
OR – Organizacija računalnikov 1

Fakulteta za računalništvo in informatiko

STM32H7

Vhodno / izhodne naprave

USART Serijska komunikacija

z uporabo DMA krmilnika

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 2

Fakulteta za računalništvo in informatiko

STM32H750XB

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 3

Fakulteta za računalništvo in informatiko

Priključitev :

• Mikro USB priklop na daljši stranici (nad LCD, srednji !!!)

Poseben začetni projekt (github) in info za STM32H7 (e-učilnica):

• dodajanje vsebine (Main.s):

Delo na STM32H7 razvojnem sistemu

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 4

Fakulteta za računalništvo in informatiko

STM32H750B-DK - Schematic

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 5

Fakulteta za računalništvo in informatiko

U(S)ART in DMA

naprave

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 6

Fakulteta za računalništvo in informatiko

DMA- Splošno

Primer 1: CPE opravlja prenose V/I <-> pomnilnik

• Čaka na zastavico

• ldr Rx, … in str Rx, …

Primer 2: DMA opravlja prenose V/I <-> pomnilnik :

• CPE nastavi DMA krmilnik za prenos :

• Vrsta prenosa, naprave

• Naslovi vira in ponora

• Velikost in število podatkov

• Sproži prenos

• DMA krmilnik (neodvisno od CPE):

• Čaka na zastavico

• Prebere in shrani podatek

• odšteva preostale podatke in zaključi prenos

• CPE izvaja svoj program

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 7

Fakulteta za računalništvo in informatiko

DMA- Splošno

Case1: In this example, filling the first and the third buffer took the exactly the same time, while copying the first buffer

to the second one took slightly less time:

While the DMA cannot be used to compute Fibonacci numbers, or initialize arrays with non-constant values, it can be 

used for copying data between 2 memory locations. 

Now the DMA operation ran in parallel with the CalculateFibonacci() function, reducing the overall program time by

21%:

Case2: CRC calculation case:

The results are in:

80 DMA CRCs per second. 

63 manual CRCs per second

On my processor, DMA gives a 27% advantage over iterative memory assignment. I think it is because everything

is done with a hardware mover that doesn’t have to increment, involve registers, gotos, branch less than, and so on.

C:\Users\Robi\AppData\Local\Temp\msohtmlclip1\02\clip_image001.png

C:\Users\Robi\AppData\Local\Temp\msohtmlclip1\02\clip_image001.png

http://www.fri.uni-lj.si/si
https://visualgdb.com/w/wp-content/uploads/2019/06/timing1.png
https://visualgdb.com/w/wp-content/uploads/2019/06/timing2.png


OR – Organizacija računalnikov 8

Fakulteta za računalništvo in informatiko

FRI-SMS: DMA Krmilnik (PDC – Peripheral DMA Controller)

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 9

Fakulteta za računalništvo in informatiko

• Za prenos podatkov, ki ne troši CPE časa

• 22 DMA kanalov

• V/I naprave z DMA kanali

• DBGU, SPI, USART, SSC, MCI, EMAC, ISI, ADC

• Hkratno dvosmerne V/I naprave (full duplex) imajo dva DMA kanala

• Enosmerne in izmenično dvosmerne (half duplex) V/I naprave imajo po 
en DMA kanal

• Preprosto programiranje. Potrebno je vpisati le:

• začetni naslov in

• dolžino bloka za prenos

• DMA krmilnik je dostopen preko naslovnega prostora vsake naprave 
posebej od odmika 0x100 dalje

FRI-SMS: DMA Krmilnik

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 10

Fakulteta za računalništvo in informatiko

Primer 1 (brez DMA): CPE opravlja prenose V/I <-> pomnilnik

• Čaka na zastavico

• ldr Rx, … in str Rx, …

Primer 2 (z DMA): DMA opravlja prenose V/I <-> pomnilnik :

• CPE nastavi DMA krmilnik za prenos :

• DMA krmilnik (neodvisno od CPE):

• CPE izvaja svoj program

DMA- STM32H7 (stikalna matrika)

Cortex-M 

Processor Core 

Flash 

Memory

AHB to APB 

Bridge 1

AHB to APB 

Bridge 2

APB1

APB2

LCD

TIM2

TIM4

TIM6

TIM7

USART2

USART3

SPI2

I2C1

I2C2

USART1

EXT

WKUP

SPI1

ADC

TIM9

TIM10

TIM11

DMA Engine

SRAM

USB 2.0 FS

DAC1

DAC2

USB RAM

WWDG

DMA Request

DMA Request

registers 2

1. Load data to

    CPU registers
1

2. Store data to RAM

AHB 

Bus Matrix

AHB 

Bus Matrix

Cortex-M 

Processor Core 

Flash 

Memory

AHB to APB 

Bridge 1

AHB to APB 

Bridge 2

APB1

APB2

LCD

TIM2

TIM4

TIM6

TIM7

USART2

USART3

SPI2

I2C1

I2C2

USART1

EXT

WKUP

SPI1

ADC

TIM9

TIM10

TIM11

DMA Engine

SRAM

USB 2.0 FS

DAC1

DAC2

USB RAM

WWDG

DMA Request

DMA Request

registers

Store data to RAM 

without involving CPU

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 11

Fakulteta za računalništvo in informatiko

DMA - STM32H7

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 12

Fakulteta za računalništvo in informatiko

DMA - STM32H7 + USART3

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 13

Fakulteta za računalništvo in informatiko

Viri USART3 : User & Programming manuals, vezalna shema

Vezalna shema

https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html

Ponovitev OR-LAB 10: USART

http://www.fri.uni-lj.si/si
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html
https://st-onlinetraining.s3.amazonaws.com/STM32H7-Peripheral-USART-interface_%28USART%29/index.html


