TCIE |RXNEIE| IDLEIE| TE RE | UESM | UE
A

-

Bit 0 UE: USART enable

When this bit is cleared, the USART prescalers and outputs are stopped immediately, and all
current operations are discarded. The USART configuration is kept, but all the USART_ISR
status flags are reset. This bit is set and cleared by software.

0: USART prescaler and outputs disabled, low-power mode

1: USART enabled

OR - Organizacija racunalnikov 24

http://www.fri.uni-lj.si/si

2. INIT_DMA - Inicializacija DMA in USART3

Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:
Vklop DMA prenosov na USART3

48.7.4 USART control register 3 (USART_CR3)
Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
TRFTCFG[2:0] F.{rfEF RXFTCFG[2:0] T%EI‘EG TXFTIE | WUFIE | WUS[1:0] SCARCNT[Z:0]
15 14 13 12 1 10 9 s [7 8 15 4 3 2 1 0
| T
DEP | DEM | DDRE ?E? ﬁ:$ CTSIE | CTSE | RTSEN| DMAT | DMAR FCEN NACK | {f) | IRLP | IREN | EIE
1
/] ------------- USART3 Settings Bit 7 DMAT: DMA enable transmitter
1dr r6, =USART3_BASE // Load USART3 BASE dress to ri1 This bit is set/reset by software
1: DMA mode is enabled for transmission
// Disable USART3 0: DMA mode is disabled for transmission
ldr r5, [r6,#USART_CR1] // Read its content fo r5 Bit 6 DMAR: DMA enable receiver
bic r5, #1 This bit is set/reset by software
str r5, [r6,#USART_CR1] // Store result 1: DMA mode is enabled for reception

0: DMA mode is disabled for reception

// Enable DMA Transmit and Receive for USART

1dr r5, [r6, #USART CR3]

orr r5, #(@bl1<<6) // Set bits 7 and 6 to enable DMAT and DMAR bits
str r5, [r6,#USART_CR3] // Store result

// Enable USART3

1dr r6, =USART3_BASE // Load USART3 BASE address to ré6
ldr r5, [r6,#USART_CR1] // Read its content to r5

orr r5, r5, #1

str r5, [r6,#USART_CR1] // Store result

rri OR - Organizacija racunalnikov 25

http://www.fri.uni-lj.si/si

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Nastavitev naslova USART3 naprave (Data Register)

15.5.7 DMA stream x peripheral address register (DMA_SxPAR)
Address offset: 0x18 + 0x18 * x, (x =0to 7)
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
PAR[31:16] Naslov USART3 Data
v v o lo ol folowlolo]olowlololele registra:
S pARTm . USART3_BASE+USART_RDR

Bits 31:0 PAR[31:0]: peripheral address

Base address of the peripheral data register from/to which the data is read/written.
These bits are write-protected and can be written only when bit EN = 0 in DMA_SxCR.

ldr r6, =DMA1_BASE // Load reg base address to ré6

WAIT_EN: // Wait EN bit to become zero
ldr r5, [r6, #DMA_SxCR_RX]

tst r5, #1

bne WAIT_EN

str r@, [r6,#DMA_SxXxMOAR_RX] // Store address pointer in ro
str rl, [r6,#DMA_SxSNDTR_RX] // Store number of units in ri

rri OR - Organizacija racunalnikov 26

http://www.fri.uni-lj.si/si

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Nastavitev naslova v pomnilniku (za prenos)

15.5.8 DMA stream x memory 0 address register
(DMA_SxMOAR)

Address offset: 0x1C + 0x18 * x, (x =0 to 7)
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MOA[31:16]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MOA[15:0]

Bits 31:0 MOA[31:0]: memory 0 address
Base address of memory area 0 from/to which the data is read/written.
These bits are write-protected. They can be written only if:
— the stream is disabled (EN = 0 in DMA_SxCR) or
— the stream is enabled (EN = 1 in DMA_SxCR) and CT = 1 in DMA_SXCR (in
double-buffer mode).

ldr r6, =DMA1_BASE // Load reg base address to r6

// Receive (RX) DMA Init
ldr r5, =USART3_BASE+USART_RDR// RX peripheral address to r5
str_r5, [r6,#DMA SxPAR RX] __//_Store peripheral DMA pointer

Naslov v
pomnilniku

(zacetek
niza v r0)

rri OR - Organizacija racunalnikov

27

http://www.fri.uni-lj.si/si

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Nastavitev stevila podatkov (za prenos)

15.5.6 DMA stream x number of data register (DMA_SxNDTR)

Address offset: 0x14 + 0x18 * x, (x =0 to 7) Stevilo
Reset value: 0x0000 0000 znakov
vri
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ———
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NDT[15:0]

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: number of data items to transfer (0 up to 65535)

This register can be written only when the stream is disabled. When the stream is enabled,
this register is read-only, indicating the remaining data items to be transmitted. This register
decrements after each DMA transfer.

Once the transfer is completed, this register can either stay at zero (when the stream is in
normal mode) or be reloaded automatically with the previously programmed value in the
following cases:

— when the stream is configured in circular mode.
— when the stream is enabled again by setting EN bit to 1.

If the value of this register is zero, no transaction can be served even if the stream is
enabled.

ldr r6, =DMA1_BASE // Load reg base address to ré6

// Receive (RX) DMA Init

ldr r5, =USART3_BASE+USART_RDR// RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX] // Store peripheral DMA pointer
str_re, [re,#DMA_SxMOAR RX] _ _// _Store address pointer_in ro_

rstr rl%_Lr6,#DMA SxSNDTR_Eﬁl__ // Store number of units in r1 |

rri OR - Organizacija racunalnikov 28

http://www.fri.uni-lj.si/si

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Brisanje prejsnjih DMA dogodkov
DMA low interrupt flag clear register (DMA_LIFCR)

