
Contents

1 Interrupts and interrupt handling . 1
1.1 Introduction . 1
1.2 Interrupts . 2

1.2.1 Types of interrupts . 6
1.2.2 Handling interrupts . 6

1.3 RISC-V interrupts . 8
1.3.1 RISC-V Privileged Modes . 9
1.3.2 RISC-V Machine Modes Exceptions . 10
1.3.3 FE-310 Interrupts . 14
1.3.4 Interrupt Entry and Exit . 16
1.3.5 Implementing Vector Table and Handlers 16

1.4 ARM Cortex-M7 exceptions and interrupts . 24
1.4.1 ARM Cortex-M7 programmer’s model 24
1.4.2 System Control Block . 26
1.4.3 Exceptions . 27
1.4.4 Exception numbers and priorities . 29
1.4.5 Vector table and Exception handlers . 30
1.4.6 Exception entry and exit . 33
1.4.7 Case Study: A simple task scheduler on ARM Cortex-M7 . . 37

1.5 ARM 9 exceptions and interrupts . 53
1.5.1 Vector table and interrupt priorities . 53
1.5.2 ARM9 interrupt handling . 55
1.5.3 Interrupt handlers in C . 57

1.6 Intel interrupts . 59
1.7 Interrupt controllers . 61

1.7.1 ARM Advanced Interrupt Controller . 64
1.7.2 Intel 8259A Programmable Interrupt Controler 67
1.7.3 8259A PIC Cascading . 70
1.7.4 Intel Advanced Programmable Interrupt Controler 73

1.8 PCI interrupts . 80
1.8.1 PCI Legacy interrupts . 80

v

vi Contents

1.8.2 PCI interrupts routing . 83
1.8.3 Message Signaled Interrupts . 86

1.9 Case Study: Platform-Level Interrupt Controller in FE310 89
1.9.1 Implementing PLIC Vector Table and Handlers 91

Chapter 1
Interrupts and interrupt handling

CHAPTER GOALS

Have you ever wondered how computer components demand and get at-
tention from the CPU? How do they tell the CPU or operating system that
something important has just happened in the computer system, which re-
quires an immediate response from the CPU, e.g., new data has just arrived
at an I/O interface and should be processed immediately? This is done us-
ing so-called interrupts. This chapter will cover the theory and practice of
interrupts and their handling. An interrupt is a hardware-initiated procedure
that interrupts whatever program (CPU) is currently executing and requests
that the CPU immediately start running another program that is written to
service the particular interrupt request.
Upon completion of this chapter, you will be able to:

• Distinguish between interrupts and exceptions.
• Explain the operation of the interrupt signals.
• Explain the interrupt and exception handling.
• Explain the function of interrupt vectors and vector tabels.
• Explain the function of an interrupt controller.
• Explain the interrupts and interrupt handling in the Intel and ARM fam-

ily of processors.

1.1 Introduction

During my childhood, there were two powerful military blocs in Europe and the
world: the Eastern (Soviet) Block and the Western (USA) Block. That was a period
of geopolitical tension between the Soviet Union and the United States and their re-
spective allies, the Eastern Bloc and the Western Bloc. The country where I grew up,
former Yugoslavia, was not part of any of these military blocks, though politically, it

1

2 1 Interrupts and interrupt handling

was closer to the eastern block. In the 1970s, former Yugoslav air force purchased a
number of Soviet MIG-21 fighter aircraft from the USSR. The MIG-21 aircraft sold
to Yugoslav air force had virtually no modern electronic devices, and the military
of Yugoslavia wanted to install missile sensors in the planes. However, the USA
and its allies have imposed an embargo on the purchase of electronic and computer
components against Yugoslavia. Among all the universities in Yugoslavia, only the
University of Ljubljana was allowed to purchase a few pieces (up to 20) of each
chip that would be used only in the educational process. That’s why the Yugoslav
Army approached the University of Ljubljana to buy all the necessary electronic and
computer components and develop a system that would be installed on the aircraft
and would detect missiles. The system at the time had to be based on the modern
Motorola 6800 microprocessors from the US. At its core, the system had a micro-
computer built on the Motorola 6800 processor and a missile sensor. In addition to
detecting missiles, the microcomputer had to do other things, also. If the missile
sensor detected a rocket, the computer system had to immediately stop whatever it
was currently doing and alert the pilot to the approaching missile. But how would a
missile sensor be able to communicate to the CPU if the CPU could do nothing but
fetch and execute instructions from memory? Remember that the CPU fetches and
executes instructions every clock cycle. That’s all it is able to do. So there must be
some mechanism by which the CPU can be immediately interrupted and required
to start another program. In our case, the CPU would run another program (e.g.,
display the current altitude and speed of the aircraft). In the event that the sensor
detects a missile, it must, in some way, immediately suspend the currently running
program and require the CPU to execute a program to flash the warning lights and
alert the pilot. So, the CPU must have some mechanism in place to immediately
stop the execution of one program and start another program. This mechanism is
called interrupts, and the program that the CPU starts running in the response to an
is called interrupt service program (ISP) or interrupt handler.

Interrupts and interrupt handling must be transparent. This means that the
stopped (interrupted) program must not know that it has been stopped and must
continue after the termination of the interrupt service program as if it had not been
interrupted at all.

In the following chapters, we will learn about the interrupt mechanism and inter-
rupt handling.

1.2 Interrupts

As we said in the Introduction, we want to have to ability to service external inter-
rupts. This is useful if a device external to the processor needs attention. Figure 1.1
illustrates a simplified system with a CPU and a peripheral device. To be able to re-
spond to interrupt requests from a peripheral device, a CPU usually has at least one
interrupt request (IRQ) pin and one interrupt acknowledge (INTA) pin. The IRQ pin
is the input used by a peripheral device to interrupt the processor (i.e., to interrupt

1.2 Interrupts 3

the normal program flow in the CPU.). Since the CPU should finish executing the
current instruction(s) before servicing any external interrupts, the peripheral device
may have to wait for several clock cycles before the CPU responds to the interrupt
request. The INTA pin is the output used to signal the peripheral device, which has
requested an interrupt via the IRQ signal, that the CPU has started servicing the in-
terrupt request and that the IRQ signal can be deactivated. Both pins in Figure 1.1,
IRQ and INTA, are active low. Two resistors are used to establish a logic one on
both signals IRQ and INTA (i.e., both signals are deactivated) when no one drives
them.

