
Contents

1 Memory-mapped Input/Output . 1
1.1 Introduction . 1
1.2 A memory-mapped register . 3
1.3 Two memory mapped registers . 6
1.4 Several memory mapped registers . 8
1.5 Registers mapped at consecutive addresses . 9
1.6 Partial vs. Full Address Decoding . 11
1.7 Case study: Using the GPIO Interface in FE310-G002 RISC-V

based System-On-chip . 12
1.7.1 Program GPIO in Assembly . 14
1.7.2 Program GPIO in C . 18

1.8 Case study: Using the UART Interface in FE310-G002 RISC-V
based System-On-chip . 20
1.8.1 Universal Asynchronous Receiver Transmitter 21
1.8.2 The UART interface in the SiFive FE310 22
1.8.3 Program UART in C . 25
1.8.4 UART pins . 26

1.9 Case study: Using the GPIO Interface in ARM cortex-M based
System-On-chip . 28
1.9.1 Cortex-M fixed memory address space 28
1.9.2 GPIO interface in Cortex-M . 29

v

Chapter 1
Memory-mapped Input/Output

CHAPTER GOALS

Have you ever wondered how a Central Processing Unit communicate with
I/O devices? In modern computer systems, this is done using so-called
memory-mapped I/O. In this chapter, we will cover the theory and practice
of memory mapping and address decoding. A memory-mapped I/O device
is a computer hardware component that uses a portion of the system’s mem-
ory address space and is accessible by load and store instructions, while ad-
dress decoding determines which device or peripheral in a computer system
should respond to a particular load or store instruction.
Upon completion of this chapter, you will be able to:

• Understand and explain memory mapping.
• Understand and explain address decoding.
• Able to program a simple memory-mapped general-purpose IO device.

1.1 Introduction

Recall that the only way for modern processors (e.g. RISC-V) to access data (read or
write) is by using memory load (L) and store (S) instructions. These instructions are
a fundamental part of an instruction set architecture (ISA) and allow the processor to
interact with various types of memory. An important consequence of this principle
is that if we want the CPU to read or write data from input/output (I/O) devices, all
I/O devices should be visible to the CPU as a set of memory words. We also say that
I/O devices should be memory-mapped. A memory-mapped I/O (MMIO) device is
a computer hardware component that uses a portion of the system’s memory address
space for data transfer and control. This approach simplifies device interaction for
software developers and is commonly used in modern computer systems.

1

2 1 Memory-mapped Input/Output

In particular, these MMIO devices incorporate a small memory (actually, the
memory size depends on the device type and its functionality, but in general, this
memory has only a few memory words). Each memory word within this on-device
memory is assigned a memory address within the system’s memory map and, conse-
quently, is accessible through load and store instructions. Besides, each word within
this on-device memory has a dedicated meaning (for example, it can be used by the
CPU to monitor the device status, to set some features of the device or to read/write
data). Because these on-chip memory words have distinct meanings, each memory
location is called a register. In other words, these registers control various aspects
of the device’s operation, such as configuration settings, data transfer, and status
checks.

In order to assign a unique memory address to each I/O device and its registers,
computer systems rely on address decoding. Address decoding is crucial in com-
puter architecture and design, particularly in systems that use memory-mapped I/O,
as it determines which device or peripheral in a computer system should respond to
a particular load or store instruction provided by the CPU. To determine which de-
vice should respond to a specific address provided within a load or store instruction,
address decoding logic involves a combination of simple digital logic gates, such
as AND gates, OR gates, and NOT gates, or even the usage of decoders. When the
CPU wants to read from or write to a specific I/O device register or memory loca-
tion, it places the desired address on the address bus. For example, RISC-V would
place this address on the address bus in the fourth pipeline stage (MEM stage) after
the memory address has been calculated from the base address and offset within its
third pipeline stage (EXE stage). Besides the address, the CPU would also activate
the read-write (R/W signal), which tells the addressed device whether the CPU
would like to read from or write to. The address decoding logic continuously moni-
tors the address bus. It compares the incoming address on the bus to predefined ad-
dress ranges for each device. When it detects a match between the incoming address
and one of the assigned address ranges, it generates a so-called chip-select (CS) sig-
nal for that device. When the chip-select signal for a specific device becomes active
(typically pulled low), that device knows it should respond to the CPU’s request.
It enables its data bus interface so that data can be read from or written to the de-
vice according to the R/W signal. Once the correct device is selected, data can be
transferred between the CPU and the selected device through the data bus. The CPU
reads from or writes to the device’s registers or memory locations based on the op-
eration it wants to perform. When the CPU puts another address onto the address
bus, the address decoding logic deactivates the select signal for the device, allowing
other devices to respond to subsequent address requests. In the following subsection,
I will explain this important concept in detail using a simple example.

1.2 A memory-mapped register 3

1.2 A memory-mapped register

Suppose we would like to connect a single 32-bit register to a 32-bit CPU (e.g.
RISC-V). Also, suppose that the register has chip-enable (CE), output-enable (OE)
and chip-select (CS) signals besides the standard data input, data output and clock
signals. Such a register is presented in Figure 1.1.

32
-b

it
re

gi
st

er

32 32

data_in data_out

CLK

CE

CS
OE

Fig. 1.1: A 32-bit register with the CS, OE and CE signals.

A register with chip-enable, output-enable and chip-select signals is a common
component in digital systems, especially those that involve memory-mapped I/O.
These signals control the register’s behaviour, specifying when it should be enabled
or disabled for data read and write operations. Here’s how such a register typically
works:

1. The output-enable signal (OE) connects or disconnects the output data signal
to/from the data bus. When the OE signal is active (high), the register output
becomes connected to the data bus. Data stored within the registers appears on
the data bus and is accessible for reading. When the OE signal is inactive (low),
the data output is disconnected from the data bus, and other components in the
computer system can use the data bus.

2. The chip-enable signal (CE) enables the clock signal connected to the register.
Hence, when the CE signal is active, data from the data bus will be stored in the
register on the rising edge of the clock signal.

3. The chip select signal (CS) is used to activate or deactivate the register. When
the CS signal is active, the register is selected and becomes available for read
and write operations. When the CS signal is inactive, the register is deselected,
and any access to it is disabled.

Using enable and chip select signals provides fine-grained control over register ac-
cess. It allows you to isolate specific registers or components in a digital system,
preventing unintended or erroneous data transfers. These signals are particularly
useful in memory-mapped I/O scenarios, where multiple registers or devices share
the same address bus.

4 1 Memory-mapped Input/Output

This control mechanism is essential in digital systems to prevent unintended data
transfers and efficiently manage communication with various components. A reg-
ister with CE, OE and CS signals reads data from or outputs data to the data bus
only when it is addressed (selected), and the proper combination of the WE and OE
signals is present. But how do we know when to activate these signals? Well, the OE
and WE signals depend solely on the R/W signal from the CPU. When the CPU exe-
cutes a load instruction (reads from memory), the R/W signal is high, and we should
activate the OE signal and deactivate the CE signal. On the contrary, when the CPU
executes a store instruction, the R/W signal is deactivated, and we should activate
the CE signal and deactivate the OE signal. This simple logic is implemented in
Figure 1.2.