15.5.3
Address offset: 0x08
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CTCIF3 | CHTIF3 | CTEIF3 | CDMEIF3 CFEIF3| CTCIF2 | CHTIF2 | CTEIF2 | CDMEIF2 CFEIF2
w w w w w w w w w w
15 14 13 12(11 10 9 8 7 6 Y 5 4 3 2 1 0
i CTCIF1 | CHTIF1 | CTEIF1 | CDMEIF1 CFEIF1 |ICTCIFO | CHTIFO | CTEIFO | CDMEIFO CFEIFO
i w W w w w i w w w w w
S — P
Bits 31:28, 15:12 Reserved, must be kept at reset value.
Bits 27, 21, 11, 5 CTCIF[3:0]: stream/x clear transfer complete interrupt flag (x = 3 to 0)
Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register.
ldr r6, =DMA1_BASE // Load reg base address to ré6
// Clear flags in Statpys register
mov r5,#(0b111101<<6) // clear flags for Chl in ISR
str r5, [r6,# DMA_LIFCR] // Store
___|
FFil 29

OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

Fri

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Vklop delovanja (streama) DMA krmilnika (EN=0)

15.5.5 DMA stream x configuration register (DMA_SxCR)
This register is used to configure the concerned stream.
Address offset: 0x10 + 0x18 * x, (x =010 7)
Reset value: 0x0000 0000
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
MBURST[1:0] | PBURST[1:0] BLTJF;F CT | DBM PL[1:0]
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
PINCOS | MSIZE[1:0] | PSIZE[1:0] | MINC | PINC | CIRC DIR(1:0] [PFCTRL| TCIE | HTIE | TEIE |DMEIE| EN
w w w w w w w w w ‘ w w w w w w w

Bit 0 EN: stream enable / flag stream ready when read low
This bit is set and cleared by software.
0: stream disabled
1: stream enabled
This bit may be cleared by hardware:
— on aDMA end of transfer (stream ready to be configured)
— if atransfer error occurs on the AHB master buses
- when the FIFO threshold on memory AHB port is not compatible with the size of the
burst
When this bit is read as 0, the software is allowed to g
registers. It is forbidden to write these registers when the EN bit is read as 1.
Note: Before setting EN bit to 1 to start a new transfer, the event flags corresponding to the
stream in DMA_LISR or DMA_HISR register must be cleared.

| FIFO bits
// Enable DMA Channel

ldr r5, [r6, #DMA_SxCR_RX]
orr r5, r5, #1
str r5, [r6, #DMA_SXCR_RX]// Enable channel

OR - Organizacija racunalnikov 30

http://www.fri.uni-lj.si/si

3. RCV_DMA ,SND_DMA: Nastavitve DMA

Cakanje na zakljuéek prenosov

Sprejem (RCV_DMA):

[/ -----m--- RCV_DMA
// Wait for the end of reception (TCIF)

ldr r6, =DMA1_BASE // Load reg base address to ré6
WAIT RC:

ldr r5, [r6, #DMA_LISR]

tst r5, #(1 << 11) // TCIF1 flag

beq WAIT_RC

Oddaja (SND_DMA):

/] - SND_DMA
// Wait for the end of transmission
ldr r6, =USART3_ BASE

WAIT_TC:
ldr r5, [r6, #USART_ISR]

tst r5, #(1 << 6) // Test TC bit
beq WAIT_TC

rri OR - Organizacija racunalnikov 31

http://www.fri.uni-lj.si/si

\- DMA

)

Ch1

DMA — stanje , hastavitve

Table 114. DMA register map and reset values

I’

! > _ N
' Ql O : N e
. | O] C© _
S 1 P X @ "
L 1 1
) o) | Of £ _
1
g § f ' n a 1 1
Ol | oy < O s
1
o ISP |
D . O N Q. |
! 1
1 n
u — S ! - ' q
) q | — C V > ' 1
© 1S Ol © O
: @)
Y a S — : r
n =l O 7217 "
| O %) .
1
“ | O © | N—
1
| 0| = O
' 1
! 1
! 1
— e T ——— I B
0 Jou3a o] vaims [e¥o3330 TN vami0 [NI n_h = o U/_ © o1y ~{I N3 o
l i = =y = =+ B = B ol o (= T =
€ |odiawa|o |pdiawa) o lodiawas| o lrdiman|e! 3aL = = 5 ol o | slana |o 3131 o
€ |o43L |o| va43L |of 04310 |2} 41310 |e] 3uH o M__ o o] “ e z |° 31LH o
¥ | 0ditH |o| pdiLH o] 0ditHD (o) vditHD (o] 3001 o o} o =1 o & |° 3101 o
S TO5LTSyra10L |o4,041010 |Sf 41010 [o) T¥104d | o o o|l o % |-l Wiodd |o
9 [La3a]=] s34 121340 [=hsa1340 |= Sk = |°] = < “ = I s
¥ [o:1lia = — j [oflHig —
L I of ¢ |o o ol o| 334 o o
8 |idawae saimwalol|Laanas|o gdaman|ef omd el § M = o “ o o
6 | 133L o] ga3n [N 13310 [oWsamio [o(_ ond _lof < |9 o BIEE o
0 | 13uH (o] saud [of 1diHo [o fsaumHo [0 onmw [oN o o ol) o
Y 1oL [ogsdioL [l 14010 [ofsdiotn (o, - =TS o o =11 = S
FA ! lo1]3z1sd — _ — 1 [ei]azisd —
(-] M = M- (=] =]
€l 01] o o o oll o 01l o
i 0:1I3ZISW [— m__ =~ M“m. = 0'L13ZISW —
= g 18
5t SOONId |o oy 2 |ef 5 |o 1z |° SOONId | o
= a 2]
9L |z434 |o| 84134 || 241340 o] 941340 [e] ofNm=ed] 7 |lof T ol T |o _ o
Ti [o:L11d o S IS ohd
(=] o o - (=] o
8l Z413Na| = (94IFWa| = [2413WaD| = (241TWad| = wWaa =] = o] = waa =]
6L] zi3L |o| 9431 |o]| zd310 |o] 941310 | 19 = o = “ = 19 =
0Z |zditH |o| 9diH |o | 241lHD |o | 941lHD |=| d4nEyl |o o o) = 44nadL |o
b2 | zd4i0L 2| 94101 |=| 241010 [=] 841010 |=| o e all o : o
7z [o:lLsunad — 1 lo:LlLsungd —
€434 (o | £4134 |o| €41340 |o| L4340 |o = o |, = o
MN o o (=] - o o
vz lo:L]LSHNEN —1 [lLsHnan —
lediawal = [ed13ma) © [e413wan| o [413nan| e o o o] | = =
SZ |31 |of L4381 [o| €431 [o] L9310 [0 = =y o |
92 | cdilH |o| Z41H |©| €4ILHD |o| 241lHD | o ol o !
L2 JedioL [=| 24101 [=]| edio1o |=| 441010 [= o W“ =]
8z =] < o g
62 = all o !
o o} =) “ o i
[8 sy e “
m o o o 14 1 ! M x “
S|z (3] g (3| 5 s 8 (3} & || B |s0 g [shS (212 (3| B 58 & |3
= = = =] 'l] [] ® Z] a @ all= ® w ™ -]
= - > ael > 5 > I > m > 2 = M £ | w > 13 > m > " o =
2 < 8| < |3 |8 (N -] @ gl O |8§ FIHGE: 1| ! e
212 |8 = |8 £ (38 £ |50 2 g < |81 2 |80 £ |81 |8 £ |8 2 :
> & || & |€|] & |2|] & | a gl 2 |8 z [0 < (& _m | F |£) a x
& (=} y & 1 2 !
= o @ [&] = < @ 4] 1 o = | @
g 2 g 2 g g s ¥z) § § b 8
S S = T % = 2 1 2 = = | =
o [=] k=] [=] [=] [=] [=] [=] .— =2 (=] | =]
- —— - T —
1
1