CPU

IRQ#

I/O
Device

INT

Vdd

INTA# INTA

Vdd

RR

Fig. 1.1: A simplified block diagram of a computer system with interrupt controlling
signals.

In general, CPUs can respond to interrupts in two different ways: in either an
edge-sensitive or level-sensitive manner. In an edge-sensitive manner, the interrupt
signal input is designed to be triggered by a particular signal edge (level transition):
either a falling edge (high to low) or a rising edge (low to high). In a level-sensitive
manner, the interrupt signal input is designed to be triggered by a logic signal level.
A peripheral device invokes a level-triggered interrupt by driving the signal to and
holding it at the active level. We refer to this operation as asserting the signal. It
de-asserts the signal when the processor signals it to do so. One advantage of level-
triggered interrupt inputs is that they allow multiple devices to share a common
interrupt signal. Most often, the active level of an interrupt input signal is LOW. In
such a case, the interrupt signal is tied to the HIGH voltage level using a pull-up
resistor. When multiple peripheral devices share one level-triggered interrupt input
signal, the device that wants to assert the interrupt request simply connects the signal
to the ground (pulls thew signal LOW). The system in Figure 1.1 uses level-sensitive
interrupt signals.

4 1 Interrupts and interrupt handling

Summary: Assering and de-asserting a signal

Some signals are active high, and some signals are active low. To avoid the
problem of high vs. low and the fact that for some signals, active means high
and for some signals active means low, we just say asserted (activated) vs.
de-asserted (deactivated).

When the device needs the attention from the CPU, it activates (asserts) the IRQ
pin on the CPU. During the normal flow of execution through a program, the pro-
gram counter increases sequentially through the address space, with branches to
nearby labels or branches and links to subroutines. The CPU checks the status of
the IRQ pin every time before a new instruction pointed to by the program counter
is fetched from memory. When a peripheral device requests the interrupt, it is nec-
essary to preserve the previous processor status while handling the interrupt, so that
execution of the program that was running when the interrupt request occurred can
resume when the appropriate interrupt handler has completed. We say that the in-
terrupts must be 100% transparent. So, when an interrupt request occurs, the CPU

The I/O device
asserts the
IRQ# signal

The I/O device
de-asserts the
IRQ# signal

CPU asserts
the INTA signal

CPU de-asserts
the INTA signal

CPU executes the fetched
instructions of the
interrupted program

CPU sees the
IRQ signal and stops
instruction fetching

CPU starts executing
the interrupt handler

Fig. 1.2: A timing diagram for an external interrupt request.

completes the current instruction and asserts the INTA signal. When a peripheral de-
vice sees the INTA signal, it de-asserts the IRQ signal. Figure 1.2 shows the timing
diagram for an external interrupt request for the simple system from Figure 1.1.

Then the CPU saves the part of the context of the interrupted program in the
stack. A context is a state of the program counter, status register, stack pointer, and
all other program-visible CPU registers. Some CPUs save the whole context in the
stack, while others save only a part of the context in the stack. Since interrupts
can happen at any time, there is no way for the active programs to prepare for the
interrupt (e.g., by saving registers that the interrupt handler might write to). It is
important to note that calling conventions do not apply when handling interrupts:
the interrupt is not being "called" by the active program; it is interrupting the active
program. Thus, the interrupt handler code must preserve the content ensure that it

1.2 Interrupts 5

does not overwrite any registers that the program may be using before their con-
tent is saved. After the CPU has saved the context, the CPU automatically loads
the address of the interrupt handler into the program counter. The interrupt handler
is a program written by the user and depends on the peripheral device’s function-
ality. Depending on how much of the context is automatically saved by the CPU,
the interrupt handler must first save every register it intends to use in the stack or
somewhere in memory.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction n

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction m

INTERRUPT
HANDLER

USER
PROGRAM

t 1

t 2

t 3
t 4

tim
e

Fig. 1.3: The procedure involved in interrupts.

Figure 1.3 shows the procedure involved in interrupts: the CPU executes the se-
quence of instructions from a user program until an interrupt request occurs at the
time t1. When the IRQ signal is asserted, the CPU stops executing the user code and
starts executing the interrupt handler. But before executing the interrupt handler at
time t2, the CPU must finish the execution of already fetched instructions, save the
(part of) context, and obtain the address of the interrupt handler. The time t2� t1 re-
quired for this procedure is called interrupt latency. In general, interrupt latency is
the time that elapses from when the IRQ signal is asserted to when the CPU starts to
execute the interrupt handler. Interrupt latency duration is usually not predetermined
and depends on how many instructions are already in the CPU’s pipeline, on how
CPU saves the context and on whether any new interrupt requests are temporarily

6 1 Interrupts and interrupt handling

disabled. Once the CPU completes the execution of the interrupt handler at time t3,
it returns back to the execution of the user code at time t4. Before returning to user
code, the CPU must automatically restore the previously saved context.

1.2.1 Types of interrupts

There are typically three types of interrupts regarding the source of the interrupt: ex-
ternal interrupts (or simply interrupts), traps or exceptions, and software interrupts.
External interrupts are triggered by an external device by activating the interrupt
request pin on the CPU. Traps or exceptions are activated internally in the CPU,
usually as a result of some exceptional condition caused by instruction. For exam-
ple, traps are caused when illegal or undefined instruction is fetched, or when the
CPU attempts to execute an instruction that was not fetched because the address was
illegal. A special instruction triggers software interrupts. Such instructions function
similarly to subroutine calls, but the subroutine, in this case, the interrupt handler, is
not being "called", but an interrupt-like sequence occurs. These software-interrupt
instructions are useful when the user program does not know or is not allowed to
know the address of the routine which it would like to "call", e.g., they are usually
used for requesting operating system services and routines.

External interrupts are divided into two types: maskable and non-maskable inter-
rupts. Maskable interrupts can be enabled or disabled by setting a bit in the CPU’s
control register or by executing a special instruction. For example, Intel has the CLI
instruction to mask the interrupts, and ARM has CPSID instruction for this pur-
pose. Non-maskable interrupts have a higher priority than maskable interrupts. That
means that if both maskable and non-maskable interrupts are activated at the same
time, the CPU will service the non-maskable interrupt first.