32
-b

it
re

gi
st

er
32 32

data_in data_out

CE

CS

OE

32
-b

it
CP

U

32

 ADDR

32

 DATA

R/W

CLK

Fig. 1.2: A 32-bit register connected to the data bus and to the CPU’s R/W signal.

But how about the CS signal? Well, this signal should be active only when the
register is selected. But wait, what does this mean? Who selects the register? The
register is selected when the CPU addresses it. Hence, the CS signal depends solely
on the content on the address bus. Previously, we said that each memory-mapped
register is assigned its own unique address from the CPU address space. The CPU
address space is the set of all possible addresses that the CPU can generate. For a
32-bit CPU, the address is 32-bit long, and the CPU can issue any address from
0x00000000 to 0xFFFFFFFF.

Suppose that we would like to connect a register at address 0x80000000. Now, we
can use a 32-input AND logical gate to compare the address lines with the desired
address. For our example, we should create a logic expression that activates the
chip select signal when the address matches 0x800000000. Figure 1.3 shows the
solution. This AND gate activates the CS signal when all the specified address lines

1.2 A memory-mapped register 5

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

CS

Fig. 1.3: A 32-input AND gate used to decode address 0x80000000.

match their respective logic levels (high or low) as in the assigned address. This
process is called address decoding. Figure 1.4 presents the final digital circuitry

32
-b

it
re

gi
st

er

32 32

data_in data_out

CE

CS

OE

32
-b

it
CP

U

32

 ADDR

32

 DATA

R/W

CLK

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

Fig. 1.4: A 32-input AND gate used to decode address 0x80000000.

used to connect the register to the CPU. Now, the register is memory-mapped into
the CPU address space, and it is accessible for reading and writing at the address
0x800000000.

We see that address decoding involves constantly comparing the addresses on
the address bus and generating the CS signal when the address on the address bus
matches the address assigned to an I/O device.

6 1 Memory-mapped Input/Output

1.3 Two memory mapped registers

32
-b

it
re

gi
st

er
m

ap
pe

d
at

 0
x8

00
00

00
0

32 32

data_in data_out

CE

CS

OE

32

 ADDR

32

 DATA

R/W

CLK

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

32
-b

it
re

gi
st

er
m

ap
pe

d
at

 0
xC

00
00

00
0

32 32

data_in data_out

CE

CS

OE

 ADDR

A31
A30
A29
A28
A27
A26
A25

A3
A2
A1
A0

32

CS1 CS2

Fig. 1.5: Two memory-mapped registers at addresses 0x80000000 and 0xC0000000,
respectively.

Now that we understand how a register can be memory-mapped into the CPU ad-
dress space and which signals are used in this process, we can try to memory-map
and connect two registers to a CPU. Suppose we connect one register at address
0x80000000 and the other to address 0xC0000000. Actually, this task is straight-
forward and is depicted in Figure 1.5. We should use two AND gates to decode
two addresses. One AND gate decodes address 0x80000000 and selects the first
register, while the second AND gate decodes address 0xC0000000 and selects the
second register. Both registers can share the address, CE and OE signals because
address decoding logic ensures that registers cannot be selected (active) simultane-
ously. Hence, we can see that address decoding isolates two or more registers or
components in a computer system and is a crucial concept in memory-mapped I/O
systems, where multiple registers or devices share the same address bus.

Although the presented address decoding with AND gates seems very simple, it
has a serious drawback. In CMOS technology used to implement basic logic gates,
we can usually implement only 2- or 3-input logic gates. In our example, we used
32-input AND gates that do not exist in the real world. Hence, in the real world, we
would use tens of 2-input AND gates to implement the address decoding for only
one address. In real-world computer systems with tens of I/O devices and hundreds

1.3 Two memory mapped registers 7

of memory-mapped registers, this solution would be very inefficient in terms of the
number of logic gates used. Hence, we should use a different solution to decode the
addresses and select the I/O devices and their registers.

32
-b

it
re

gi
st

er
m

ap
pe

d
at

 0
x8

00
00

00
0

32 32

data_in data_out

CE

CS

OE

32

 DATA

R/W

CLK

32
-b

it
re

gi
st

er
m

ap
pe

d
at

 0
xC

00
00

00
0

32 32

data_in data_out

CE

CS

OE

CS1 CS2

A30

Fig. 1.6: Partial address decoding.

Let us return to our simple example with two memory-mapped registers. Re-
call that one register is accessible at address 0x80000000 and the other at address
0xC0000000. The two addresses differ only in address bit A30. Hence, we could
select the registers based only on this bit and ignore all other address bits. We could
select the first register when the address bit A30 is low and the second register when
the address bit A30 is high. This solution is depicted in Figure 1.6.

But wait! The CS signal for the first register will now be active when CPU issues
address 0x00000000, 0x80000000 or 0xA03F0147. Actually, it is selected whenever
the CPU issues an address with bit A30 set low. The second register will be selected
when the CPU issues any address with the address bit A30 set high. In other words,
each register is assigned exactly half of the CPU address space and not only one par-
ticular address! But this is not a problem at all if we have only these two registers in
the system. Even now, they can be selected with their previously assigned addresses
0x80000000 and 0xC0000000. This method of address decoding is called partial
address decoding. This is contrary to the previously presented method, called full
address decoding, where each register is assigned only one address from the ad-
dress space. Here, using partial address decoding, both 0x80000000 or 0xA03F0147
addresses point to the same memory location (the first register). In general, a set of
memory addresses that point to the same memory location or an I/O device is called
aliases. Modern computer systems use partial address decoding whenever possible
to reduce the number of logic gates required to implement address decoding logic.

8 1 Memory-mapped Input/Output

1.4 Several memory mapped registers

This time, we want to connect eight registers to a CPU and map them into the CPU
address space. Again, we will use partial address decoding to simplify the logic re-
quired to decode the addresses and select the registers. For this purpose, we will use
an address decoder. Address decoders are fundamental logic components in digital
systems, often used for selecting input/output devices. Recall that a 3-to-8 address
decoder is a combinational logic circuit that takes a 3-bit binary input and activates
one of its eight output lines based on the input value. Figure 1.7 depicts a 3-to-8
address decoder. The decoder has three input lines (A0, A1, and A2), representing

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

Fig. 1.7: Partial address decoding.

a 3-bit binary number. These input lines can be either high (1) or low (0), creating
eight possible binary combinations: 000 to 111. The decoder has eight output lines
(Y0 to Y7), and each output corresponds to one of the possible input combinations.
The operation of a 3-to-8 decoder can be described using the following truth table:

A2 A1 A0 Y 7 Y 6 Y 5 Y 4 Y 3 Y 2 Y 1 Y 0
0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

When we provide a 3-bit binary number as input to the decoder, it decodes that
binary value and activates the corresponding output line while setting all other out-
put lines to 0. This operation allows us to select one of the eight output lines based
on the input value. A 3-to-8 address decoder simplifies selecting devices based on
a 3-bit binary input value and is used in address decoding to select one of eight
memory-mapped I/O devices in a digital system.