http://www.fri.uni-lj.si/si

DMA — projekt

STM32H750XBHX RAM.ld:

* Dodamo sekcijo .sram

/* Define output sections */
SECTIONS

{

/* used by the startup to initialize data */
_sisram = LOADADDR(.sram); /* this will be start address of init values in RAM_EXEC */

/* Initialized data sections goes into SRAM, have to copy content manually */

.sram :
{
. = ALIGN(4);
ssram = .; /* create a global symbol at sram start */

EEEP(*(.sram)) /* .data sections */
(.sram) /* .data* sections */

. = ALIGN(4);
_esram = .; /* define a global symbol at sram end */

} >RAM_D2 AT> RAM_EXEC

rri OR - Organizacija racunalnikov 33

http://www.fri.uni-lj.si/si

DMA — program

Naslovi registrov:

// AHB2ENR register offset is OxDC (for enabling SRAMs)

.equ RCC_AHB2ENR, ©xDC // RCC AHB2ENR periph. clk reg.

// AHB1lENR register offset is OxES8
.equ RCC_AHB1ENR, ©xD8 // RCC AHB1ENR periph. clk reg.

// DMAMUX1 base address is 0x40020800
.equ DMAMUX1_BASE, 0x40020800 // DMAMUX1 base address

.equ DMAMUX1_CeCR, ©x@0 // CR for Channel ©
.equ DMAMUX1_C1CR, ©x04 // CR for Channel 1

// DMA1l base address is 0x40020000
.equ DMA1_BASE, ©x40020000 // DMA1l base address
// DMA2 base address is 0x40020400
.equ DMA2_BASE, 0x40020400 // DMA2 base address

.equ DMA_USART3_TX_STREAM, @ //Channel @ on DMA1
.equ DMA_USART3_RX_STREAM, 1 //Channel 1 on DMA1

.equ
.equ
.equ
.equ
.equ

.equ
.equ
.equ
.equ
.equ

// DMA Registers definitions
.equ
.equ
.equ
.equ

DMA_LISR, ©xe0
DMA_HISR, ©oxe4
DMA_LIFCR, ©x08
DMA_HIFCR, ©xeC

DMA_SXCR_TX,0x10 + ©x18 * DMA_USART3_TX_STREAM
DMA_SXFCR_TX,0x24 + ©x18 * DMA_USART3_TX_STREAM
DMA_SXSNDTR_TX,0x14 + 0x18 * DMA_USART3_TX_STREAM
DMA_SXPAR_TX,0x18 + ©x18 * DMA_USART3_TX_STREAM
DMA_SXMOAR_TX,0x1C + 0x18 * DMA_USART3_TX_STREAM

DMA_SXCR_RX,0x10 + ©x18 * DMA_USART3_RX_STREAM
DMA_SXFCR_RX,0x24 + ©x18 * DMA_USART3_RX_STREAM
DMA_SXSNDTR_RX,0x14 + ©x18 * DMA_USART3_RX_STREAM
DMA_SXPAR_RX,0x18 + ©x18 * DMA_USART3_RX_STREAM
DMA_SXM@AR_RX,0x1C + ©x18 * DMA_USART3_RX_STREAM

rri OR - Organizacija racunalnikov

34

http://www.fri.uni-lj.si/si

DMA — program (zagon z RAM povez. skripto)

Main.s - spremembe:

* Dodamo spremenljivke v sekcijo .sram

// Start of sram section
.section .sram,"a",%progbits
.align

NIZ1: .space 12
NIZ2: .asciz "Testni niz!" // 12 bytes
.equ NIZ_LEN, 12

* Za delovanje moramo vklopiti tudi SRAM pomnilnike :

/* Enable SRAMs and copy initial values only with RAM Linker script */
// Enable SRAMs internal memories (for DMA1)
bl SRAM_ENABLE

* Startup koda ne vsebuje obravnave te sekcije, zato moramo za kopiranje zacetnih

vrednosti poskrbeti sami: —
Eush {r3, 1r}

// Copy initial values for .sram section (from .text to SRAM)

e copy:
b e L
P tr r3,[rl],#4
ldr r2,=_esram str 3. (ral,
bl MEM_COPY cmp rl,r2
blo copy

pop {r3, pc}

rri OR - Organizacija racunalnikov 35

http://www.fri.uni-lj.si/si

Fri

DMA — program (zagon z RAM povez. skripto)

Main.s: RELLOC_VECTBL:

// Comment following line when FLASH Linker Script is used

#define RAM_LinkScript push {re, ri, 1r}

- . . 1dr rl1, =VTOR // Set Vector table addr. to
#ifdef RAM_LinkScript 0x24000000