1.2.2 Handling interrupts

In a situation where multiple types of interrupts and exceptions can occur, there must
be a mechanism in place where different handler code can be executed for different
types of events. In general, there are two methods for handling this problem: polled
interrupts and vectored interrupts.

In polled interrupts, the processor branches to a specific address that begins a
sequence of instructions that check the cause of the interrupt or exception and branch
to handler code for the type of interrupt/exception encountered. This is also called
polled interrupt/exception handling.

In vectored interrupts, the processor branches to a different address for each type
of interrupt or exception. Each exception address is separated by only one word,
and these addresses form a table called interrupt vector table. Each entry of the
interrupt vector table is called interrupt vector, and it is the address of an interrupt

1.2 Interrupts 7

handler. Hence, the vector table contains the start addresses, called interrupt vectors,
for all exception handlers. This method is called vectored interrupt handling. This
concept is common across many processor architectures, although interrupt vector
tables may be implemented in other architecture-specific fashions. For example,
another common concept is to place a jump instruction (instead of vectors) at each
entry in the table. Each of these jump instructions forces the processor to jump to
the handler code for each type of interrupt/exception. In this case, the address of
each table entry is considered as an interrupt vector.

8 1 Interrupts and interrupt handling

1.3 RISC-V interrupts

RISC-V architecture defines different privilege modes that determine the level of ac-
cess and control a program or process has over the system’s resources. A privileged
mode in a CPU refers to a specific operating mode in which the CPU has access
to various system resources. Privileged modes are often used in modern computer
architectures to ensure the proper operation, security, and control of the system.
Privileged modes are crucial in separating user-level programs from system-level
operations and for managing system security, isolation, and resource allocation. For
example, a modern CPU restricts a user program from accessing system critical
resources (e.g. special CPU registers, memory regions, special instructions, etc.),
while the system programs may access all system resources. Privileged modes are
the mechanism to achieve this differentiation between user-level and system-level
programs. Modern CPUs usually have a separate set of control and status registers
(CSRs) for each privileged mode and a special control register that tells which priv-
ileged mode the CPU is currently running. Depending on the status of this special
control register (i.e. current privileged mode), the CPU can access the correspond-
ing set of CSRs and execute only the instructions allowed in the current privileged
level. For example, if the CPU is currently running in a user-privileged mode, it can
execute only the standard instruction set. At the same time, executing some special
instructions that can alter critical system resources is prohibited. Besides, programs
running in user-privileged mode can never alter the content of this special control
register and thus switch between privileged modes. But wait, how can we change a
privileged mode once the CPU runs in user-privileged mode? Well, it depends on
the current privileged mode:

1. If the CPU runs in user-level privileged mode, the only way to switch to a
system-level privileged mode is through exceptions (traps or interrupts). Excep-
tions can trigger mode transitions. When an exception (a trap or an interrupt)
occurs, the CPU automatically switches to system-level privileged mode, and
the exception handling routine executes in the system-level privileged mode.
Upon exiting the exception handler, the CPU automatically switches to the pre-
vious (e.g., user-level) privileged mode.

2. If the CPU runs in system-level privileged mode, the CPU can switch to a user-
level privileged mode simply by executing a special instruction that alters the
content of the special control register and, hence, changes the current system-
level privileged mode to user-level privileged mode. CPUs have specific in-
structions that are used to initiate mode transitions. These instructions are often
called privileged and can only be executed when the CPU is in a system-level
privileged mode.

1.3 RISC-V interrupts 9

1.3.1 RISC-V Privileged Modes

In order to be able to understand interrupts and interrupts handling in RISC-V, we’ll
briefly describe and explain the privileged modes in RISC-V. Privileged modes are a
fundamental part of RISC-V’s flexibility, as they enable various operating systems,
hypervisors, and security models to be implemented on the same instruction set
architecture. Here is a brief description and explanation of three basic privileged
modes in RISC-V:

1. User Mode (U): User mode is the lowest privilege mode in RISC-V. In this
mode, a user-level application or program runs with restricted access to system
resources. User mode provides the least privilege and is suitable for application-
level code. In user mode, applications can execute most instructions but have
limited access to privileged instructions and control registers. User mode can
execute basic instructions, access memory, and perform arithmetic operations.
However, it cannot directly manipulate control and status registers (CSRs) re-
lated to exception handling or interrupt control.

2. Supervisor Mode (S): Supervisor mode is a privilege level above user mode.
It is designed for operating system kernel code, which needs greater control
over system resources and privilege to perform tasks like context switching and
managing hardware devices. Supervisor mode has more access to control reg-
isters and instructions compared to user mode. It can perform operations re-
lated to exception handling, interrupt control, and system management. S-mode
can execute privileged instructions that deal with system control and exception
handling. It can access and modify most control and status registers (CSRs),
including those related to interrupts and exceptions.

3. Machine Mode (M): Machine mode is the highest privilege mode in RISC-V. It
provides complete control over the system, including access to all resources and
system-wide configuration. M-mode has full access to all instructions, control
registers, and hardware resources, making it suitable for tasks such as system
initialization, low-level device control, and platform management. M-mode can
execute all RISC-V instructions, including those reserved for privileged and
system-level operations. It can access and modify all control and status registers
(CSRs), and it has control over exceptions and interrupts across all privilege
levels. Upon reset, RISC-V enters machine mode.

The E31 RISC-V core in FE-310 SoC supports only Machine and User privilege
modes. The transition between privilege modes in E31 RISC-V is typically con-
trolled by changing specific bits in control and status registers (CSRs). The machine
mode handles these transitions, ensuring that the processor switches between user
and machine modes appropriately. Additionally, exceptions and interrupts may trig-
ger mode transitions, allowing the processor to respond to exceptional conditions or
external events. As all exceptions (traps and interrupts) execute in Machine mode,
we will restrict the description of exceptions only to this privilege mode.