Figure 1.8 shows the application of a 3-to-8 address decoder to select one of
eight registers mapped into the CPU memory space. Each of the eight registers is

1.5 Registers mapped at consecutive addresses 9

32
-b

it
re

gi
st

er
0x

80
00

00
00

-0
x9

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

A0
00

00
00

-0
xB

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

C0
00

00
00

-0
xD

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

E0
00

00
00

-0
xF

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

00
00

00
00

-0
x1

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

20
00

00
00

-0
x3

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

40
00

00
00

-0
x5

FF
FF

FF
F

CE

CS

OE

32
-b

it
re

gi
st

er
0x

60
00

00
00

-0
x7

FF
FF

FF
F

CE

CS

OE

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

3-to-8
address decoder

A31

A30

A29
AD

D
RE

SS
 B

U
S

R/W

Fig. 1.8: Partial address decoding using a 3-to-8 address decoder to select eight
registers.

assigned 1/8 of the CPU memory space in this case. For example, the first register
will be accessible at addresses 0x00000000 to 0x1FFFFFFF. The second register is
accessible at addresses 0x20000000 to 0x3FFFFFFF and so on, until the last one,
which is accessible at addresses 0xE0000000 to 0xFFFFFFFF. Because of partial
address decoding, the registers do not have only one address; instead, each register
is assigned 512 MB (one-eighth of a 4GB) of address space.

1.5 Registers mapped at consecutive addresses

In the previous section, we have learned how to memory map a set of registers over
the whole memory space using partial address decoding. However, we often aim
to map several registers belonging to the same IO device at consecutive memory
addresses. Suppose we want to map eight 32-bit registers at the following addresses:
0x80000000, 0x80000004, 0x80000008, 0x8000000C, 0x80000010, 0x80000014,
0x80000018, and 0x8000001C. To decode the registers’ addresses, we would use:

10 1 Memory-mapped Input/Output

1. 2-input AND gates to decode whether the most significant bit A31 is set, and
2. a 3-to-8 address decoder to decode the address bits A4, A3 and A2 and select a

particular register.

Figure 1.9 illustrates the solution.

32
-b

it
re

gi
st

er
 R

EG
4

0x
80

00
00

10

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
5

0x
80

00
00

14

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
6

0x
80

00
00

18

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
7

0x
80

00
00

1C

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
0

0x
80

00
00

00

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
1

0x
80

00
00

04

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
2

0x
80

00
00

08

CE

CS

OE

32
-b

it
re

gi
st

er
 R

EG
3

0x
80

00
00

0C

CE

CS

OE

Y7
Y6
Y5
Y4
Y3
Y2
Y1
Y0

A2

A1

A0

3-to-8
address decoder

A4

A3

A2

AD
D

RE
SS

 B
U

S

R/W

A31 A31 A31 A31

A31 A31 A31 A31

Fig. 1.9: Eight 32-bit registers mapped at consecutive addresses.

There is a positive side-effect of consecutively memory-mapped registers that
belong to the same IO device. Using a C structure and pointers, we can conve-
niently work with the consecutively memory-mapped registers as if they were C
structure members, making the IO device’s driver code well-organized and readable.
This approach is commonly used when working with memory-mapped peripherals
and hardware registers in embedded systems and microcontroller programming. To
represent consecutively mapped registers using a C structure, we define a C struc-
ture where each member corresponds to a specific register at consecutive addresses.
Here’s an example for the registers from Figure 1.9:

1 #define BASE_ADDRESS 0x80000000

3 // Define a structure to represent the memory -mapped registers

typedef struct {

1.6 Partial vs. Full Address Decoding 11

5 volatile uint32_t REG0;
volatile uint32_t REG1;

7 volatile uint32_t REG2;
volatile uint32_t REG3;

9 volatile uint32_t REG4;
volatile uint32_t REG5;

11 volatile uint32_t REG6;
volatile uint32_t REG7;

13 } Registers_t;

15 // Define a pointer to the base address of the memory -mapped registers

Registers_t *pMMIORegs = ((Registers_t *) BASE_ADDRESS);
17

int main() {
19 // Access and manipulate the registers:

pMMIORegs ->REG0 = 0x12345678; // Write to REG0

21 pMMIORegs ->REG2 |= 0x01 << 13; // Set bit 13 in REG2

pMMIORegs ->REG7 &= ~(0x01 << 27); // Clear bit 27 in REG2

23 puint32_t value = pMMIORegs ->REG6; // Read from REG6

...
25 return 0;

}

Listing 1.1: Representing and manipulating consecutively memory-mapped
registers in C.

In the above code, we define a structure type named textttRegisters_t, where each
member represents a specific register at consecutive addresses. Then, we create the
pointer pMMIORegs to the textttRegisters_t type structure. We assume that the regis-
ters are memory-mapped to the base address 0x80000000, and we set this address to
the pointer pMMIORegs. Finally, as shown in the above example, we can access and
manipulate the registers using the pMMIORegs pointer and the structure members.

1.6 Partial vs. Full Address Decoding

Let us summarize what we have learned so far. Partial address decoding and full ad-
dress decoding are two different methods used in computer memory and memory-
mapped I/O systems to determine which memory locations or I/O devices are ac-
cessed at a particular address.

Full address decoding involves all address lines generated by the CPU or pro-
cessing unit to select a specific memory location or I/O device. It is usually used
when we need to uniquely identify and select individual memory locations or I/O
devices, each with a distinct address. Full address decoding provides precise control
over memory or I/O access but requires more complex hardware, especially when
dealing with a large number of unique addresses.

On the contrary, partial address decoding involves examining only a portion of
the address lines generated by the CPU to decode an address and select a memory
location or an I/O device. For example, suppose you have a memory system with 16
memory locations or I/O devices. In that case, we may use partial address decod-
ing and compare only four higher-order address lines (e.g., A31-28) to determine
which device is being accessed. The lower-order address lines (e.g., A27-A0) are

12 1 Memory-mapped Input/Output

ignored. This method is more efficient regarding hardware complexity than full ad-
dress decoding because it reduces the number of logic gates required to decode an
address.