OR – Organizacija računalnikov 14

Fakulteta za računalništvo in informatiko

USART – krmiljenje 
1. INIT_USART3 - Inicializacija USART3 naprave  (prejšnja LAB vaja)

Potrebni koraki za krmiljenje USART naprave:

1. Vklop USART3 naprave

• RCC_APB1LENR : b18=1 (USART3 Enable Clock)

2. Nastavitev GPIOB priključkov 10,11 na AF7(Alt. Function7)

• RCC_AHB4ENR (Peripheral Clock Register): b1=1 .. Port B Enable

• GPIOB_MODER (Mode Register): 0b10,  AF on pins PB10,PB11 

• GPIOB_AFRH (AF Register): 0x07700 AF7 on pins PB10,PB11 

3. Nastavitev hitrosti delovanja (BaudRate)

• USART3_BRR (BaudRate Register): 64M/115200 ≈ 556

4. Sprožitev delovanja

• USART3_CR1 (Control Register 1): 0b1101 TX, RX, USART Enable bits

5. Delovanje

Oddaja znaka: 

• USART3_ISR:  ko TXE=1, vpis znaka v USART3_TDR

Sprejem znaka: 

• USART3_ISR:  ko RXNE=1, preberi znak iz USART3_RDR

DMA omogoča delo z nizi znakov !

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 15

Fakulteta za računalništvo in informatiko

Vir DMA: Reference manual

Razlike v primerjavi s Cortex M4 (STM32F4):

• DMAMUX omogoča poljubne preslikave 

naprav na 16 DMA kanalov

• DMA napravi (DMA1,DMA2) delujeta 

samo v SRAM pomnilnik(e)

• Pozor pri zagonu kode iz RAM-a !!

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 16

Fakulteta za računalništvo in informatiko

USART + DMA – krmiljenje 
Potrebni koraki za krmiljenje USART naprave s pomočjo DMA naprave :

1. INIT_USART3 - Inicializacija USART3 naprave 

• Enako kot za samostojno delovanje naprave USART3 (OR Vaja 10)
• za sprejem ali oddajo posameznega znaka

2. INIT_DMA - Inicializacija DMA in dodatne nastavitve USART3

• RCC: vklop DMA1 naprave

• Izklop DMA kanalov (RX, TX) in njune nastavitve
• Splošne nastavitve za prenose : 

– smer prenosa (pomn.<-> naprava), povečevanje naslovov v pomnilniku

• DMAMUX1: 
• Možnost poljubne preslikave med V/I napravami in kanali DMA krmilnika (angl. stream)

• Nastavitve DMA kanalov 1,0 in povezava z napravo USART3 (št. 45 = RX, št. 46 = TX)

• Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:
• Dodatna nastavitev USART3- vklop DMA krmiljenja prenosov na USART3 napravi

3. SND_DMA, RCV_DMA: Nastavitve DMA za vsak prenos 

• za sprejem ali oddajo niza znakov
• Naslov podatkovnega registra V/I naprave, pomnilnika in št. znakov za prenos

• Brisanje zastavic za prejšnje dogodke

• Vklop ustreznega kanala DMA (TX ali RX) 

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 17

Fakulteta za računalništvo in informatiko

2. INIT_DMA - Inicializacija DMA in USART3
RCC: vklop DMA1 naprave

// Enable DMA1 Peripheral Clock (bit 0 in AHB1ENR 
register)
ldr r6, =RCC_BASE          // Load peripheral clock reg 
base address to r6
ldr r5, [r6,#RCC_AHB1ENR]   // Read its content to r5
orr r5, #1              // Set bit 0 to enable DMA1 clock
str r5, [r6,#RCC_AHB1ENR]   // Store result in peripheral
clock register

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 18

Fakulteta za računalništvo in informatiko

Izklop DMA kanalov (RX, TX) in njune nastavitve

.equ     DMA_USART3_TX_STREAM, 0    //Channel 0 on DMA1

.equ     DMA_USART3_RX_STREAM, 1    //Channel 1 on DMA1

2. INIT_DMA - Inicializacija DMA in USART3

ldr r6, =DMA1_BASE    // Load DMA1 BASE address to r6

// ------- Primer: DMA1 TX Settings
// Disable DMA TX Channel
ldr r5, [r6,#DMA_SxCR_TX] // Read its content to r5
bic r5, #1
str r5, [r6,#DMA_SxCR_TX] // Store result

wt0_EN0:
ldr r5, [r6,#DMA_SxCR_TX] // wait until bit is read as 0
tst r5, #1
bne wt0_EN0