// Start of sram section ldr re, =0x24000000

.section .sram,"a",%progbits str ro, [ri]
ttendif

.align pop {re, ri, pc}
NIZ1l: .space 12

.align

NIZ2: .asciz "Testni niz!" 12 bytes B ASELACLEL
/7 y push {r5, r6, 1lr}
-equ NIZ_LEN, 12 // Enable internal SRAMs (bits 31,30,29 in AHBeENR register)
ldr r6, =RCC_BASE // Load periph. clk reg base address to ré6
ldr r5, [r6,#RCC_AHB2ENR] // Read its content to r5

main: orr r5, #(@b111 << 29) // Set bits 31,30,29 to 1 to enable
SRAMs clock
#ifdef RAM_LinkScript str r5, [r6,#RCC_AHB2ENR] // Store result in periph. clk
- register

// Relocating Vector table to RAM (only for RAM Linker Script) pop {r5, ré, pc}
bl RELLOC_VECTBL
/* Enable SRAMs and copy initial values only with RAM Linker script */ MEM_COPY:
// Enable SRAMs internal memories (for DMA1) push {r3, 1r}
bl SRAM_ENABLE
copy:
ldr r3,[ro],#4

// Copy initial values for .sram section (from .text to SRAM) str r3.[r1].#4

ldr r@,=_sisram

ldr rl,=_ssram cmp ri,r2
ldr r2,=_esram blo copy
bl MEM_COPY
pop {r3, pc}
tendif

OR - Organizacija racunalnikov 36

http://www.fri.uni-lj.si/si

Vklop SRAM pomnilnikov (DMA1,2 delujeta le v tej domeni)

8.7.42 RCC AHB2 Clock Register (RCC_AHB2ENR)

This register can be accessed via two different offset address.

Table 67. RCC_AHB2ENR address offset and reset value

Register Name Address Offset Reset Value
RCC_AHB2ENR 0x0DC
0x0000 0000
RCC_C1_AHB2ENR 0x13C
,________~\
I' 31 30 29 328 27 26 25 24 23 22 21 20 19 18 17 16
LI i g !
g s s (I
s 2 2|1
1 @ 7] » 1
mmgEm——pe=——_ 12 1 10 9 8 7 6 5 4 3 2 1 0
z
P4
g g | £ | i
= 2|2 3
= [I 5 a
w w w w w

Bit 31 SRAMS3EN: SRAM3 block enable
Set and reset by software. SRAM ENABLE:
When set, this bit indicates that the SRAM3 is allocated by the CPU. It causes the D2 domain to -
take into account also the CPU operation modes, i.e. keeping D2 domain in DRun when the CPUis ~ PUS h { r5 > ré > 1 r‘}

in CRun.

O: iR (Ragit 2o masinvve ddowa] isabled. (default after reset)

1: SKAMS Intertace clock Is enabled. // Enable internal SRAMs (bits 31,30,29 in AHBeENR register)
Bit 30 SRAM2EN: SRAM2 block enable ldr r6, =RCC_BASE // Load periph. clk reg base address to ré6

Set and reset by software. ldr r5, [r6,#RCC_AHB2ENR] // Read its content to r5

When set, this bit indicates that the SRAM2 is allocated by the CPU. It causes the D2 domain to A

take into account also the CPU operation modes, i.e. keeping D2 domain in DRunwhenthe CPUis ~ orr r5, #(0b111l << 29) // Set bits 31,30,29 to 1 to enable SRAMs
in CRun.

0: SRAMZ2 interface clock is disabled. (default after reset) clock

1: SRAM2 interface clock is enabled. str r5, [r6,#RCC_AHB2ENR] // Store result in periph. clk register

Bit 29 SRAM1EN: SRAM1 block enable
Set and reset by software.
When set, this git indicates that the SRAM1 is allocated by the CPU. It causes the D2 domain to pop { r5 B ré » PC }
take into account also the CPU operation modes, i.e. keeping D2 domain in DRun when the CPU is
in CRun.
0: SRAM1 interface clock is disabled. (default after reset)
1: SRAM1 interface clock is enabled.

rri OR - Organizacija racunalnikov 37

http://www.fri.uni-lj.si/si

DMA — program (glavna zanka)

Main.s:
bl INIT_DMA // Priprava DMA naprave za prenose preko USART3

// Main loop for USART3+DMA Echo test for blocks of 12 characters with change to upper case

loop:
ldr re,=NIZ2 CHANGE :
mov rl,#NIZ_ LEN push {r3-r4,1r}
bl SND_DMA
bl LED ON // Vklop LED diode ch_zanka:
ldrb r4, [re], #1
mov ro,#500 bic r3, r4, #0bl100000 // zbrisi b5
// bl DELAY // Zakasnitev SW Delay: r@ x 1lmsec
bl DELAYTC // Zakasnitev SysTick : r@ x lmsec
cmp r3, #'A€
1ldr re,=NIZ1 blo pisi
mov rl1,#NIZ LEN
bl RCV_DMA cmp r3, #'Z°¢
bhi pisi
1dr ro,=NIZ1
1ldr r1,=NIZ2 eor r4, r4, #0b10000O // spremeni crko
ldr r2, =NIZ_LEN
bl CHANGE pisi:

strb r4, [rl], #1 /* shranimo v niz2*/
bl LED OFF // Izlop LED diode
subs r2, r2, #1

mov ro,#500 bne ch_zanka
// bl DELAY // Zakasnitev SW Delay: r@ x lmsec
bl DELAYTC // Zakasnitev SysTick : r@ x lmsec pop {r3-r4,pc}

b loop // skok na vrstico loop:

rri OR - Organizacija racunalnikov 38

http://www.fri.uni-lj.si/si

DMA_INIT (1/3 — DMA1, DMA TX).