In partial address decoding, aliases occur. Aliases are multiple addresses that
map to the same memory location or I/O device. Aliases occur because only a por-
tion of the address lines is used to select a specific memory location or device,
allowing multiple addresses to access the same location due to address overlap. In
general, aliases are not a problem. If address decoding is carefully designed and with
appropriate software handling, aliases do not lead to conflicts in accessing memory
or I/O resources. Despite aliases, partial address decoding offers several advantages
over full address decoding. It reduces hardware complexity, lowers power consump-
tion, simplifies PCB (printed circuit board) design and enables faster decoding.

The choice between partial address decoding and full address decoding depends
on the specific requirements of the system design. Partial address decoding is often
used when memory banks or I/O devices are organised in a structured way, with
common prefixes, while full address decoding is necessary when each memory lo-
cation or I/O device must have a unique address.

1.7 Case study: Using the GPIO Interface in FE310-G002
RISC-V based System-On-chip

PIO stands for General Purpose Input/Output, and it refers to a type of interface on
a microcontroller that is used for simple digital input or output operations. GPIO
interface controls GPIO pins that can be configured to serve various purposes, such
as reading digital signals (input) or sending digital signals (output). GPIO pins are
"general purpose" because they are not dedicated to a specific function. Instead, we
can program them to perform various tasks based on the needs of your project.

GPIO pins can be configured as either input or output. Through input pins, the
GPIO interface can detect whether the logical level on the pin is high (usually 3.3V
or 5V) or low (0V). Through output pins, the GPIO interface can set the logic level
on the pin to high or low, which we often use for tasks such as reading sensors
(temperature, humidity, motion), controlling external devices like LEDs, controlling
actuators (motors, relays), and interfacing with other digital devices.

A GPIO interface comprises a set of memory-mapped registers. These registers
allow us to set the pin direction (input or output), read or write values to the pins,
and handle events triggered by changes in the pin’s state.

The SiFive Freedom FE310 is a microcontroller-based system-on-a-chip (SoC)
developed by SiFive. The FE310 is built around the RISC-V E31 CPU core. The E31
CPU 32-bit core is based on the RISC-V RV32IMAC instruction-set architecture
(ISA), which is an open-source and royalty-free ISA. RISC-V is gaining popularity
in the embedded and processor design communities due to its flexibility, simplicity,
and extensibility. The E31 RISC-V CPU comprises a single-issue, in-order pipeline.
The pipeline comprises five stages: instruction fetch, instruction decode and register

1.7 Case study: Using the GPIO Interface in FE310-G002 RISC-V based System-On-chip 13

G
PI

O
_O

U
TP

U
T_

EN
0x

10
01

20
08

G
PI

O
_O

U
TP

U
T_

VA
L

0x
10

01
20

0C
G

PI
O

_I
N

PU
T_

VA
L

0x
10

01
20

00
G

PI
O

_I
N

PU
T_

EN
0x

10
01

20
04

D
AT

A
BU

S

D0

D1

D30

D31

D0

D1

D30

D31

D0

D1

D30

D31

D0

D1

D30

D31

GPIO PIN 0

GPIO PIN 1

GPIO PIN 30

GPIO PIN 31

Fig. 1.10: A simplified steructure of the GPIO interface in SiFive Freedom FE310.

fetch, execute, data memory access, and register writeback. The pipeline has a peak
execution rate of one instruction per clock cycle and is fully bypassed so that most
instructions have a one-cycle result latency.

The FE310 includes on-chip memory components such as SRAM for program
and data storage. Besides, it offers various peripherals and I/O options, including
GPIO pins, UART (serial communication), SPI (Serial Peripheral Interface), I2C
(Inter-Integrated Circuit), and timers. These peripherals enable the FE310 to inter-
face with other hardware components and sensors.

The SiFive FE310 microcontroller has 32 GPIO pins. The GPIO interface in
the SiFive FE310 comprises a set of special registers. Each bit in these registers
manages the state and behaviour of a corresponding individual GPIO pin. These
registers are part of the microcontroller’s memory-mapped I/O (MMIO) address

14 1 Memory-mapped Input/Output

space. The GPIO interface is mapped at address 0x10012000 and comprises 19
data and control registers. To keep the description simple, we will focus only on
four data and control registers. The memory map for the selected four GPIO control
and data registers is shown in Table 1.1. Each register is 32 bits wide.

Table 1.1: GPIO peripheral register offsets. All registers are reset to 0.

Offset Name Description
0x00 GPIO_INPUT_VAL Pin input value
0x04 GPIO_INPUT_EN Pin input enable
0x08 GPIO_OUTPUT_EN Pin output enable
0x0C GPIO_OUTPUT_VAL Pin output value

Figure 1.10 presents a simplified structure of the GPIO interface in the SiFive
FE310. Several registers that are present in the GPIO interface are omitted for the
sake of simplicity and clarity.

There are several key registers involved in configuring and controlling GPIO pins
on the SiFive FE310:

1. GPIO_INPUT_VAL: This register stores the current input values of all GPIO
pins. Each bit in this register corresponds to a specific pin, with ’1’ indicating a
high voltage (logic level 1) and ’0’ indicating a low voltage (logic level 0).

2. GPIO_OUTPUT_VAL: This register stores the values to be output on the
GPIO pins when they are configured as outputs.

3. GPIO_OUTPUT_EN: This register controls whether a GPIO pin is enabled
as output by driving its tri-state buffer. When a bit in this register is ’1’,
the corresponding bit in the GPIO_OUTPUT_VAL register is connected
to the GPIO pin through the corresponding tri-state buffer. When the spe-
cific GPIO pin is output enabled, the content of the corresponding bit in the
GPIO_OUTPUT_VAL register appears at the GPIO pin.

4. GPIO_INPUT_EN: This register controls whether a GPIO pin is enabled as
input. When a bit in this register is ’1’, the GPIO pin is connected to the cor-
responding bit in the GPIO_INPUT_VAL register through the tri-state buffer.
When the specific GPIO pin is input enabled, the content of the GPIO pin is
stored in the corresponding bit in the GPIO_INPPUT_VAL register.

1.7.1 Program GPIO in Assembly

Using the GPIO interface to control the pins on the SiFive FE310 microcontroller in
assembly language involves configuring the GPIO registers to control the behaviour
of individual pins. To enable a GPIO pin as an output on the SiFive FE310 micro-
controller using assembly language, we need to configure the GPIO_OUTPUT_EN
register appropriately. Below is an example of enabling a GPIO pin as an output in

1.7 Case study: Using the GPIO Interface in FE310-G002 RISC-V based System-On-chip 15

assembly for the SiFive FE310. The pin number is given as the function parameter
in the register a0:

1 ; /* GPIO output enable

2 ; Input: a0 - pin number

3 ; Output: None */

4 .align 2
5 .global gpio_output_en
6 .type gpio_output_en , @function
7 gpio_output_en:
8 # prologue:

9 addi sp, sp, -16 # Allocate the routine

10 # stack frame

11 sw ra, 12(sp) # Save the return address

12 sw fp, 8(sp) # Save the frame pointer

13 sw s1, 4(sp)
14 sw s2, 0(sp)
15 addi fp, sp, 16 # Set the framepointer

16

17 # function body :

18 li t0, 0x10012000 # load GPIO base address

19 lw t1, 0x08(t0) # read GPIO_OUTPUT_EN

20 li t2, 0x01
21 sll t2, t2 , a0 # shift 1 to pin position

22 or t1, t1, t2 # set the bit @ pin position

23 sw t1, 0x08(t0) # Store back

24

25 # epilogue:

26 lw s2, 0(sp)
27 lw s1, 4(sp)
28 lw fp, 8(sp) # restore the frame pointer

29 lw ra, 12(sp) # restore the return address

30 addi sp, sp, 16 # de -allocate the routine

31 # stack frame

32 ret

Listing 1.2: Assembly code used to implement the function that enables output on a
GPIO pin.