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 19

Fakulteta za računalništvo in informatiko

Default nastavitve, ki 

ustrezajo

Nastavitve za 

spremembo

b10=1
• povečevanje 

naslova v pomn.

b7,6=
• 01 TX

• 00 RX

2. INIT_DMA - Inicializacija DMA in USART3

// ------- Primer: DMA1 TX Settings
// Set MINC (increment memory pointer) and Direction 
(Memory->Peripheral)
orr r5,r5,#(0b10001 << 6)    // b10=1 and bit7,6 = 01
str r5, [r6,#DMA_SxCR_TX]     // Store result

Izklop DMA kanalov (RX, TX) in njune nastavitve

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 20

Fakulteta za računalništvo in informatiko

Default nastavitve, ki 

ustrezajo (podrobneje)

2. INIT_DMA - Inicializacija DMA in USART3
Izklop DMA kanalov (RX, TX) in njune nastavitve

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 21

Fakulteta za računalništvo in informatiko

Nastavitev direktnega načina (že nastavljeno na 0)

2. INIT_DMA - Inicializacija DMA in USART3

// ------- Primer: DMA1 TX Settings
// Enable direct mode
ldr r5, [r6,#DMA_SxFCR_TX]   // Read its content to r5
bic r5, #0b100
str r5, [r6,#DMA_SxFCR_TX]     // Store result

Default nastavitve, ki 

ustrezajo

Izklop DMA kanalov (RX, TX) in njune nastavitve

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 22

Fakulteta za računalništvo in informatiko

Nastavitev preslikave DMAMUX1 (naprava <-> stream)

2. INIT_DMA - Inicializacija DMA in USART3
DMAMUX1: 

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 23

Fakulteta za računalništvo in informatiko

Nastavitev preslikave DMAMUX1 (naprava <-> stream)

2. INIT_DMA - Inicializacija DMA in USART3

// ------------- DMAMUX1 Settings
// Set channels to devices translations (multiplexing)

ldr r6, =DMAMUX1_BASE         // Load reg base address to r6

mov r5,#46 // USART3_TX DMA Device Nr. is 46
str r5, [r6, DMAMUX1_C0CR]// DMAREQ for Channel 0 to USART3_TX

mov r5,#45 // USART3_Rx DMA Device Nr. is 45
str r5, [r6, DMAMUX1_C1CR]// DMAREQ for Channel 1 to USART3_RX

DMAMUX1: 

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 24

Fakulteta za računalništvo in informatiko

Izklop, vklop delovanja USART 3 (za konfiguracijo CR3)

2. INIT_DMA - Inicializacija DMA in USART3
Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 25

Fakulteta za računalništvo in informatiko

// ------------- USART3 Settings
ldr r6, =USART3_BASE       // Load USART3 BASE address to r1

// Disable USART3
ldr r5, [r6,#USART_CR1]   // Read its content to r5
bic r5, #1
str r5, [r6,#USART_CR1]   // Store result

// Enable DMA Transmit and Receive for USART3
ldr r5, [r6, #USART_CR3]
orr r5, #(0b11<<6)          // Set bits 7 and 6 to enable DMAT and DMAR bits
str r5, [r6,#USART_CR3]    // Store result

// Enable USART3
ldr r6, =USART3_BASE       // Load USART3 BASE address to r6
ldr r5, [r6,#USART_CR1]   // Read its content to r5
orr r5, r5, #1
str r5, [r6,#USART_CR1]   // Store result

2. INIT_DMA - Inicializacija DMA in USART3

Vklop DMA prenosov na USART3

Izklop USART3 naprave in vklop DMA krmiljenja ter USART3:

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 26

Fakulteta za računalništvo in informatiko

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

Nastavitev naslova USART3 naprave (Data Register)

Naslov USART3 Data 

registra:

USART3_BASE+USART_RDR

ldr r6, =DMA1_BASE          // Load reg base address to r6

WAIT_EN: // Wait EN bit to become zero
ldr r5, [r6, #DMA_SxCR_RX]
tst r5, #1
bne WAIT_EN

//  Receive (RX) DMA Init
ldr r5, =USART3_BASE+USART_RDR// RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX]   // Store peripheral DMA pointer
str r0, [r6,#DMA_SxM0AR_RX]   // Store address pointer in r0
str r1, [r6,#DMA_SxSNDTR_RX]   // Store number of units in r1

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 27

Fakulteta za računalništvo in informatiko

Nastavitev naslova v pomnilniku (za prenos)

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

Naslov v 

pomnilniku

(začetek 

niza v r0)

ldr r6, =DMA1_BASE          // Load reg base address to r6

//  Receive (RX) DMA Init
ldr r5, =USART3_BASE+USART_RDR// RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX]   // Store peripheral DMA pointer
str r0, [r6,#DMA_SxM0AR_RX]   // Store address pointer in r0
str r1, [r6,#DMA_SxSNDTR_RX]   // Store number of units in r1

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 28

Fakulteta za računalništvo in informatiko

Nastavitev števila podatkov (za prenos)