10 1 Interrupts and interrupt handling

1.3.2 RISC-V Machine Modes Exceptions

According to the RISC-V Privileged Architecture [?], the E31 RISC-V CPU com-
prises five control and status registers for Machine privilege mode:

1. mstatus: In RISC-V, the mstatus (Machine Status) register is a critical con-
trol and status register (CSR) used to manage and store various information
related to the Machine privilege mode. The mstatus register plays a central
role in controlling exception handling, interrupt handling, and the overall op-
eration of the processor in machine mode. The mstatus register keeps track of
and controls the CPU’s current operating state, including whether or not inter-
rupts are enabled. A summary of the mstatus bits related to interrupts in the
E31 RISC-V CPU is provided in Figure 1.4. Note that this is not a complete

3712 11 031

M
IE

M
PI

E

M
PP

Fig. 1.4: The mstatus register.

description of mstatus as it contains fields unrelated to interrupts. For the full
description of mstatus, please consult the RISC-V Instruction Set Manual, Vol-
ume II: Privileged Architecture. The mstatus register contains the following
exception-related bits:

a. MIE (Machine Interrupt Enable): This bit controls whether machine-level
interrupts are globally enabled or disabled. When MIE is set, the CPU can
process machine-level interrupts; when it is cleared, machine-level inter-
rupts are disabled.

b. MPIE (Machine Previous Interrupt Enable): This bit stores the previous
state of MIE before it was modified due to an interrupt. It helps manage
interrupt nesting by preserving the previous interrupt-enable state.

c. MPP (Machine Previous Privilege Mode): This two-bit field stores the pre-
vious privilege mode before the CPU entered machine mode due to an in-
terrupt. It is used during return from interrupt to return to the appropriate
privilege mode after processing an interrupt.

2. mie: The mie (Machine Interrupt Enable) register is responsible for enabling or
disabling various types of interrupts that can interrupt the execution of the CPU
in machine mode. Individual interrupts are enabled by setting the appropriate bit
in the mie register. The mie register is depicted in Figure 1.5. The mie register
contains the following bits:

a. MSIE (Machine Software Interrupt Enable): This bit controls whether
machine-level software interrupts are enabled or disabled. When MSIE

1.3 RISC-V interrupts 11

3712 11 031

M
SI

E

M
TI

E

M
EI

E

Fig. 1.5: The mie register.

is set, the CPU can process machine-level software interrupts; otherwise,
machine-level software interrupts are disabled.

b. MTIE (Machine Timer Interrupt Enable): This bit controls whether
machine-level timer interrupts are enabled or disabled. When MTIE is set,
the CPU can process machine-level timer interrupts.

c. MEIE (Machine External Interrupt Enable): This bit controls whether
machine-level external interrupts are enabled or disabled. When MEIE is
set, the CPU can process machine-level external interrupts.

3. mip: The mip (Machine Interrupt Pending) register indicates which interrupts
are currently pending. The mip register is depicted in Figure 1.6. When an

3712 11 031

M
SI

P

M
TI

P

M
EI

P

Fig. 1.6: The mip register.

interrupt occurs, the corresponding bit in mip is set to 1. When the CPU takes
an interrupt, the corresponding bit in mip is cleared. The mip register contains
the following bits:

a. MSIP (Machine Software Interrupt Pending): When MSIP is set, the Ma-
chine Software Interrupt is pending.

b. MTIP (Machine Timer Interrupt Pending): When MTIP is set, the Machine
Timer Interrupt is pending.

c. MEIP (Machine External Interrupt Pending): When MEIP is set, the Ma-
chineExternal Interrupt is pending.

If more than one interrupt is pending, the RISC-V CPU prioritizes the interrupts
as follows, in decreasing order of priority: Machine External Interrupts (highest
priority), Machine Software Interrupts, and Machine Timer Interrupts (lowest
priority).

4. mcause: In RISC-V architecture, the mcause register is a control and status
register (CSR) that is used to provide information about the cause of an excep-
tion or interrupt that occurred in machine mode. A summary of the mcause bits
related to interrupts in the E31 RISC-V CPU is provided in Figure 1.7. When a
trap is taken in machine mode, the most significant bit in mcause (bit INT) is 0,

12 1 Interrupts and interrupt handling

910 031

IN
T

30

EXCEPTION CODE

Fig. 1.7: The mcause register.

and the ten least-significant bits (EXCEPTION CAUSE field) are written with
a code indicating the event that caused the trap. When an interrupt is taken, the
most significant bit of mcause (bit INT) is set to 1, and the ten least-significant
bits (EXCEPTION CAUSE field) contain the interrupt number, using the same
encoding as the bit positions in the mip register. Table 1.1 lists exception codes
and their description. For example, a Machine Timer Interrupt causes mcause
to be set to 0x80000007.

Table 1.1: mcause Exception Codes and their description.

INT EXCEPTION
CODE Description

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store address misaligned
0 7 Store access fault
1 3 Machine software interrupt
1 7 Machine timer interrupt
1 11 Machine external interrupt

5. mtvec: The mtvec register has two main functions. Firstly, it specifies the base
address for the vector table, which contains the addresses of exception handlers.
Secondly, it sets the mode by which the E31 CPU will process exceptions. The
RISC-V CPU can process exceptions in two modes: direct and vectored. In
direct mode, the mtvec register holds the address of a single global exception
handler. The processor directly jumps to this global handler’s address when a
trap or interrupt occurs. In direct mode, we might use a single handler for all
exceptions, simplifying the exception-handling process. However, it may not be
suitable for systems requiring fine-grained control over exception handling. In
vectored mode, the mtvec register holds the base address of the vector table. In
this mode, the processor uses a 10-bit field in the In mcause register to index
the vector table and find the appropriate handler for the specific trap or interrupt
that occurred. The vectored mode allows more flexibility in handling various
exceptions and interrupts with different routines. In vectored mode, we can have
multiple handlers for different exceptions and interrupts, allowing us to handle

1.3 RISC-V interrupts 13

each type of exception or interrupt differently. This is often the preferred way
of interrupt handling. The mtvec register is depicted in Figure 1.8. The mtvec

12 031

BASE MODE

Fig. 1.8: The mtvec register.

register contains the following bit fields:

a. MODE: This 2-bit field sets the interrupt processing mode (00-Direct, 01-
Vectored).

b. BASE: This 30-bit field contains the vector table base address. This field
requires 64-byte alignment.

Table 1.2 describes how an address of the exception handler is computed in two
different interrupt processing modes. For example, suppose the global and ma-

Table 1.2: mtvec Modes and Address of Exception Handler Encoding.