Similarly, to enable a GPIO pin as an input on the SiFive FE310 microcontroller
using assembly language, we need to configure the GPIO_INPUT_EN register ap-
propriately. Below is an example of enabling a GPIO pin as an input in assembly for
the SiFive FE310. The pin number is given as the function parameter in the register
a0:

1 ; /* GPIO input enable

2 ; Input: a0 - pin number

3 ; Output: None */

4 .align 2
5 .global gpio_input_en
6 .type gpio_input_en , @function
7 gpio_input_en:
8 # prologue:

9 addi sp, sp, -16 # Allocate the routine

10 # stack frame

11 sw ra, 12(sp) # Save the return address

12 sw fp, 8(sp) # Save the frame pointer

13 sw s1, 4(sp)
14 sw s2, 0(sp)
15 addi fp, sp, 16 # Set the framepointer

16

16 1 Memory-mapped Input/Output

17 # function body :

18 li t0, 0x10012000 # load GPIO base address

19 lw t1, 0x04(t0) # read GPIO_INPUT_EN

20 li t2, 0x01
21 sll t2, t2 , a0 # shift 1 to the pin position

22 or t1, t1, t2 # set the bit @ pin position

23 sw t1, 0x04(t0) # Store back

24

25 # epilogue:

26 lw s2, 0(sp)
27 lw s1, 4(sp)
28 lw fp, 8(sp) # restore the frame pointer

29 lw ra, 12(sp) # restore the return address

30 addi sp, sp, 16 # de -allocate the routine

31 # stack frame

32 ret

Listing 1.3: Assembly code used to implement the function that enables input on a
GPIO pin.

To set a GPIO pin, we need to set the corresponding bit in the
GPIO_OUTPUT_VAL register:

1 ; /* GPIO set pin

2 ; Input: a0 - pin number

3 ; Output: None */

4 .align 2
5 .global gpio_set_pin
6 .type gpio_set_pin , @function
7 gpio_set_pin:
8 # prologue:

9 addi sp, sp, -16 # Allocate the routine

10 # stack frame

11 sw ra, 12(sp) # Save the return address

12 sw fp, 8(sp) # Save the frame pointer

13 sw s1, 4(sp)
14 sw s2, 0(sp)
15 addi fp, sp, 16 # Set the framepointer

16

17 # function body :

18 li t0, 0x10012000 # load GPIO base address

19 lw t1, 0x0C(t0) # read GPIO_OUTPUT_VAL

20 li t2, 0x01
21 sll t2, t2 , a0 # shift 1 to pin position

22 or t1, t1, t2 # set the bit @ pin position

23 sw t1, 0x0C(t0) # Store back

24

25 # epilogue:

26 lw s2, 0(sp)
27 lw s1, 4(sp)
28 lw fp, 8(sp) # restore the frame pointer

29 lw ra, 12(sp) # restore the return address

30 addi sp, sp, 16 # de -allocate the routine

31 # stack frame

32 ret

Listing 1.4: Assembly code used to implement the function for setting a GPIO pin.

To reset a GPIO pin, we need to reset the corresponding bit in the
GPIO_OUTPUT_VAL register:

1.7 Case study: Using the GPIO Interface in FE310-G002 RISC-V based System-On-chip 17

1 ; /* GPIO clear pin

2 ; Input: a0 - pin number

3 ; Output: None */

4 .align 2
5 .global gpio_clear_pin
6 .type gpio_clear_pin , @function
7 gpio_clear_pin:
8 # prologue:

9 addi sp, sp, -16 # Allocate the routine

10 # stack frame

11 sw ra, 12(sp) # Save the return address

12 sw fp, 8(sp) # Save the frame pointer

13 sw s1, 4(sp)
14 sw s2, 0(sp)
15 addi fp, sp, 16 # Set the framepointer

16

17 # function body :

18 li t0, 0x10012000 # load GPIO base address

19 lw t1, 0x0C(t0) # read GPIO_OUTPUT_VAL

20 li t2, 0x01
21 sll t2, t2 , a0 # shift 1 to pin position

22 not t2, t2 # 1’ complement

23 and t1, t1 , t2 # clear pin

24 sw t1, 0x0C(t0) # Store back

25

26 # epilogue:

27 lw s2, 0(sp)
28 lw s1, 4(sp)
29 lw fp, 8(sp) # restore the frame pointer

30 lw ra, 12(sp) # restore the return address

31 addi sp, sp, 16 # de -allocate the routine

32 # stack frame

33 ret

Listing 1.5: Assembly code used to implement the function for resetting a GPIO
pin.

A handy function is to toggle a GPIO pin. To toggle a GPIO pin, we need to
EXOR the corresponding bit in the GPIO_OUTPUT_VAL register with ’1’:

1 ; /* GPIO clear pin

2 ; Input: a0 - pin number

3 ; Output: None */

4 .align 2
5 .global gpio_toggle_pin
6 .type gpio_toggle_pin , @function
7 gpio_toggle_pin:
8 # prologue:

9 addi sp, sp, -16 # Allocate the routine

10 # stack frame

11 sw ra, 12(sp) # Save the return address

12 sw fp, 8(sp) # Save the frame pointer

13 sw s1, 4(sp)
14 sw s2, 0(sp)
15 addi fp, sp, 16 # Set the framepointer

16

17 # function body :

18 # function body :

19 li t0, 0x10012000 # load GPIO base address

20 lw t1, 0x0C(t0) # read GPIO_OUTPUT_VAL

21 li t2, 0x01
22 sll t2, t2 , a0 # shift 1 to pin position

23 xor t1, t1, t2 # toggle the bit @ pin position

24 sw t1, 0x0C(t0) # Store back

18 1 Memory-mapped Input/Output

25

26 # epilogue:

27 lw s2, 0(sp)
28 lw s1, 4(sp)
29 lw fp, 8(sp) # restore the frame pointer

30 lw ra, 12(sp) # restore the return address

31 addi sp, sp, 16 # de -allocate the routine

32 # stack frame

33 ret

Listing 1.6: Assembly code used to implement the function for toggling a GPIO pin.