INIT_DMA:

push {r5, r6, 1r}

// Enable DMA1l Peripheral Clock (bit © in AHB1ENR register)
1dr r6, =RCC_BASE // Load peripheral clock reg base address to ré
1dr r5, [r6,#RCC_AHB1ENR] // Read its content to r5
orr r5, #1 // Set bit 0 to enable DMA1 clock
str r5, [r6,#RCC_AHB1ENR] // Store result in peripheral clock register

ldr r6, =DMA1_BASE // Load DMA1l BASE address to ré6

/] ------- DMA1 TX Settings

// Disable DMA TX Channel
1dr r5, [r6,#DMA_SXCR_TX] // Read its content to r5
bic r5, #1
str r5, [r6,#DMA_SxCR_TX] // Store result

wto_ENO:
1dr r5, [r6,#DMA_SxCR_TX] // wait until bit is read as ©
tst r5, #1
bne wto_ENO

// Set MINC (increment memory pointer) and Direction (Memory->Peripheral)
orr r5,r5,#(0b10001 << 6) // ble=1 and bit7,6 = 01
str r5, [r6,#DMA_SxCR_TX] // Store result

// Enable direct mode
1dr r5, [r6,#DMA_SxFCR_TX] // Read its content to r5
bic r5, #0b1eo
str r5, [r6,#DMA_SXFCR_TX] // Store result

rri OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

/] ---

DMA_INIT (2/3 — DMA TX, DMAMUX):

---- DMA1 RX Settings

// Disable DMA RX Channel
1dr r5, [r6,#DMA_SxCR_RX] // Read its content to r5
bic r5, #1
str r5, [r6,#DMA_SxCR_RX] // Store result

wtl_ENO:
1dr r5, [r6,#DMA_SxCR_RX] // wait until bit is read as ©
tst r5, #1
bne wtl_ENO

// Set MINC (increment memory pointer) and Direction (Memory<-Peripheral)

orr
str

r5,r5,#(0b10000 << 6) // ble=1 and bit7,6 = 00
r5, [r6,#DMA_SxCR_RX] // Store result

// Enable direct mode

1ldr
bic
str

/] ---

r5, [r6,#DMA_SXFCR_RX] // Read its content to r5
r5, #0b100
r5, [r6,#DMA_SXFCR_RX] // Store result

---------- DMAMUX1 Settings

// Set channels to devices translations (multiplexing)

1ldr

mov
str
mov
str

ri

ré6, =DMAMUX1_BASE // Load reg base address to ré6

r5,#46 // USART3_TX DMA Device Nr. is 46
r5, [r6, DMAMUX1_COCR] // DMAREQ for Channel @ to USART3_TX
r5,#45 // USART3_Rx DMA Device Nr. is 45
r5, [r6, DMAMUX1_C1CR] // DMAREQ for Channel 1 to USART3_RX

OR - Organizacija racunalnikov

40

http://www.fri.uni-lj.si/si

DMA_INIT (3/3 — USART3+DMA):

[/ =-====-aa-- USART3 Settings
1dr r6, =USART3_BASE // Load USART3 BASE address to ril

// Disable USART3
1dr r5, [r6,#USART_CR1] // Read its content to r5
bic r5, #1
str r5, [r6,#USART_CR1] // Store result

// Enable DMA Transmit and Receive for USART3
1dr r5, [r6, #USART CR3]
orr r5, #(0b11<<6) // Set bits 7 and 6 to enable DMAT and DMAR bits
str r5, [r6,#USART_CR3] // Store result

// Enable USART3
1dr r6, =USART3_BASE // Load USART3 BASE address to ré
1dr r5, [r6,#USART_CR1] // Read its content to r5
orr r5, r5, #1
str r5, [r6,#USART_CR1] // Store result

pop {r5, ré, pc}

rri OR - Organizacija racunalnikov

41

http://www.fri.uni-lj.si/si

Fri

DMA — oddaja

Potrebni koraki za krmiljenje DMA naprave (SND DMA):

1. Pocakaj EN bit = 0 v DMA_SxCR_TX registru (zaklju¢ek prej$njega prenosa)
. DMA_SxCR_TX by=0 (Stream disabled)
2. Nastavitve naslovov
. DMA_SxPAR_TX naslov DR registra (USART3_BASE+USART_TDR)
. DMA_SxMOAR_TX naslov v pomnilniku v r0
. DMA_SxSNDTR_TX stevilo znakov v rl
3. Brisanje zastavic v statusnem registru DMA_LIFCR :

. Clear all bits for channel #0
° 0b111101 -> DMA LIFCR

4. Vklop DMA kanala
. DMA_SxCR_TX by=1 (Stream enabled)

5. Cakanje na konec prenosa :
« USART_ISR TC =1 (DMA ozna€i konec prenosa)

OR - Organizacija racunalnikov 42

http://www.fri.uni-lj.si/si

DMA — oddaja (SND_DMA)

SND_DMA:
push {r5, r6, 1lr}

ldr r6, =DMA1 BASE // Load reg base address to ré6

WAIT EN1: // Wait EN bit to become zero
ldr r5, [r6, #DMA_SxCR_TX]

tst r5, #1

bne WAIT_EN1

ldr r6, =DMA1 _BASE // Load reg base address to r6

// Transmit (TX) DMA Init

ldr r5, =USART3_BASE+USART_TDR // RX peripheral address to r5
str r5, [r6,#DMA SxPAR _TX] // Store result in peripheral DMA
pointerclock register

str r@, [r6,#DMA_SxMOAR_TX] // Store address pointer

str rl, [r6,#DMA_SxSNDTR_TX] // Store result in peripheral DMA
pointerclock register

// Clear flags in Status register

mov r5, #0b111101 // Clear all bits for channel ©

str r5, [r6,#DMA LIFCR] // Store result in peripheral DMA
pointerclock register

// Enable DMA Channel

ldr r6, =DMA1 BASE // Load reg base address to ré6
ldr r5, [r6, #DMA_ SxCR_TX]

orr r5, r5, #1

str r5, [r6, #DMA_SxCR_TX] // Enable channel

// Wait for the end of transmission
ldr r6, =USART3_BASE

WAIT_TC:

ldr r5, [r6, #USART_ISR]

tst r5, #(1 << 6) // Test TC bit
beq WAIT_TC

pop {r5, ré6, pc}

rri OR - Organizacija racunalnikov

43

http://www.fri.uni-lj.si/si

Fri

DMA — sprejem

Potrebni koraki za krmiljenje DMA naprave (RCV DMA):

1. Pocakaj EN bit = 0 v DMA_SxCR_RX registru (zakljuéek prej$njega prenosa)
. DMA_SxCR_RX b,=0 (Stream disabled)
2. Nastavitve naslovov
. DMA_SxPAR_RX naslov DR registra (USART3_BASE+USART_RDR)
. DMA_SxMOAR_RX naslov v pomnilniku v r0
. DMA_SxSNDTR_RX stevilo znakov v rl
3. Brisanje zastavic v statusnem registru DMA_LIFCR :