MODE
Interrupt
Processing

Mode

Address of
Exception Handler

0 Direct PC = BASE

1 Vectored

PC = BASE + 4 x mcause[EXCEPTION CODE]

NOTE: BASE must be 64-byte aligned. This is to avoid an adder

in the above computation

chine timer interrupts are enabled, and the BASE is set to 0x20011500. If the
vectored mode is selected and a machine timer interrupt occurs, the EXCEP-
TION CODE in the mcause register will be 0x07. Then, the address of the in-
terrupt handler that processes the machine timer interrupts will be 0x20011500
+ 4 x 0x07 = 0x20011500 + 0x1C = 0x2001151C. Hence, when the interrupt
is taken, the PC is set to 0x2001151C, and the first instruction of the interrupt
handler should be at this address.

Configuring these five Control and Status Registers registers correctly is crucial
for proper exception handling in RISC-V systems, as they dictate where the proces-
sor should jump when an exception occurs and how exceptions are managed. These
CSRs are not memory-mapped and can only be accessed through special privileged
instructions: csrr and csrw for read and write, respectively. Hence, To work with
these CSRs, developers must use assembly language instructions to read and mod-
ify these registers as needed.

14 1 Interrupts and interrupt handling

1.3.3 FE-310 Interrupts

The SiFive Freedom E310, also known as FE310, is a microcontroller based on the
RISC-V architecture. It’s designed for embedded and IoT applications and is notable
for being one of the early implementations of the RISC-V ISA. Let us have a deeper
view of interrupts supported in SiFive Freedom E310. The FE310 SoC supports two

1

Machine External Interrupt

Machine Software Interrupt

Machine Timer Interrupt

32

3

2

2

12

I2C

3x PWM

GPIO

3x QSPI

2x UART

AON

PLIC

CLINT

E31
RISC-V

Fig. 1.9: FE310 Interrupt Architecture Block Diagram.

types of RISC-V interrupts: local and global. Local interrupts are signalled directly
to the RISC-V E31 CPU with a dedicated interrupt line for each local interrupt. The
RISC-V E31 CPU has three interrupt lines for external, software and timer inter-
rupts (Figure 1.9). Software and timer interrupts are local interrupts generated by
the Core-Local Interruptor (CLINT). Besides software and timer interrupts, various
I/O devices (e.g., UART, GPIO, etc.) can use global interrupts to activate the external
interrupt line and to interrupt the CPU. Global interrupts from I/O devices are routed
through a Platform-Level Interrupt Controller (PLIC), which will be described later.

The CLINT is a mandatory component in RISC-V processor systems. It’s re-
sponsible for managing timer-related and software-generated interrupts at the core
level. The CLINT generates two interrupts:

1. Machine Timer Interrupts: The CLINT contains a timer called the Machine
Timer, which can generate timer interrupts for various purposes, including time-
keeping, scheduling, and triggering tasks at specific intervals.

2. Machine Software Interrupts: In RISC-V, the software can generate software
interrupts to communicate with the operating system. In general, the program
running in user mode is not allowed to call operating system procedures. Hence,

1.3 RISC-V interrupts 15

the only way a user program makes a system call is by generating a software
interrupt. The software interrupt handler running in machine mode then calls an
operating system procedure. The CLINT can be used to handle these software-
generated interrupts.

The CLINT comprises memory-mapped control and status registers related to soft-
ware and timer interrupts. Table 1.3 shows the memory map for CLINT on SiFive
FE310.

Table 1.3: Memory map for CLINT registers on SiFive FE310 SoC.

Address Width Register
0x02000000 4B msip
0x02004000 8B mtimecmp
0x0200BFF8 8B mtime

1.3.3.1 Machine Software Interrupts

A machine software interrupt is an interrupt generated by software running in ma-
chine mode to request attention from the processor for specific tasks or events. Ma-
chine software interrupts are generated by writing ’1’ to the msip register within
CLINT. The msip register is a 32-bit memory-mapped register where the upper 31
bits are hardwired to zero. The least significant bit of the msip register is reflected
in the MSIP bit of the mip register. On reset, the msip register is cleared to zero.

1.3.3.2 Machine Timer Interrupts

CLINT, which is a mandatory part of RISC-V architecture, provides a 64-bit real-
time counter, which monotonically increases at a clock speed, and its content is
visible as a memory-mapped register mtime. In the FE310 SoC, CLINT is respon-
sible for providing the real-time counter. Machine timer interrupt is a local interrupt,
which can be generated by using two architecturally defined timer registers: mtime
and mtimecmp:

1. mtime register: The 64-bit mtime register stores the current value of the 64-bit
timer counter. The software can read this register to determine the current time.

2. mtimecmp register: The mtimecmp register holds a value that is compared
with the mtime register. When mtime reaches the value stored in mtimecmp,
it triggers a timer interrupt. This register is used to set up timer interrupts for
specific time intervals.

In summary, the machine timer generates timer interrupts when the mtime matches
or exceeds the value stored in the mtimecmp register. This feature is crucial for

16 1 Interrupts and interrupt handling

implementing preemptive multitasking, where the processor can switch between
tasks at predefined time intervals.

1.3.4 Interrupt Entry and Exit

Interrupt entry and exit refer to the processes by which a RISC-V processor handles
interrupts. These processes involve transitioning from regular program execution to
an interrupt handler and returning to regular program execution after the interrupt is
serviced. In the following subsections, we describe and explain interrupt entry and
exit in RISC-V.

1.3.4.1 Interrupt Entry

When a machine interrupt occurs:

1. The value of the MIE bit in mstatus is copied into the MPIE bit in mstatus,
and then MIE is cleared, effectively disabling interrupts.

2. The privilege mode prior to the interrupt is saved in the MPP field in mstatus.
3. The cause of the interrupt is encoded into EXCEPTION CODE in mcause.
4. The current PC is copied into the mepc register, and then the PC is set to the

value specified by mtvec as described in Table 1.2.

At this point, control is handed over to software in the interrupt handler with
interrupts disabled. Interrupts can be re-enabled by explicitly setting the MIE bit in
mstatus or by executing an mret instruction to exit the handler.

1.3.4.2 Interrupt Exit

To exit from a machine interrupt, the mret instruction must be executed at the end
of the interrupt handler. When a mret instruction is executed, the following occurs:

1. The privilege mode is set to the value encoded in the MPP field in mstatus.
2. In the mstatus register, the MIE bit is set to the value of MPIE.
3. The PC is set to the value of mepc, hence pointing to the instruction, which was

interrupted.