1.7.2 Program GPIO in C

We can also program a memory-mapped I/O device in C. We abstract an MMIO
device with a C structure that represents and mirrors the layout of the registers in
the MMIO device. We will present this concept using the GPIO Interface in FE310-
G002 RISC-V based System-On-chip. To abstract GPIO registers with a C structure,
we create a structure that mirrors the layout of the GPIO registers:

1 typedef struct
{

3 volatile int GPIO_INPUT_VAL;
volatile int GPIO_INPUT_EN;

5 volatile int GPIO_OUTPUT_EN;
volatile int GPIO_OUTPUT_VAL;

7 } GPIO_Registers_t;

Listing 1.7: A C structure that mirrors the GPIO registers layout.

This abstraction makes it easier to access and manipulate GPIO registers and
pins and control their behaviour. Each member of the structure corresponds to a
specific register in the GPIO interface, such as the input value register, output value
register, etc. The layout of the members of the structure exactly mirrors the layout
of the registers in memory, i.e. the members are in the same order as the registers
in memory space. Recall that in C, the volatile keyword is used to indicate to
the compiler that a variable can change its value at any time, even if it doesn’t ap-
pear to be modified by the program. It informs the compiler that the variable should
always be fetched from memory when needed rather than relying on cached val-
ues or optimizations that could result in unexpected behaviour. When working with
hardware peripherals, we often access memory-mapped registers that control or rep-
resent hardware components. These registers can be modified by the hardware (e.g.,
GPIO pins) at any time outside our program, and the compiler might not be aware
of these changes. By declaring such registers as volatile, you ensure the compiler
generates code that correctly reflects the behaviour of hardware registers, making it
suitable for hardware interaction.

Next, we define a pointer (in our example, the pointer is named GPIO, but you are
free to use any name you wish) that holds the base address of the GPIO interface:

1.7 Case study: Using the GPIO Interface in FE310-G002 RISC-V based System-On-chip 19

1 #define GPIO_BASEADDR 0x10012000

3 GPIO_Registers_t *GPIO = (GPIO_Registers_t *) GPIO_BASEADDR;

Listing 1.8: A pointer that holds the base address of the GPIO interface.

This pointer is used to access the GPIO registers as if they were part of a C structure.
For example, we set pin 19 as output in the output enable register and toggle the state
of pin 19 in the output value register:

1 GPIO ->GPIO_OUTPUT_EN |= (0x01 << 19);
GPIO ->GPIO_OUTPUT_VAL ^= (0x01 << 19);

Listing 1.9: Enabling and setting a GPIO in C.

Instead of using the above GPIO pointer to access the GPIO registers directly,
we usually define an initialization structure and implement several access functions.
This is especially true when we implement the hardware abstraction layer (HAL) of
an MMIO device that other users will use. In the hardware abstraction layer, we try
to provide more user-friendly way to configure the peripheral without forcing the
programmers to know how to configure its registers in detail. For example, to con-
figure and use GPIO, we define several other constants and the GPIO_InitTypeDef
structure in C:

#define GPIO_MODE_INPUT 0x00U
2 #define GPIO_MODE_OUTPUT 0x01U

4 /* GPIO pins define

*

6 */

#define GPIO_PIN_0 ((uint32_t)0x00000001)
8 #define GPIO_PIN_1 ((uint32_t)0x00000002)

#define GPIO_PIN_2 ((uint32_t)0x00000004)
10 #define GPIO_PIN_3 ((uint32_t)0x00000008)

12 ...

14 #define GPIO_PIN_30 ((uint32_t)0x40000000)
#define GPIO_PIN_31 ((uint32_t)0x80000000)

16

typedef struct
18 {

uint32_t Pin; /* GPIO pins to be configured . */

20 uint32_t Mode; /* Operating mode for the selected pins */

} GPIO_InitTypeDef;

Listing 1.10: Pins definition and a C structure used to configure the GPIO.

The meaning of each field of the struct is:

1. Pin: it is the position of the pin in a 32-bit word, starting from 0, of the
pins we will configure. For example, for pin 22 it assumes the value textttG-
PIO_PIN_22. Take note that the textttGPIO_PIN_x is a bit mask, where
the i-th pin corresponds to the i-th bit of a uint32_t datatype. For exam-
ple, the GPIO_PIN_9 has a value of 0x00000200 . We can use the same

20 1 Memory-mapped Input/Output

GPIO_InitTypeDef instance to configure several pins at once, doing a bitwise
OR (e.g., GPIO_PIN_1|GPIO_PIN_21|GPIO_PIN_22).

2. Mode: it is the operating mode of the pin, and it can be GPIO_MODE_INPUT or
GPIO_MODE_OUTPUT.

We can now write HAL functions in C that will provide manipulation routines
to initialize and change the state of GPIO pins. For example, to initialize and toggle
GPIO pins, we implement the following C functions:

1 void HAL_GPIO_Init(GPIO_Registers_t *GPIO , GPIO_InitTypeDef *GPIO_Init) -
{

3 if (GPIO_Init ->Mode == GPIO_MODE_INPUT) {
GPIO ->GPIO_INPUT_EN |= GPIO_Init ->Pin;

5 GPIO ->GPIO_OUTPUT_EN &= ~(GPIO_Init ->Pin);
}

7

else if (GPIO_Init ->Mode == GPIO_MODE_OUTPUT) {
9 GPIO ->GPIO_OUTPUT_EN |= GPIO_Init ->Pin;

GPIO ->GPIO_INPUT_EN &= ~(GPIO_Init ->Pin);
11 }

}
13

void HAL_GPIO_TogglePin(GPIO_Registers_t *GPIO , uint32_t GPIO_Pin){
15 GPIO ->GPIO_OUTPUT_VAL ^= GPIO_Pin;

}

Listing 1.11: Hardware abstraction layer functions for the GPIO.

For example, the HAL_GPIO_Init function accepts the GPIO register and the ini-
tialization structures. For example, to initialize pins 19, 21 and 22 as outputs, we
use the following C code:

GPIO_Registers_t *GPIO = (GPIO_Registers_t *) GPIO_BASEADDR;
2 GPIO_InitTypeDef GPIO_InitStruct;

4 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT;
GPIO_InitStruct.Pin = GPIO_PIN_19 | GPIO_PIN_21 | GPIO_PIN_22;

6 HAL_GPIO_Init(GPIO , &GPIO_InitStruct);

Listing 1.12: GPIO pins initialization.

1.8 Case study: Using the UART Interface in FE310-G002
RISC-V based System-On-chip

Here, we will show how to program another handy memory-mapped IO device,
Universal Asynchronous Receiver Transmitter (UART), but we will use only C this
time. This is indeed possible for all memory-mapped IO devices, and there is no
need to use an assembler. UART is a commonly used serial communication inter-
face that allows asynchronous data transfer between a microcontroller, such as the
SiFive FE310, and external devices like sensors, displays, other microcontrollers or

1.8 Case study: Using the UART Interface in FE310-G002 RISC-V based System-On-chip 21

even desktop computers. The SiFive FE310 microcontroller features two memory-
mapped UART interfaces that provide serial communication capabilities.