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

Število 

znakov 

v r1

ldr r6, =DMA1_BASE          // Load reg base address to r6

//  Receive (RX) DMA Init
ldr r5, =USART3_BASE+USART_RDR// RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX]   // Store peripheral DMA pointer
str r0, [r6,#DMA_SxM0AR_RX]   // Store address pointer in r0
str r1, [r6,#DMA_SxSNDTR_RX]   // Store number of units in r1

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 29

Fakulteta za računalništvo in informatiko

Brisanje prejšnjih DMA dogodkov

ldr r6, =DMA1_BASE          // Load reg base address to r6

// Clear flags in Status register
mov r5,#(0b111101<<6)           // clear flags for Ch1 in ISR
str r5, [r6,# DMA_LIFCR]       // Store 

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 30

Fakulteta za računalništvo in informatiko

Vklop delovanja (streama) DMA krmilnika (EN=0)

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

//  Enable DMA Channel
ldr r5, [r6, #DMA_SxCR_RX]
orr r5, r5, #1
str r5, [r6, #DMA_SxCR_RX]// Enable channel

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 31

Fakulteta za računalništvo in informatiko

Čakanje na zaključek prenosov

// --------- RCV_DMA
// Wait for the end of reception (TCIF)
   ldr r6, =DMA1_BASE          // Load reg base address to r6

WAIT_RC:
ldr r5, [r6, #DMA_LISR]
tst r5, #(1 << 11)        // TCIF1 flag
beq WAIT_RC

// --------- SND_DMA
// Wait for the end of transmission

ldr r6, =USART3_BASE

WAIT_TC:
ldr r5, [r6, #USART_ISR]

    tst r5, #(1 << 6)              // Test TC bit
beq WAIT_TC 

Sprejem (RCV_DMA):

Oddaja (SND_DMA):

3. RCV_DMA ,SND_DMA: Nastavitve DMA 

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 32

Fakulteta za računalništvo in informatiko

DMA – stanje , nastavitve

Status reg. 

Števec znakov

Clear

flags reg.

Ctrl reg. #0 

Naslov DReg

Naslov Pomn.

Ctrl reg. #1

Ch0

Ch1
…

DMA

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 33

Fakulteta za računalništvo in informatiko

DMA – projekt
STM32H750XBHX_RAM.ld:

• Dodamo sekcijo .sram

/* Define output sections */
SECTIONS
{

…
/* used by the startup to initialize data */
_sisram = LOADADDR(.sram); /* this will be start address of init values in RAM_EXEC */

/* Initialized data sections goes into SRAM, have to copy content manually */
.sram :
{
. = ALIGN(4);
_ssram = .; /* create a global symbol at sram start */
KEEP(*(.sram)) /* .data sections */
*(.sram*) /* .data* sections */

. = ALIGN(4);
_esram = .; /* define a global symbol at sram end */

} >RAM_D2 AT> RAM_EXEC
…

}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 34

Fakulteta za računalništvo in informatiko

DMA – program
Naslovi registrov:
//-----------------------------
// DMA related definitions
//-----------------------------

// AHB2ENR register offset is 0xDC (for enabling SRAMs)
.equ RCC_AHB2ENR, 0xDC // RCC AHB2ENR periph. clk reg.

// AHB1ENR register offset is 0xE8
.equ RCC_AHB1ENR, 0xD8 // RCC AHB1ENR periph. clk reg.

// DMAMUX1 base address is 0x40020800
.equ DMAMUX1_BASE, 0x40020800 // DMAMUX1 base address

.equ DMAMUX1_C0CR, 0x00 // CR for Channel 0

.equ DMAMUX1_C1CR, 0x04 // CR for Channel 1 

// DMA1 base address is 0x40020000
.equ DMA1_BASE, 0x40020000 // DMA1 base address
// DMA2 base address is 0x40020400
.equ DMA2_BASE, 0x40020400 // DMA2 base address

.equ DMA_USART3_TX_STREAM, 0 //Channel 0 on DMA1

.equ DMA_USART3_RX_STREAM, 1 //Channel 1 on DMA1

// DMA Registers definitions
.equ DMA_LISR, 0x00
.equ DMA_HISR, 0x04
.equ DMA_LIFCR, 0x08
.equ DMA_HIFCR, 0x0C

.equ DMA_SxCR_TX,0x10 + 0x18 * DMA_USART3_TX_STREAM

.equ DMA_SxFCR_TX,0x24 + 0x18 * DMA_USART3_TX_STREAM

.equ DMA_SxSNDTR_TX,0x14 + 0x18 * DMA_USART3_TX_STREAM

.equ DMA_SxPAR_TX,0x18 + 0x18 * DMA_USART3_TX_STREAM

.equ DMA_SxM0AR_TX,0x1C + 0x18 * DMA_USART3_TX_STREAM

.equ DMA_SxCR_RX,0x10 + 0x18 * DMA_USART3_RX_STREAM

.equ DMA_SxFCR_RX,0x24 + 0x18 * DMA_USART3_RX_STREAM

.equ DMA_SxSNDTR_RX,0x14 + 0x18 * DMA_USART3_RX_STREAM

.equ DMA_SxPAR_RX,0x18 + 0x18 * DMA_USART3_RX_STREAM

.equ DMA_SxM0AR_RX,0x1C + 0x18 * DMA_USART3_RX_STREAM

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 35

Fakulteta za računalništvo in informatiko

DMA – program (zagon z RAM povez. skripto)
Main.s - spremembe:

• Dodamo spremenljivke v sekcijo .sram

// Start of sram section
.section .sram,"a",%progbits
.align

NIZ1: .space 12
NIZ2: .asciz "Testni niz!" // 12 bytes

.equ NIZ_LEN, 12

• Za delovanje moramo vklopiti tudi SRAM pomnilnike :

/* Enable SRAMs and copy initial values only with RAM Linker script */
// Enable SRAMs internal memories (for DMA1)
bl SRAM_ENABLE

• Startup koda ne vsebuje obravnave te sekcije, zato moramo za kopiranje začetnih 

vrednosti poskrbeti sami:

// Copy initial values for .sram section (from .text to SRAM)
ldr r0,=_sisram
ldr r1,=_ssram
ldr r2,=_esram
bl MEM_COPY

MEM_COPY:
push {r3, lr}

copy:
ldr r3,[r0],#4
str r3,[r1],#4

cmp r1,r2
blo copy

pop {r3, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 36

Fakulteta za računalništvo in informatiko

DMA – program (zagon z RAM povez. skripto)
Main.s:
// Comment following line when FLASH Linker Script is used
#define RAM_LinkScript
…
#ifdef RAM_LinkScript
// Start of sram section

.section .sram,"a",%progbits
#endif

.align
NIZ1: .space 12

.align
NIZ2: .asciz "Testni niz!" // 12 bytes

.equ NIZ_LEN, 12

main:

#ifdef RAM_LinkScript

// Relocating Vector table to RAM (only for RAM Linker Script)
bl RELLOC_VECTBL

/* Enable SRAMs and copy initial values only with RAM Linker script */
// Enable SRAMs internal memories (for DMA1)

bl SRAM_ENABLE

// Copy initial values for .sram section (from .text to SRAM)
ldr r0,=_sisram
ldr r1,=_ssram
ldr r2,=_esram
bl MEM_COPY

#endif

MEM_COPY:
push {r3, lr}

copy:
ldr r3,[r0],#4
str r3,[r1],#4

cmp r1,r2
blo copy

pop {r3, pc}

SRAM_ENABLE:
push {r5, r6, lr}

// Enable internal SRAMs (bits 31,30,29 in AHBeENR register)
ldr r6, =RCC_BASE // Load periph. clk reg base address to r6
ldr r5, [r6,#RCC_AHB2ENR] // Read its content to r5
orr r5, #(0b111 << 29) // Set bits 31,30,29 to 1 to enable
SRAMs clock
str r5, [r6,#RCC_AHB2ENR] // Store result in periph. clk
register

pop {r5, r6, pc}

RELLOC_VECTBL:

push {r0, r1, lr}

ldr r1, =VTOR // Set Vector table addr. to 
0x24000000
ldr r0, =0x24000000
str r0, [r1]

pop {r0, r1, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 37

Fakulteta za računalništvo in informatiko

Vklop SRAM pomnilnikov (DMA1,2 delujeta le v tej domeni)

SRAM_ENABLE:
push {r5, r6, lr}

// Enable internal SRAMs (bits 31,30,29 in AHBeENR register)
ldr r6, =RCC_BASE // Load periph. clk reg base address to r6
ldr r5, [r6,#RCC_AHB2ENR] // Read its content to r5
orr r5, #(0b111 << 29) // Set bits 31,30,29 to 1 to enable SRAMs
clock
str r5, [r6,#RCC_AHB2ENR] // Store result in periph. clk register

pop {r5, r6, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 38

Fakulteta za računalništvo in informatiko

DMA – program (glavna zanka)
Main.s:

bl INIT_DMA // Priprava DMA naprave za prenose preko USART3

// Main loop for USART3+DMA Echo test for blocks of 12 characters with change to upper case
loop:

ldr r0,=NIZ2
mov r1,#NIZ_LEN
bl SND_DMA

bl LED_ON // Vklop LED diode

mov r0,#500
// bl DELAY // Zakasnitev SW Delay: r0 x 1msec
bl DELAYTC // Zakasnitev SysTick : r0 x 1msec

ldr r0,=NIZ1
mov r1,#NIZ_LEN
bl RCV_DMA

ldr r0,=NIZ1
ldr r1,=NIZ2
ldr r2, =NIZ_LEN
bl CHANGE

bl LED_OFF // Izlop LED diode

mov r0,#500
// bl DELAY // Zakasnitev SW Delay: r0 x 1msec
bl DELAYTC // Zakasnitev SysTick : r0 x 1msec

b loop // skok na vrstico loop:

CHANGE:
push {r3-r4,lr}

ch_zanka:
ldrb r4, [r0], #1
bic r3, r4, #0b100000 // zbrisi b5

cmp r3, #'A‘
blo pisi

cmp r3, #'Z‘
bhi pisi

eor r4, r4, #0b100000 // spremeni crko

pisi:
strb r4, [r1], #1 /* shranimo v niz2*/

subs r2, r2, #1
bne ch_zanka

pop {r3-r4,pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 39

Fakulteta za računalništvo in informatiko

DMA_INIT (1/3 – DMA1, DMA TX): 
INIT_DMA:

push {r5, r6, lr}

//-----------------------------------------
// ------------- DMA1 Settings

// Enable DMA1 Peripheral Clock (bit 0 in AHB1ENR register)
ldr r6, =RCC_BASE // Load peripheral clock reg base address to r6
ldr r5, [r6,#RCC_AHB1ENR] // Read its content to r5
orr r5, #1 // Set bit 0 to enable DMA1 clock
str r5, [r6,#RCC_AHB1ENR] // Store result in peripheral clock register

ldr r6, =DMA1_BASE // Load DMA1 BASE address to r6

// ------- DMA1 TX Settings
// Disable DMA TX Channel
ldr r5, [r6,#DMA_SxCR_TX] // Read its content to r5
bic r5, #1
str r5, [r6,#DMA_SxCR_TX] // Store result

wt0_EN0:
ldr r5, [r6,#DMA_SxCR_TX] // wait until bit is read as 0
tst r5, #1
bne wt0_EN0

// Set MINC (increment memory pointer) and Direction (Memory->Peripheral)
orr r5,r5,#(0b10001 << 6) // b10=1 and bit7,6 = 01
str r5, [r6,#DMA_SxCR_TX] // Store result

// Enable direct mode
ldr r5, [r6,#DMA_SxFCR_TX] // Read its content to r5
bic r5, #0b100
str r5, [r6,#DMA_SxFCR_TX] // Store result

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 40

Fakulteta za računalništvo in informatiko

DMA_INIT (2/3 – DMA TX, DMAMUX): 

// ------- DMA1 RX Settings
// Disable DMA RX Channel
ldr r5, [r6,#DMA_SxCR_RX] // Read its content to r5
bic r5, #1
str r5, [r6,#DMA_SxCR_RX] // Store result

wt1_EN0:
ldr r5, [r6,#DMA_SxCR_RX] // wait until bit is read as 0
tst r5, #1
bne wt1_EN0

// Set MINC (increment memory pointer) and Direction (Memory<-Peripheral)
orr r5,r5,#(0b10000 << 6) // b10=1 and bit7,6 = 00
str r5, [r6,#DMA_SxCR_RX] // Store result

// Enable direct mode
ldr r5, [r6,#DMA_SxFCR_RX] // Read its content to r5
bic r5, #0b100
str r5, [r6,#DMA_SxFCR_RX] // Store result

//----------------------------------------------
// ------------- DMAMUX1 Settings
// Set channels to devices translations (multiplexing)

ldr r6, =DMAMUX1_BASE // Load reg base address to r6

mov r5,#46 // USART3_TX DMA Device Nr. is 46
str r5, [r6, DMAMUX1_C0CR] // DMAREQ for Channel 0 to USART3_TX
mov r5,#45 // USART3_Rx DMA Device Nr. is 45
str r5, [r6, DMAMUX1_C1CR] // DMAREQ for Channel 1 to USART3_RX

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 41

Fakulteta za računalništvo in informatiko

DMA_INIT (3/3 – USART3+DMA): 

//----------------------------------------------
// ------------- USART3 Settings
ldr r6, =USART3_BASE // Load USART3 BASE address to r1

// Disable USART3
ldr r5, [r6,#USART_CR1] // Read its content to r5
bic r5, #1
str r5, [r6,#USART_CR1] // Store result

// Enable DMA Transmit and Receive for USART3
ldr r5, [r6, #USART_CR3]
orr r5, #(0b11<<6) // Set bits 7 and 6 to enable DMAT and DMAR bits
str r5, [r6,#USART_CR3] // Store result

// Enable USART3
ldr r6, =USART3_BASE // Load USART3 BASE address to r6
ldr r5, [r6,#USART_CR1] // Read its content to r5
orr r5, r5, #1
str r5, [r6,#USART_CR1] // Store result

pop {r5, r6, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 42

Fakulteta za računalništvo in informatiko

DMA – oddaja 
Potrebni koraki za krmiljenje DMA naprave (SND_DMA):

1. Počakaj EN bit = 0 v DMA_SxCR_TX registru (zaključek prejšnjega prenosa)

• DMA_SxCR_TX b0=0 (Stream disabled)

2. Nastavitve naslovov

• DMA_SxPAR_TX naslov DR registra (USART3_BASE+USART_TDR)

• DMA_SxM0AR_TX naslov v pomnilniku v r0

• DMA_SxSNDTR_TX število znakov v r1

3. Brisanje zastavic v statusnem registru DMA_LIFCR :

• Clear all bits for channel #0
• 0b111101 -> DMA_LIFCR

4. Vklop DMA kanala

• DMA_SxCR_TX b0=1 (Stream enabled)

5. Čakanje na konec prenosa :

• USART_ISR TC = 1   (DMA označi konec prenosa)