At this point, control is handed over to the previously interrupted program.

1.3.5 Implementing Vector Table and Handlers

Implementing a vector table and handlers in assembly language for RISC-V in-
volves setting up a program structure to store the addresses of exception handlers

1.3 RISC-V interrupts 17

and configuring the system to use this table when exceptions occur to jump to the
interrupt-specific handler. Below are the steps to implement an exception table and
handlers in RISC-V assembly:

1. Define the Vector Table: Create a program structure that serves as the vector
table. As we have learned, the address of the first instruction of an interrupt han-
dler is calculated using the BASE address of the vector table and the exception
cause (Table 1.2). Each entry in the vector table occupies exactly 4 bytes, and
there is only room for one instruction per handler in the vector table. Therefore,
the only instructions in the exception table should be the jump instructions that
transfer control to an interrupt-specific handler. An example of the vector table
is as follows:
The vector table is populated with jump instructions to transfer con-
trol to interrupt-specific handlers. For example, the jump instruction (j
_mtim_interrupt_handler) that causes the jump to the timer interrupt han-
dler is placed at the offset 7 x 4 = 0x1C from the beginning of the vector table.
So when a machine timer interrupt occurs, the PC is set to BASE + 0x1C and
the CPU will execute the j _mtim_interrupt_handler instruction.

1 # ---------------------------------
2 #
3 # V E C T O R T A B L E
4 #
5 # must be 64-byte aligned.
6 # ---------------------------------
7

8 .balign 64
9 .global _vector_table

10 _vector_table: # BASE
11 j _default_handler
12 j _default_handler
13 j _default_handler
14 # -----------------------------
15 j _msw_interrupt_handler # 3
16 # -----------------------------
17 j _default_handler
18 j _default_handler
19 j _default_handler
20 # -----------------------------
21 j _mtim_interrupt_handler # 7
22 # -----------------------------
23 j _default_handler
24 j _default_handler
25 j _default_handler
26 # -----------------------------
27 j _mext_interrupt_handler # 11
28 # -----------------------------

Listing 1.1: A vector table for E31 RISC-V.

We can see from Listing 1.1 that besides the jump instructions to exception
handlers for software, timer and external interrupts, there is also a jump instruc-
tion to _default_handler in all other entries in the vector table. We have
already learned that there are only three interrupt sources in FE310 SOC (soft-
ware, timer and external), so why do we need the fourth interrupt handler _de-

18 1 Interrupts and interrupt handling

fault_handler? This is to ensure that in case of a trap (INT=0 in mcause),
the CPU executes _default_handler.

2. Register the Base Vector Table Address: We should configure the mtvec reg-
ister to point to the exception table. Also, we should set the preferred interrupt
processing mode in mtvec. Listing 1.2 presents the RISC-V assembly code to
register the base address and to select the vectored mode:

1 # ---------------------------------------
2 # Register the base address for vector table
3 # in mtvec
4 #
5 # @arguments :
6 # # a0 - interrupt vector table base address
7 # # a1 - interrupt processing mode
8 # (0x0 - direct , 0x1 - vectored)
9 # ---------------------------------------

10 .balign 4
11 .global register_handler
12 .type register_handler , @function
13 register_handler:
14 # prologue:
15 addi sp, sp, -16 # Allocate the routine
16 # stack frame
17 sw ra, 12(sp) # Save the return address
18 sw fp, 8(sp) # Save the frame pointer
19 sw s1, 4(sp)
20 sw s2, 0(sp)
21 addi fp, sp, 16 # Set the framepointer
22

23 or a0, a0, a1 # OR base address with mode
24 csrw mtvec , a0 # and save into mtvec
25

26 # epilogue:
27 lw s2, 0(sp)
28 lw s1, 4(sp)
29 lw fp, 8(sp) # restore the frame pointer
30 lw ra, 12(sp) # restore the return address
31 addi sp, sp, 16 # de -allocate the routine
32 # stack frame
33 ret

Listing 1.2: Assembly function for registering the vector table base addreess.

3.
4. Define Exception Handler: Write the exception handler routines in assembly

language. Each handler should be a separate section of code that corresponds
to a specific exception type and ends with the mret instruction. The prologue
of an interrupt handler usually begins with saving the registers onto the stack
to avoid overwriting the contents of the saved registers (s0-s11). After the body
of the exception handler executes, the epilogue of an interrupt handler restores
the saved registers from the stack. Finally, the handler returns with mret, an
instruction unique to machine mode. The mret instruction restores the PC from
mepc, the previous interrupt-enable setting, and the privilege mode as described
in Subsection 1.3.4.2. For example, the following code (Listing 1.3) presents the
RISC-V assembly code for a machine timer interrupt handler:

1.3 RISC-V interrupts 19

1 # --
2 # Machine Timer Interrupt Handler
3 # --
4 .balign 4
5 .global _mtim_interrupt_handler
6 _mtim_interrupt_handler:
7

8 # Prologue :
9 # save 16 ABI caller registers

10 # (ra , t0 -t6 , a0 -a7)
11 addi sp, sp, -16*4 # Allocate the routine stack frame
12 sw t0, 0*4(sp)
13 sw t1, 1*4(sp)
14 sw t2, 2*4(sp)
15 sw t3, 3*4(sp)
16 sw t4, 4*4(sp)
17 sw t5, 5*4(sp)
18 sw t6, 6*4(sp)
19 sw a0, 7*4(sp)
20 sw a1, 8*4(sp)
21 sw a2, 9*4(sp)
22 sw a3, 10*4(sp)
23 sw a4, 11*4(sp)
24 sw a5, 12*4(sp)
25 sw a6, 13*4(sp)
26 sw a7, 14*4(sp)
27 sw ra, 15*4(sp)
28

29 # Decode interrupt cause
30 csrr t0, mcause # read exception cause
31 bgez t0, 1f # exit if not an interrupt
32

33 # Increment timer compare by 1000 cycles
34 li t0, 0x0200 BFF8 # load the mtime address
35 lw t1, 0(t0) # load mtime (LO)
36 lw t2, 4(t0) # load mtime (HI)
37 li t3, 1000 # load 1000 cycles
38 add t3, t1 , t3 # increment lower bits by 1000
39 sltu t1, t3, t1 # generate carry -out
40 add t2, t2 , t1 # increment upper bits with carry
41