1.8.1 Universal Asynchronous Receiver Transmitter

Before we start explaining the UART provided in SiFive FE310, let us briefly de-
scribe the UART interface and its communication protocol. When we want to ex-
change data between two devices, we generally have two alternatives. Firstly, we
can simultaneously transmit all bits in parallel using a number of GPIO lines. The
number of GPIO lines would be equal to the size of the data word (e.g., eight GPIO
lines for a word made of eight bits). Secondly, we can transmit each bit, constituting
a data word, one by one serially, i.e., in a continuous stream of bits flowing on a
single wire. A UART is a device that translates parallel bits in a data word (usually
grouped in a byte) into a continuous stream of bits and puts them one by one on
a single wire. When the data flows between two devices serially (here, we refer to
them as the sender and the receiver), they have to agree on the timing. Timing de-
fines how long it takes to transmit each individual bit of the data. In synchronous
serial transmission, the sender and the receiver share a common clock generated
by the sender. The clock’s frequency determines how fast we can transmit a single
bit. But if both devices involved in data transmission agree on how long it takes
to transmit a single bit and how to distinguish the start and finish of transmission,
then we can avoid using a dedicated clock line. In this case, we have asynchronous
serial transmission.

UART UART

TX

RX

TX

RX

Fig. 1.11: Two UARTs directly communicate with each other.

A Universal Asynchronous Receiver/Transmitter interface is a device able to
transmit data word serially using two I/O lines, one acting as a transmitter (TX)
and one as a receiver (RX) (Figure 1.11). One of the big advantages of UART is
that it is asynchronous – the transmitter and receiver do not share a common clock
signal. Although this greatly simplifies the protocol, it does place certain require-
ments on the transmitter and receiver. Since they do not share a clock, both ends
must transmit at the same agreed speed for the same bit timing. Communication in

22 1 Memory-mapped Input/Output

UART can be simplex (data is sent in one direction only), or full-duplex (both sides
can transmit simultaneously).

Data in UART is transmitted in the form of frames. Figure 1.12 shows a UARTS’s
typical frame and the timing diagram. The high signal on the transmission line rep-
resents the idle state (that is, no transmission occurring). Because UART is asyn-
chronous, the transmitter must signal that data bits are coming. This is accomplished
by using the start bit. The start bit is a transition from the idle high state to a low
state and is immediately followed by eight data bits. The data bits are the user data
that come immediately after the start bit. There can be 5 to 9 user data bits, although
8 bits is most common. The least significant bit (LSB) is typically transmitted first.
An optional parity bit is then transmitted (for error checking of the data bits). Often,
this bit is omitted.

IDLE IDLE

STOPSTART

8 DATA BITS

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

T
bit

BAUD RATE = 1 / T
bit

Fig. 1.12: UART frame format.

After the data bits are transmitted, the stop bit indicates the end of user data. The
stop bit is either a transition back to the high or idle state or remaining at the high
state for an additional bit-time. A second (optional) stop bit can be configured, usu-
ally to give the receiver time to get ready for the next frame, but this is uncommon
in practice.

The time it takes to transmit a single bit determines the baud rate. The baud rate
specifies how fast data is sent over a serial line. It’s usually expressed in units of
bits-per-second (bps). If we invert the baud rate, we can find out just how long it
takes to transmit a single bit. This value determines how long the transmitter holds a
serial line high/low or at what period the receiver samples its line. Baud rates can be
just about any value within reason. The only requirement is that both devices agree
upon the same rate. The standard baud rates are 1200, 2400, 4800, 19200, 38400,
57600, and 115200 bits per second.

1.8.2 The UART interface in the SiFive FE310

The UART interface in the SiFive FE310 supports the following features:

1. frames formats: 8 data bits, no parity bit, 1 start bit, 1 or 2 stop bits,

1.8 Case study: Using the UART Interface in FE310-G002 RISC-V based System-On-chip 23

2. 8-entry transmit and receive FIFO buffers with programmable watermark inter-
rupts.

FE310 SoC contains two memory-mapped UART interfaces. The interface UART0
is mapped at address 0x10013000, while the interface UART1 is mapped at address
0x10023000. We will focus on UART0 only.

Table 1.2: Register offsets within UART memory map.

Offset Name Description
0x00 txdata Transmit data register
0x04 rxdata Receive data register
0x08 txctrl Transmit control register
0x0C rxctrl Receive control register
0x10 ie UART interrupt enable
0x14 ip UART interrupt pending
0x18 div Baud rate divisor

The UART0 interface in the SiFive FE310 comprises several memory-mapped
data and control registers. Table 1.2 presents the memory map for the UART data
and control and registers. The UART registers are 32-bit wide, requiring only natu-
rally aligned 32-bit memory accesses.

Here, we will describe only a few registers required to transmit and receive data
without using interrupts:

1. Transmit Data Register (txdata) (Figure 1.13). Writing to the txdata register
enqueues the character contained in the data field to the transmit FIFO if the
FIFO is able to accept new entries. Reading from txdata returns the current
value of the FULL flag and zero in the data field. The FULL flag indicates
whether the transmit FIFO is able to accept new entries; when set, writes to
data are ignored.

78 031

TRANSMIT DATA

FU
LL

Fig. 1.13: The txdata register.

2. Receive Data Register (rxdata) (Figure 1.14). Reading the rxdata register
dequeues a character from the receive FIFO and returns the value in the data
field. The EMPTY flag indicates if the receive FIFO was empty; when set, the
data field does not contain a valid character. Writes to rxdata are ignored.

3. Transmit Control Register (txctrl) (Figure 1.15). The read-write txctrl regis-
ter controls the operation of the transmitter. The TXEN bit controls whether the
transmitter is enabled. When cleared, the transmission is suppressed, and the

24 1 Memory-mapped Input/Output

78 031

RECEIVE DATA

EM
PT

Y
Fig. 1.14: The rxdata register.

TX pin is driven high. The NSTOP field specifies the number of stop bits: 0 for
one stop bit and 1 for two stop bits.

031

N
ST
O
P

11618

TX
ENTXCNT

Fig. 1.15: The txctrl register.

4. Receive Control Register (rxctrl) (Figure 1.16). The read-write rxctrl register
controls the receiver’s operation. The RXEN bit controls whether the receive is
enabled. When cleared, the state of the RX pin is ignored.

031 1618

RX
ENRXCNT

Fig. 1.16: The rxctrl register.

5. Baud Rate Divisor Register (div) (Figure 1.17). The read-write, div register
specifies the divisor used by the baud rate generator to divide the CPU’s clock
frequency to generate a desired baud rate. For example, to set the baud rate of
115200 bits per second, the div register should be set to 139. We should refer
to the SiFive FE310 documentation and reference manual for precise details on
configuring the div register.