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 43

Fakulteta za računalništvo in informatiko

DMA – oddaja (SND_DMA) 
SND_DMA:
push {r5, r6, lr}

ldr r6, =DMA1_BASE // Load reg base address to r6

WAIT_EN1: // Wait EN bit to become zero
ldr r5, [r6, #DMA_SxCR_TX]
tst r5, #1
bne WAIT_EN1

ldr r6, =DMA1_BASE // Load reg base address to r6
// Transmit (TX) DMA Init
ldr r5, =USART3_BASE+USART_TDR // RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_TX] // Store result in peripheral DMA 
pointerclock register
str r0, [r6,#DMA_SxM0AR_TX] // Store address pointer
str r1, [r6,#DMA_SxSNDTR_TX] // Store result in peripheral DMA 
pointerclock register

// Clear flags in Status register
mov r5, #0b111101 // Clear all bits for channel 0
str r5, [r6,#DMA_LIFCR] // Store result in peripheral DMA 
pointerclock register

// Enable DMA Channel
ldr r6, =DMA1_BASE // Load reg base address to r6
ldr r5, [r6, #DMA_SxCR_TX]
orr r5, r5, #1
str r5, [r6, #DMA_SxCR_TX] // Enable channel

// Wait for the end of transmission
ldr r6, =USART3_BASE

WAIT_TC:
ldr r5, [r6, #USART_ISR]
tst r5, #(1 << 6) // Test TC bit
beq WAIT_TC

pop {r5, r6, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 44

Fakulteta za računalništvo in informatiko

DMA – sprejem
Potrebni koraki za krmiljenje DMA naprave (RCV_DMA):

1. Počakaj EN bit = 0 v DMA_SxCR_RX registru (zaključek prejšnjega prenosa)

• DMA_SxCR_RX b0=0 (Stream disabled)

2. Nastavitve naslovov

• DMA_SxPAR_RX naslov DR registra (USART3_BASE+USART_RDR)

• DMA_SxM0AR_RX naslov v pomnilniku v r0

• DMA_SxSNDTR_RX število znakov v r1

3. Brisanje zastavic v statusnem registru DMA_LIFCR :

• Clear all bits for channel #0
• (0b111101<<6) -> DMA_LIFCR

4. Vklop DMA kanala

• DMA_SxCR_RX b0=1 (Stream enabled)

5. Čakanje na konec prenosa :

• DMA_LISR  TCIF1 = 1   (DMA označi konec prenosa)

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 45

Fakulteta za računalništvo in informatiko

DMA – sprejem (RCV_DMA) 
RCV_DMA:
push {r5, r6, lr}

ldr r6, =DMA1_BASE // Load reg base address to r6

WAIT_EN: // Wait EN bit to become zero
ldr r5, [r6, #DMA_SxCR_RX]
tst r5, #1
bne WAIT_EN

ldr r6, =DMA1_BASE // Load reg base address to r6

// Receive (RX) DMA Init
ldr r5, =USART3_BASE+USART_RDR // RX peripheral address to r5
str r5, [r6,#DMA_SxPAR_RX] // Store peripheral DMA pointer
str r0, [r6,#DMA_SxM0AR_RX] // Store address pointer
str r1, [r6,#DMA_SxSNDTR_RX] // Store number of units

// Clear flags in Status register
mov r5,#(0b111101<<6) // clear flags for Ch1 in ISR
str r5, [r6,# DMA_LIFCR] // Store

// Enable DMA Channel
ldr r5, [r6, #DMA_SxCR_RX]
orr r5, r5, #1
str r5, [r6, #DMA_SxCR_RX] // Enable channel

// Wait for the end of reception (TCIF
ldr r6, =DMA1_BASE // Load reg base 
address to r6

WAIT_RC:
ldr r5, [r6, #DMA_LISR]
tst r5, #(1 << 11) // TCIF1 flag
beq WAIT_RC

pop {r5, r6, pc}

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 47

Fakulteta za računalništvo in informatiko

STM32H7

Vhodno / izhodne naprave

USART Serijska komunikacija

z uporabo DMA krmilnika

Dodatek A:

Nastavitev in uporaba DMA v C projektu 

(CubeIDE + CubeMX)

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 48

Fakulteta za računalništvo in informatiko

DMA – C projekt
Nastavitve v CubeMX:

• Connectivity -> USART3 -> DMA settings

• Add RX, TX DMA requests, leaving default values

• System core

• DMA  

• Lists all DMA requests (also USART3)

• NVIC

• Enable USART3 Global interrupt

• Save, regenerate code

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 49

Fakulteta za računalništvo in informatiko

DMA – C projekt

snprintf (SendBuffer,BUFSIZE,"USART3:%d secs, Key:%d\r\n",Cnt,KeyState);

//HAL_UART_Transmit(&huart3,SendBuffer,strlen(SendBuffer),1000);

// On H7, clean D-Cache if buffer is in cacheable RAM (see fix #3)

SCB_CleanDCache_by_Addr(SendBuffer,strlen(SendBuffer));

// option B is to put SendBuffer in RAM_D2, 

// that is not cacheable by default settings of MPU

// __attribute__((section(".RAM_D2"))) char SendBuffer[256];

if (HAL_UART_Transmit_DMA(&huart3, SendBuffer,strlen(SendBuffer)) != HAL_OK) 
{

Error_Handler();