42 li t0, 0x02004000 # load the mtimecmp address
43 sw t3, 0(t0) # update mtimecmp (LO)
44 sw t2, 4(t0) # update mtimecmp (HI)
45

46 1:
47 # Epilogue: restore ABI caller regs
48 lw t0, 0*4(sp)
49 lw t1, 1*4(sp)
50 lw t2, 2*4(sp)
51 lw t3, 3*4(sp)
52 lw t4, 4*4(sp)
53 lw t5, 5*4(sp)
54 lw t6, 6*4(sp)
55 lw a0, 7*4(sp)
56 lw a1, 8*4(sp)
57 lw a2, 9*4(sp)
58 lw a3, 10*4(sp)
59 lw a4, 11*4(sp)
60 lw a5, 12*4(sp)
61 lw a6, 13*4(sp)
62 lw a7, 14*4(sp)
63 lw ra, 15*4(sp)
64 addi sp, sp, 16*4 # de -allocate the routine stack frame
65 mret

20 1 Interrupts and interrupt handling

Listing 1.3: Assembly code for the machine timer interrupt.

The code in Listing 1.3 assumes that interrupts are globally enabled in mstatus
(MIE=1), that timer interrupts have been enabled in mie, and that mtvec has
been set to the base address of the vector table with the interrupt processing
mode set to vectored. The prologue preserves 16 registers according to RISC-
V ABI (Application Binary Interface). You may find this a little odd — why
waste 16 instructions and 64 bytes in memory to save these registers? Well,
it turns out there is a very good reason we do this. When writing an interrupt
handler in RISC-V assembly language, it’s essential to save and restore the
necessary registers to ensure the proper operation of the interrupted program.
The specific registers that should be saved onto the stack can vary depending on
the RISC-V privilege mode, the interrupt source, and the calling conventions of
the platform. However, here’s a general guideline for which registers we should
consider saving:

a. ra register stores the return address for function calls. Saving and restor-
ing this register ensures that control can return correctly to the interrupted
program.

b. Caller-Saved Registers t0-t6 can be freely modified by the caller (inter-
rupted program) without the caller being responsible for saving their origi-
nal values. If the interrupt handler modifies any of these registers, we should
save and restore them to maintain the integrity of the interrupted program.

c. Stack Pointer when the interrupt handler needs additional stack space. In
such a case, we need to save and restore the stack pointer to ensure that
stack operations do not interfere with the interrupted program’s stack.

d. Other Registers Used by the Interrupt Handler. Depending on the spe-
cific needs of the interrupt handler, we may use additional registers for tem-
porary storage or calculations or for passing arguments. If these registers
are modified, we should save and restore them.

After the prologue, the handler decodes the exception cause by examining
mcause: interrupt if mcause < 0, trap otherwise. Then, it simply increments
the time comparator so that the next timer interrupt occurs about 1000 timer cy-
cles in the future. The handler is not preemptible, as it keeps interrupts disabled
throughout the handler. Finally, the epilogue restores saved registers and returns
with mret.
We can also write interrupt handlers in C. To write an interrupt handler in C for
a RISC-V-based system, we typically need to use a combination of assembly
language and C code. For example, reading and writing CSRs (e.g., mcause) is
only possible with the special csrr, csrw instructions; hence, we are forced to
use assembly language for such operations. The exact details of how to imple-
ment interrupt handlers in C can vary depending on your platform and compiler,
but we will give a general outline of how to write an interrupt handler in C for
a RISC-V system:

1.3 RISC-V interrupts 21

a. Mark the Function as an Interrupt Handler: Usually, we use compiler-
specific attributes or pragmas to mark the function as an interrupt handler.
This attribute is crucial for the compiler to generate prologue and epilogue
sequences for an interrupt handler and to put the mret instruction at the
end of the generated code. The following C code presents how to mark a
function as an interrupt handler:

1 /*
* Use " interrupt" attribute to indicate that the specified

3 * function is an interrupt handler.
* The compiler generates function entry and exit

5 * sequences suitable for use in an interrupt handler
* when this attribute is present.

7 */

9 __attribute__ ((interrupt)) void interrupt_handler(void) {
// Interrupt handling code

11 }

Listing 1.4: Interrupt handler function in C.

b. Use inline assembly for accessing CSRs: To read/write the CSRs registers
in RISC-V, we should use inline assembly. The exact details of how to use
inline assembly depend on the compiler, so we should always consult the
compiler manual. Here is an example of how to write inline assembly to
read the mcause register in C:

1 unsigned int mcause_value;

3 // Inline assembly to read mcause
asm volatile(

5 "csrr %0, mcause" // Read mcause into %0
: "=r" (mcause_value) // Output : mcause_value

7);

Listing 1.5: Inline assembly to read mcause.

The volatile qualifier is necessary as GCC optimizers sometimes discard
asm statements if they determine there is no need for the output variables.
Using the volatile qualifier disables these optimizations.

Listing 1.6) presents the machine timer interrupt handler.

1 unsigned int *pMTime = (unsigned int *)0x0200bff8;
unsigned int *pMTimeCmp = (unsigned int *)0x02004000;

3

__attribute__ ((interrupt)) void mtime__handler (void) {
5

unsigneg int mcause_value;
7 // Decode interrupt cause:

// Non memory -mapped CSR registers can only be accessed
9 // using special CSR instructions . Hence , we should use

// inline assembly:
11 __asm__ volatile ("csrr %0, mcause"

: "=r" (mcause_value) /* output */
13 : /* input : none */

22 1 Interrupts and interrupt handling

: /* clobbers: none */
15);

17 if (mcause_value & 0x8000007) { // mtime interrupt !
// Increment timer compare by 500 ms:

19 *pMTimeCmp = *pMTime + 16384;
}

21 }

Listing 1.6: Machine timer interrupt handler in C.