031 15

DIV

Fig. 1.17: The div register.

1.8 Case study: Using the UART Interface in FE310-G002 RISC-V based System-On-chip 25

1.8.3 Program UART in C

To abstract UART registers with a C structure, we create a structure that mirrors the
layout of the UART registers:

typedef struct
2 {

volatile int UART_TXDATA;
4 volatile int UART_RXDATA;

volatile int UART_TXCTRL;
6 volatile int UART_RXCTRL;

volatile int UART_IE;
8 volatile int UART_IP;

volatile int UART_DIV;
10 } UART_Registers_t;

Listing 1.13: A C structure that mirrors the UART registers layout.

Next, we define a pointer (in our example, the pointer is named UART0, but
you are free to use any name you wish) that holds the base address of the UART0
interface:

#define UART0_BASEADDR 0x10013000
2

UART_Registers_t *UART0 = (UART_Registers_t *) UART0_BASEADDR;

Listing 1.14: A pointer that holds the base address of the UART interface.

This pointer is used to access the GPIO registers as if they were part of a C
structure. Here, we present a few useful UART functions:

1 /*

* Set Baud Rate to 115200

3 * With tlclk at 16Mhz , to achieve 115200 baud ,

* divisor should be 139. SiFive FE310 -G002 Manual:, page 85

5 * @arguments :

* uart: UART0 or UART1

7 */

void uart_set_baud(UART_Registers_t *uart){
9 uart ->UART_DIV = 139;

}
11

/*

13 * Enable TX

* @arguments :

15 * uart: UART0 or UART1

*/

17 void uart_enable_tx(UART_Registers_t *uart){
uart ->UART_TXCTRL |= 0x00000001;

19 }

21 /*

* Set No. stop bits

23 * @arguments :

* uart: UART0 or UART1

25 * nstop: UART_1_STOP_BIT or UART_2_STOP_BIT

*/

27 void uart_set_nstop(UART_Registers_t *uart , unsigned int nstop){

26 1 Memory-mapped Input/Output

29 if (nstop == UART_1_STOP_BIT) {
uart ->UART_RXCTRL &= 0xfffffffd;

31 }
else if (nstop == UART_2_STOP_BIT) {

33 uart ->UART_RXCTRL |= 0x00000002;
}

35 }

Listing 1.15: Enabling and setting a GPIO in C.

1.8.4 UART pins

Many GPIO pins on the FE310 can serve dual purposes. In addition to their basic
input and output capabilities that we presented in Section 1.7, these pins can be
controlled by other IO devices in the FE310 SoC. Each GPIO pin can implement up
to two so-called IO functions (IOF) enabled with the GPIO_IOF_EN register. Which
IOF is used is selected with the GPIO_IOF_SEL register. These alternative functions
are often related to various peripherals or communication interfaces available on
the microcontroller. IOF allows us to assign alternative functions to GPIO pins,
such as enabling them as inputs or outputs for specific peripherals or features like
UART. We should refer to the SiFive FE310 datasheet and reference manual for
precise information on configuring IOF and alternative functions for GPIO pins on
your particular hardware setup. For example, GPIO pin 17 can be used by UART0
transmitter (UART0_TX). Figure 1.18 shows all registers that control the behaviour
of the GPIO pin 17. In Section 1.7, we have already explained the purpose of GPIO
input, output and enable registers. These registres are depicted in light grey in Figure
1.18. Besides these registers, there are two more registers, GPIO_IOF_SEL and
GPIO_IOF_EN. These two registers enable and select an IO function for a particular
pin. For example, for the GPIO pin 17, bit 17 in GPIO_IOF_SEL selects an IO
function. If this bit is 0, the UART0 transmitter can drive GPIO pin 17. Bit 17 in
GPIO_IOF_SEL enables the IO function on pin 17. If bit 17 is set, IOF is enabled
for pin 17.

In order to set the UART IO function for GPIO pin 17, we should implement
a complete C data structure that mirrors all GPIO registers (refer to SiFive FE310
Manual):

1 typedef struct
{

3 volatile int GPIO_INPUT_VAL;
volatile int GPIO_INPUT_EN;

5 volatile int GPIO_OUTPUT_EN;
volatile int GPIO_OUTPUT_VAL;

7 volatile int GPIO_PUE;
volatile int GPIO_DS;

9 volatile int GPIO_RISE_IE;
volatile int GPIO_RISE_IP;

11 volatile int GPIO_FALL_IE;
volatile int GPIO_FALL_IP;

1.8 Case study: Using the UART Interface in FE310-G002 RISC-V based System-On-chip 27

G
PI

O
_O

U
TP

U
T_

EN
BI

T
17

G
PI

O
_O

U
TP

U
T_

VA
L

BI
T

17
G

PI
O

_I
N

PU
T_

VA
L

BI
T

17
G

PI
O

_I
N

PU
T_

EN
BI

T
17

D
AT

A
BU

S

D17

D17

D17

D17

GPIO PIN 17

GPIO_IOF_EN
BIT 17

GPIO_IOF_SEL
BIT 17

UART0_TX

1

0

some IO device

Fig. 1.18: The IO function for GPIO pin 17.

13 volatile int GPIO_HIGH_IE;
volatile int GPIO_HIGH_IP;

15 volatile int GPIO_LOW_IE;
volatile int GPIO_LOW_IP;

17 volatile int GPIO_IOF_EN;
volatile int GPIO_IOF_SEL;

19 volatile int GPIO_OUT_XOR;
} GPIO_Registers_t;

Listing 1.16: A complete C structure for GPIO.

To set up UART0 IOF, we need to configure the GPIO_IOF_EN and
GPIO_IOF_SEL registers appropriately. These registers control which alternative
functions are enabled for specific GPIO pins. Below is an example of how to con-
figure UART0 IOF for UART TX on GPIO pin 17:

GPIO ->GPIO_IOF_SEL &= (1 << 17);
2 GPIO ->GPIO_IOF_EN |= (1 << 17);

Listing 1.17: A code for setting up UART0 IO function.

	Memory-mapped Input/Output
	Introduction
	A memory-mapped register
	Two memory mapped registers
	Several memory mapped registers
	Registers mapped at consecutive addresses
	Partial vs. Full Address Decoding
	Case study: Using the GPIO Interface in FE310-G002 RISC-V based System-On-chip
	Program GPIO in Assembly
	Program GPIO in C

	Case study: Using the UART Interface in FE310-G002 RISC-V based System-On-chip
	Universal Asynchronous Receiver Transmitter
	The UART interface in the SiFive FE310
	Program UART in C
	UART pins

	Case study: Using the GPIO Interface in ARM cortex-M based System-On-chip
	Cortex-M fixed memory address space
	GPIO interface in Cortex-M