. Clear all bits for channel #0
° (0b1111@1<<6) -> DMA_LIFCR

4. Vklop DMA kanala
. DMA_SxCR_RX by,=1 (Stream enabled)

5. Cakanje na konec prenosa :
« DMA _LISR TCIF1 =1 (DMA oznac€i konec prenosa)

OR - Organizacija racunalnikov 44

http://www.fri.uni-lj.si/si

DMA — sprejem (RCV _DMA)

RCV_DMA: // Wait for the end of reception (TCIF
push {r5, ré6, 1r} 1dr r6, =DMA1_BASE // Load reg base
address to ré6

ldr r6, =DMA1 BASE // Load reg base address to ré6

WAIT RC:

WAIT_EN: // Wait EN bit to become zero ldr r5, [r6, #DMA_LISR]

ldr r5, [r6, #DMA_SxCR_RX] tst r5, #(1 << 11) // TCIF1 flag
tst r5, #1 beq WAIT_RC

bne WAIT_EN

pop {r5, ré, pc}
ldr r6, =DMA1 _BASE // Load reg base address to r6

// Receive (RX) DMA Init

ldr r5, =USART3 BASE+USART _RDR // RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX] // Store peripheral DMA pointer
str r@, [r6,#DMA_SxMOAR_RX] // Store address pointer

str rl, [r6,#DMA_SxSNDTR_RX] // Store number of units

// Clear flags in Status register
mov r5,#(0b111101<<6) // clear flags for Chl in ISR
str r5, [r6,# DMA_LIFCR] // Store

// Enable DMA Channel

ldr r5, [r6, #DMA SxCR_RX]

orr r5, r5, #1

str r5, [r6, #DMA SxCR _RX] // Enable channel

rri OR - Organizacija racunalnikov

http://www.fri.uni-lj.si/si

Fri

STM32H7

Vhodno / izhodne naprave

USART Serijska komunikacija
Z uporabo DMA krmilnika

Dodatek A:
Nastavitev in uporaba DMA v C projektu
(CubelDE + CubeMX)

OR - Organizacija racunalnikov

47

http://www.fri.uni-lj.si/si

DMA - Cprojekt —

Nastavitve v CubeMX:
. Connectivity -> USART3 -> DMA settings & LpuaRTs
@ mDIOS

@ 12c2
@ 12c3

12c4

Maode | Asynchronous
Hardware Flow Control (RS232) | Disable v
[Hardware Flew Contrel (RS485)

Configuration

Reset Configuration

® Parameter Settings

* Add RX, TX DMA requests, leaving default values =

SDMMC2
SPI1

v SPI2
SPI3

@ sPi4

@ sPIs
SPI6
SWPMI1
UART4

@ UARTS
UART?

@ UARTE
USART1

USARTE

@ USB_OTG_HS

Multimedia g

Security

. System core
« DMA i
» Lists all DMA requests (also USART3)

System Core

DuARsmes | Srem | Owsmon | P |
B USART3_RX DMA1 Stream 0 Peripheral To Memory Low
USARTS_TK DMA1 Stream 1 Memory To Peripheral Low

DMA Request Settings

Peripheral Memory
Mode |Normal Increment Address m}
Use Fife [Threshold Data Width Byte v Byte

DMA Request Synchronization Settings

Enable synchronization [m]

hronization signa
O

IWDG1
MDMA
v NVIC
RAMECC

WWDG1

* NVIC System Core
* Enable USART3 Global interrupt :

BDMA
ORTEX_MT7

. Save, regenerate code

Analog

Timers

Connectivity

rri OR - Organizacija racunalnikov

DWARequest | Sweam | Dimcion | roy |

USART3_RX

USART3_TX

DMA1 Stream 0
DMA1 Stream 1

Peripheral To Memery Low
Memory To Peripheral Low

Code gener
upt

EXTI line2 interrupt

DMA?1 streamO global interrupt
A1 stream1 global interrupt
ADC1 ant 2 global interrupts
FDCAN1 interrupt O
FDCANZ interrupt O
FDCANT1 interrupt 1
FDCANZ interrupt 1
SPI2 global interrupt

jooooo@a@n

USART3 global interrupt

oo ocooo0o0o0ooocd

O

EXTI line[15:10] interrupts

40

http://www.fri.uni-lj.si/si

DMA - C prOiekt \{/oid MX_DMA_Init(void)

CubelDE: /* DMA controller clock enable */
. Generira se Dma.c datoteka: __HAL_RCC_DMA1_CLK_ENABLE();

/* DMA interrupt init */

/* DMA1 Stream@_ IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream@_IRQn, ©, 0);
HAL_NVIC EnableIRQ(DMA1 Stream@ IRQn);

/* DMA1l_Streaml_IRQn interrupt configuration */
HAL_NVIC SetPriority(DMA1_Streaml IRQn, ©, 9);
HAL_NVIC_EnableIRQ(DMA1_Streaml_IRQn);

. Main.c code (main loop):

snprintf (SendBuffer,BUFSIZE,"USART3:%d secs, Key:%d\r\n",Cnt,KeyState);
//HAL_UART_Transmit(&huart3,SendBuffer,strlen(SendBuffer),1000);

// On H7, clean D-Cache if buffer is in cacheable RAM (see fix #3)
SCB_CleanDCache by Addr(SendBuffer,strlen(SendBuffer));

// option B is to put SendBuffer in RAM_D2,

// that is not cacheable by default settings of MPU

// __attribute__((section(".RAM_D2"))) char SendBuffer[256];

if (HAL UART Transmit DMA(&huart3, SendBuffer,strlen(SendBuffer)) != HAL 0OK)
{

Error_Handler();

}

rri OR - Organizacija racunalnikov 49

http://www.fri.uni-lj.si/si

Fri

STM32H7

VVhodno / izhodne naprave

USART Serijska komunikacija
Z uporabo DMA krmilnika

Dodatek B:
Podrobnejsi izseki iz dokumentacije
(Ref.Man. - rm0433)

OR - Organizacija racunalnikov

50

http://www.fri.uni-lj.si/si

Fri

Universal synchronous/asynchronous receiver transmitter (USART/UART)

RM0433

DMA - Sp reiem (RM) 48.5.19 Continuous communication using USART and DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data are loaded from the USART_RDR register to an SRAM area configured using the DMA
peripheral (refer to the corresponding Direct memory access controller section) whenever a
data byte is received. To map a DMA channel for USART reception, use the following
procedure:

1.

o gk w

Write the USART_RDR register address in the DMA control register to configure it as
the source of the transfer. The data is moved from this address to the memory after
each RXNE (RXFNE in case FIFO mode is enabled) event.

Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data is loaded from USART_RDR to this memory area after each
RXNE (RXFNE in case FIFO mode is enabled) event.

Configure the total number of bytes to be transferred to the DMA control register.
Configure the channel priority in the DMA control register

Configure interrupt generation after half/ full transfer as required by the application.
Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

OR - Organizacija racunalnikov 51

http://www.fri.uni-lj.si/si

Universal synchronous/asynchronous receiver transmitter (USART/UART) RMO0433

DMA - Sp reiem (RM) 48.5.19 Continuous communication using USART and DMA

15.5.3 DMA low interrupt flag clear register (DMA_LIFCR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
CTCIF3 | CHTIF3 | CTEIF3 | CDMEIF3 CFEIF3| CTCIF2 | CHTIF2 | CTEIF2 | CDMEIF2 CFEIF2

W w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CTCIF1 | CHTIF1 | CTEIF1 | CDMEIF1 CFEIF1| CTCIFO | CHTIFO | CTEIFO | CDMEIFO CFEIFO

w w w w w w w w w w

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 CTCIF[3:0]: stream x clear transfer complete interrupt flag (x = 3 to 0)
Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register.

rri OR - Organizacija racunalnikov 52

http://www.fri.uni-lj.si/si

Universal synchronous/asynchronous receiver transmitter (USART/UART)

RM0433

DMA - Sp reiem (RM) 48.5.19 Continuous communication using USART and DMA

Figure 589. Reception using DMA

! Frame 1 ! Frame 2 ! Frame 3 '
TXline SEEEEEEEEESEEEEEENEREEEEEEEEEE
RXNEfag | 1\ earadoy raerend n N
DMA request i y;r\ i[_\ é/-_
USART_RDR)(Fi XFZ){E
DMA reads i
USART_RDR | 1l 1 M

\ | | \ Cleared
DMA TCIF f ! i i
(transfer con?glete}i]‘ Setby hardware i f_:gffwafe

/ / /]

Software configures the The DMA transfer
DMA to receive 3 data DMA reads F1 DMA reads F2 DMA reads F3 is complete
blocks and enables from USART_RDR from USART_RDR from USART_RDR (TCIF=1in
the USART [DMA_ISR)

ai17193c

15.5.1 DMA low interrupt status register (DMA_LISR)

Address offset: 0x00
Reset value: 0x0000 0000

3 30 29 28 27 2 25 17 16
TCIF3 | HTIF3 TEEQ/ DMEIF3 FEIF3 | TCIF2 HTIFZ2 | TEIF2 | DMEIF2 FEIF2

r I r r r r r r r r

15 14 13 12 114~ 10 9 8 7 6 5 4 3 2 1 0
TCIF1 | HTIF1 | TEIF1 | DMEIF1 FEIF1 | TCIFo | HTIFo | TEIFo | DMEIFO FEIFO

r r r r r r r r r r

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 TCIF[3:0]: stream x transfer complete interrupt flag (x = 3 to 0)
This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: no transfer complete event on stream x
1: a transfer complete event occurred on stream x

rri OR - Organizacija racunalnikov 53

http://www.fri.uni-lj.si/si

Fri

Universal synchronous/asynchronous receiver transmitter (USART/UART)

RM0433

DMA — Oddaia (RM) 48.5.19 Continuous communication using USART and DMA

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data are loaded from an SRAM area configured using the DMA peripheral (refer to
the corresponding Direct memory access controller section) to the USART_TDR register
whenever the TXE flag (TXFNF flag if FIFO mode is enabled) is set. To map a DMA channel
for USART transmission, use the following procedure (x denotes the channel number):

1. Write the USART_TDR register address in the DMA control register to configure it as
the destination of the transfer. The data is moved to this address from memory after
each TXE (or TXFNF if FIFO mode is enabled) event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data is loaded into the USART_TDR register from this memory area
after each TXE (or TXFNF if FIFO mode is enabled) event.

3. Configure the total number of bytes to be transferred to the DMA control register.
4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clearthe TC flag in the USART_ISR register by setting the TCCF bit in the
USART_ICR register.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or before the system enters a low-power mode when the peripheral
clock is disabled. Software must wait until TC=1. The TC flag remains cleared during all
data transfers and it is set by hardware at the end of transmission of the last frame.

OR - Organizacija racunalnikov

54

http://www.fri.uni-lj.si/si

Universal synchronous/asynchronous receiver transmitter (USART/UART) RMO0433

DMA — Oddaia (RM) 48.5.19 Continuous communication using USART and DMA

48.7.11 USART interrupt flag clear register (USART_ICR)

Address offset: 0x20
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

WUCF CMCF
w W

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UDRCF | EOBCF | RTOCF CTSCF | LBDCF TCCBET TCCF TXEEC IDLECF | ORECF | NECF | FECF | PECF
w W w w w w w w w w W W w

Bit 6 TCCF: Transmission complete clear flag
Writing 1 to this bit clears the TC flag in the USART_ISR register.