}

void MX_DMA_Init(void)
{

/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();

/* DMA interrupt init */
/* DMA1_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);
/* DMA1_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Stream1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Stream1_IRQn);

}

CubeIDE:

• Generira se Dma.c datoteka:

• Main.c code (main loop):

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 50

Fakulteta za računalništvo in informatiko

STM32H7

Vhodno / izhodne naprave

USART Serijska komunikacija

z uporabo DMA krmilnika

Dodatek B:

Podrobnejši izseki iz dokumentacije 

(Ref.Man. - rm0433)

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 51

Fakulteta za računalništvo in informatiko

DMA – sprejem (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 52

Fakulteta za računalništvo in informatiko

DMA – sprejem (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 53

Fakulteta za računalništvo in informatiko

DMA – sprejem (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 54

Fakulteta za računalništvo in informatiko

DMA – oddaja (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 55

Fakulteta za računalništvo in informatiko

DMA – oddaja (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 56

Fakulteta za računalništvo in informatiko

DMA – oddaja (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si


OR – Organizacija računalnikov 57

Fakulteta za računalništvo in informatiko

DMA – oddaja (RM) 

// Wait for the end of reception

ldr r6, =DMA1_BASE

WAIT_TCIF5:

ldr r5, [r6, #DMA_HISR]

tst r5, #(1 << 11)

beq WAIT_TCIF5

// clear reception flag

mov r5, #(1 << 11)

str r5,[r6, #DMA_HIFCR]

http://www.fri.uni-lj.si/si

	Diapozitiv 1: STM32H7  Vhodno / izhodne naprave  USART Serijska komunikacija z uporabo DMA krmilnika
	Diapozitiv 2: STM32H750XB
	Diapozitiv 3
	Diapozitiv 4: STM32H750B-DK - Schematic
	Diapozitiv 5: U(S)ART in DMA naprave
	Diapozitiv 6: DMA- Splošno
	Diapozitiv 7: DMA- Splošno
	Diapozitiv 8: FRI-SMS: DMA Krmilnik (PDC – Peripheral DMA Controller)
	Diapozitiv 9: FRI-SMS: DMA Krmilnik
	Diapozitiv 10: DMA- STM32H7 (stikalna matrika)
	Diapozitiv 11: DMA - STM32H7
	Diapozitiv 12: DMA - STM32H7 + USART3
	Diapozitiv 13
	Diapozitiv 14: USART – krmiljenje 
	Diapozitiv 15
	Diapozitiv 16: USART + DMA – krmiljenje 
	Diapozitiv 17: 2. INIT_DMA - Inicializacija DMA in USART3
	Diapozitiv 18
	Diapozitiv 19
	Diapozitiv 20
	Diapozitiv 21
	Diapozitiv 22
	Diapozitiv 23
	Diapozitiv 24
	Diapozitiv 25: 2. INIT_DMA - Inicializacija DMA in USART3
	Diapozitiv 26: 3. RCV_DMA ,SND_DMA: Nastavitve DMA 
	Diapozitiv 27
	Diapozitiv 28
	Diapozitiv 29
	Diapozitiv 30
	Diapozitiv 31
	Diapozitiv 32: DMA – stanje , nastavitve
	Diapozitiv 33: DMA – projekt
	Diapozitiv 34: DMA – program
	Diapozitiv 35: DMA – program (zagon z RAM povez. skripto)
	Diapozitiv 36: DMA – program (zagon z RAM povez. skripto)
	Diapozitiv 37
	Diapozitiv 38: DMA – program (glavna zanka)
	Diapozitiv 39: DMA_INIT (1/3 – DMA1, DMA TX): 
	Diapozitiv 40: DMA_INIT (2/3 – DMA TX, DMAMUX): 
	Diapozitiv 41: DMA_INIT (3/3 – USART3+DMA): 
	Diapozitiv 42: DMA – oddaja 
	Diapozitiv 43: DMA – oddaja (SND_DMA) 
	Diapozitiv 44: DMA – sprejem
	Diapozitiv 45: DMA – sprejem (RCV_DMA) 
	Diapozitiv 47: STM32H7  Vhodno / izhodne naprave  USART Serijska komunikacija z uporabo DMA krmilnika  Dodatek A: Nastavitev in uporaba DMA v C projektu (CubeIDE + CubeMX)
	Diapozitiv 48: DMA – C projekt
	Diapozitiv 49: DMA – C projekt
	Diapozitiv 50: STM32H7  Vhodno / izhodne naprave  USART Serijska komunikacija z uporabo DMA krmilnika  Dodatek B: Podrobnejši izseki iz dokumentacije  (Ref.Man. - rm0433)
	Diapozitiv 51: DMA – sprejem (RM) 
	Diapozitiv 52: DMA – sprejem (RM) 
	Diapozitiv 53: DMA – sprejem (RM) 
	Diapozitiv 54: DMA – oddaja (RM) 
	Diapozitiv 55: DMA – oddaja (RM) 
	Diapozitiv 56: DMA – oddaja (RM) 
	Diapozitiv 57: DMA – oddaja (RM) 