Fri

OR - Organizacija racunalnikov 55

http://www.fri.uni-lj.si/si

Universal synchronous/asynchronous receiver transmitter (USART/UART) RMO0433

D M A — O d d a i a (R M) 48.5.19 Continuous communication using USART and DMA

Figure 588. Transmission using DMA

Idle pream?lfel Frame 1 I Frame 2 I Frame 3 :
TXine M T T T I I L LTI T I I T LTI IT
: : Set by hardware | Set by hardware : ;
TXE flag A /\ cleared by DMA read \ /\ cleared by DMA read : / Set by hardware '
| Ignored by the DMA because
DMArequest X ./\ :/_\ ¥ the transfer is complete !
USART_TDR ! F1. F2 B F3 | !
TC flag f K B | {set by
' 1 " ! " hardware
DMA writes | y V! : \
USART_TDR i] | ;
: X | | Cleared : :
DMATCIF ﬂag Set by hardware, by
(transfer ﬂ software
complete) } \ \ / b\ /
Software The DMA
ConfigLIres DMA DMA writes DMA writes DMA writes transfer |S
to send 3 data F1into F2 into F3 into complete Software waits until TC=1
blocks and ||USART_TDR|USART_TDR||USART_TDR (TCIF=1in
enables USART DMA_ISR)
ai17192b

rri OR - Organizacija racunalnikov 56

http://www.fri.uni-lj.si/si

Universal synchronous/asynchronous receiver transmitter (USART/UART) RMO0433

DMA — Oddaia (RM) 48.5.19 Continuous communication using USART and DMA

Figure 588. Transmission using DMA

Idle preamble Frame 1 i Frame 2 H Frame 3 :
TX line § ”I\IH\HIIIIIHHIIII\IH\III\
: : s W 1 Set by hard
TXE flag _?\ J’\ cli‘e?:dh:;dDh:rAeread 1 [\ chargc! t?y ;ﬁ:read / Set by hardware
DMArequest | \ N e
USART_TDR I F1_ 1Y F2 B F3
TCfaa | ¥ 3 : Vsetoy
. . " ' ' hard
48.7.10 USART interrupt and status register [alternate] (USART_ISR) ;vﬂ 3 /« e
Address offset: 0x1C [Gleared ‘ ’
Set by hardware, [_\ szﬂware
Reset value: 0x0000 00CO ’\
The same register can be used in FIFO mode enabled (previous section) and FIFO mode The DMA
B . . es | DMAwrites || transferis
disabled (this section). F3into | complete Software waits until TC=1
= ‘DR||USART_TDR|(TCIF=1 in
FIFO mode disabled DMA_ISR)|
ai17192b
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
RE TE
TCBGT ack | ack | WUF | Rwu ﬁgfz/rﬂf BUSY
r r r |+~ r r r r
15 14 13 12 1 10 9 8 7 6 4/5 4 3 2 1 0
ABRF | ABRE | UDR EOBF | RTOF CTS CTSIF | LBDF TXE TC RXNE | IDLE ORE NE FE PE
r r r r r r r r r r r r r r r r

Bit6 TC: Transmission complete
This bit indicates that the last data written in the USART_TDR has been transmitted out of
the shift register.

It is set by hardware when the transmission of a frame containing data is complete and
when TXE is set.

An interrupt is generated if TCIE=1 in the USART_CR1 register.

TC bitis is cleared by software, by writing 1 to the TCCF in the USART _ICR register or by a
write to the USART_TDR register.

0: Transmission is not complete
1: Transmission is complete
Note: If TE bit is reset and no transmission is on going, the TC bit is set immediately.

rri OR - Organizacija racunalnikov 57

http://www.fri.uni-lj.si/si

	Diapozitiv 1: STM32H7 Vhodno / izhodne naprave USART Serijska komunikacija z uporabo DMA krmilnika
	Diapozitiv 2: STM32H750XB
	Diapozitiv 3
	Diapozitiv 4: STM32H750B-DK - Schematic
	Diapozitiv 5: U(S)ART in DMA naprave
	Diapozitiv 6: DMA- Splošno
	Diapozitiv 7: DMA- Splošno
	Diapozitiv 8: FRI-SMS: DMA Krmilnik (PDC – Peripheral DMA Controller)
	Diapozitiv 9: FRI-SMS: DMA Krmilnik
	Diapozitiv 10: DMA- STM32H7 (stikalna matrika)
	Diapozitiv 11: DMA - STM32H7
	Diapozitiv 12: DMA - STM32H7 + USART3
	Diapozitiv 13
	Diapozitiv 14: USART – krmiljenje
	Diapozitiv 15
	Diapozitiv 16: USART + DMA – krmiljenje
	Diapozitiv 17: 2. INIT_DMA - Inicializacija DMA in USART3
	Diapozitiv 18
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 21
	Diapozitiv 22
	Diapozitiv 23
	Diapozitiv 24
	Diapozitiv 25: 2. INIT_DMA - Inicializacija DMA in USART3
	Diapozitiv 26: 3. RCV_DMA ,SND_DMA: Nastavitve DMA
	Diapozitiv 27
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32: DMA – stanje , nastavitve
	Diapozitiv 33: DMA – projekt
	Diapozitiv 34: DMA – program
	Diapozitiv 35: DMA – program (zagon z RAM povez. skripto)
	Diapozitiv 36: DMA – program (zagon z RAM povez. skripto)
	Diapozitiv 37
	Diapozitiv 38: DMA – program (glavna zanka)
	Diapozitiv 39: DMA_INIT (1/3 – DMA1, DMA TX):
	Diapozitiv 40: DMA_INIT (2/3 – DMA TX, DMAMUX):
	Diapozitiv 41: DMA_INIT (3/3 – USART3+DMA):
	Diapozitiv 42: DMA – oddaja
	Diapozitiv 43: DMA – oddaja (SND_DMA)
	Diapozitiv 44: DMA – sprejem
	Diapozitiv 45: DMA – sprejem (RCV_DMA)
	Diapozitiv 47: STM32H7 Vhodno / izhodne naprave USART Serijska komunikacija z uporabo DMA krmilnika Dodatek A: Nastavitev in uporaba DMA v C projektu (CubeIDE + CubeMX)
	Diapozitiv 48: DMA – C projekt
	Diapozitiv 49: DMA – C projekt
	Diapozitiv 50: STM32H7 Vhodno / izhodne naprave USART Serijska komunikacija z uporabo DMA krmilnika Dodatek B: Podrobnejši izseki iz dokumentacije (Ref.Man. - rm0433)
	Diapozitiv 51: DMA – sprejem (RM)
	Diapozitiv 52: DMA – sprejem (RM)
	Diapozitiv 53: DMA – sprejem (RM)
	Diapozitiv 54: DMA – oddaja (RM)
	Diapozitiv 55: DMA – oddaja (RM)
	Diapozitiv 56: DMA – oddaja (RM)
	Diapozitiv 57: DMA – oddaja (RM)