5. Enable Global Interrupts: To enable machine-level interrupts, we should set
the MIE bit in the mstatus register. The following code (Listing 1.7) presents
the RISC-V assembly code to enable global machine-level interrupts :

1

2 .equ MSTATUS_MIE_BIT_MASK , 0x00000008 # bit 3
3

4 # ---------------------------------------
5 # Enable global interrupts in mstatus
6 # ---------------------------------------
7 .balign 4
8 .global enable_global_interrupts
9 .type enable_global_interrupts , @function

10 enable_global_interrupts:
11 # prologue:
12 addi sp, sp, -16 # Allocate the routine
13 # stack frame
14 sw ra, 12(sp) # Save the return address
15 sw fp, 8(sp) # Save the frame pointer
16 sw s1, 4(sp)
17 sw s2, 0(sp)
18 addi fp, sp, 16 # Set the framepointer
19

20 li t0, MSTATUS_MIE_BIT_MASK
21 csrs mstatus , t0 # set the MIE bit in mstatus
22

23 # epilogue:
24 lw s2, 0(sp)
25 lw s1, 4(sp)
26 lw fp, 8(sp) # restore the frame pointer
27 lw ra, 12(sp) # restore the return address
28 addi sp, sp, 16 # de -allocate the routine
29 # stack frame
30 ret

Listing 1.7: Assembly function for enabling global interrupts in the mstatus register.

6. Enable Particular Interrupt: Depending on what particular interrupt (soft-
ware, timer or external) we would like to enable, we should set an appropriate
bit in the textbfmie register. Listing 1.8 presents the RISC-V assembly code to
enable the machine timer interrupt:

1

2 .equ MIE_MTIE_BIT_MASK , 0x00000080 # bit 7
3

4 # ---------------------------------------
5 # Enable machine timer interrupt in mie
6 # ---------------------------------------
7

8 .balign 4

1.3 RISC-V interrupts 23

9 .global enable_mtimer_interrupt
10 .type enable_mtimer_interrupt , @function
11 enable_mtimer_interrupt:
12 # prologue:
13 addi sp, sp, -16 # Allocate the routine
14 # stack frame
15 sw ra, 12(sp) # Save the return address
16 sw fp, 8(sp) # Save the frame pointer
17 sw s1, 4(sp)
18 sw s2, 0(sp)
19 addi fp, sp, 16 # Set the framepointer
20

21 li t0, MIE_MTIE_BIT_MASK
22 csrs mie , t0 # set MTIE in mie
23

24 # epilogue :
25 lw s2, 0(sp)
26 lw s1, 4(sp)
27 lw fp, 8(sp) # restore the frame pointer
28 lw ra, 12(sp) # restore the return address
29 addi sp, sp, 16 # de -allocate the routine
30 # stack frame
31 ret

Listing 1.8: Assembly function for enabling the machine timer interrup in the mie
register.

24 1 Interrupts and interrupt handling

1.4 ARM Cortex-M7 exceptions and interrupts

In the terminology ARM uses, all events or conditions that can interrupt the normal
program flow and transfer control to a specific handler (service) routine are referred
to as exceptions. ARM Cortex-M7 processors support a variety of exceptions, and
they are essential for handling events like interrupts, faults, and system calls. In
general, exceptions can originate both by the hardware and the software.

1.4.1 ARM Cortex-M7 programmer’s model

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

SP(R13)
LR(R14)
PC(R15)

xPSR
PRIMASK

FAULTMASK
BASEPRI

CONTROL

MSP

PSP
Stack Pointer
Link Register
Program Counter

G
en

er
al

 P
ur

po
se

 R
eg

ist
er

s

Program Status Register
Interrupt Mask Register

Control Register (Stack definition)
Base priority mask register
Fault mask register

SPECIAL REGISTERSREGISTER BANK

Main Stack Pointer

Process Stack Pointer

Fig. 1.10: ARM Cortex-M7 core registers.

In this subsection, we will briefly describe the ARM Cortex-M7 programmer’s
model. The ARM Cortex-M7 processor core features a set of registers used for
various purposes in program execution and system control. These registers can be
categorized into two groups: register bank and special registers (see Figure 1.10).

1.4.1.1 Register bank

The register bank contains 16 32-bit registers. Thirteen of them are general-purpose
registers, and the other three have special uses:

1. Registers R0 to R12 are general-purpose registers for data storage and data
operations.

1.4 ARM Cortex-M7 exceptions and interrupts 25

2. R13 is Stack Pointer (SP) for maintaining the stack, typically used for local vari-
ables and function call frames. The Cortex-M7 contains two physically different
stack pointers for different privilege levels:

a. The Main Stack Pointer (MSP)is the default Stack Pointer after reset and is
mainly used when the processor runs in privileged or system mode.

b. The Process Stack Pointer (PSP) can only be used in unprivileged or user
mode.

3. R14 is Link Register (LR), which stores the return address when calling sub-
routines or functions. On reset, the processor sets the LR value to 0xFFFFFFFF.

4. R15 is Program Counter (PC), which holds the memory address of the currently
executing instruction.

Because the stack pointer register in ARM Cortex-M7 has two physical copies,
we say it is banked. In the context of ARM Cortex processors, the term ’banked
register’ refers to a type of register that has multiple copies or ’banks’, each as-
sociated with a specific execution mode or privilege level. These banks allow the
processor to maintain separate register sets for different execution contexts, such as
user mode, privileged mode, and exception modes. The selection of the stack pointer
is determined by a special register called the CONTROL register, which is a part of
the special register set.

1.4.1.2 Special registers

Besides the registers in the register bank, there are several special registers. These
registers contain the processor status and define the operation states and interrup-
t/exception masking. The special registers are:

1. xPSR is a 32-bit Program Status Register. Some of the bit fields in the xPSR

EXCEPTION NUMBERN Z C V T

31 24 8 030 29 28

Overflow
Carry
Zero
Negative

Indicates which exception the
processor is handling.

Fig. 1.11: xPSR register.

register are N (negative flag), Z (zero flag), V (overflow flag), C (carry flag),
T (Thumb state) and EXCEPTION NUMBER representing the number of the
current exception (interrupt).

2. CONTROL register is a 32-bit register that allows the processor to manage priv-
ileged and unprivileged execution modes and select the active stack pointer. It

26 1 Interrupts and interrupt handling

1 0

SP
SE

L
nP

RI
V

not Priviledged:
0 - Priviledged
1 - not Priviledged

SP selection:
0- MSP
1- PSP

Fig. 1.12: CONTROL register.

includes the following fields: nPRIV (Privilege Level Bit) determines the priv-
ilege level of the processor (0 for privileged, 1 for unprivileged), and SPSEL
(Stack Pointer Select Bit) selects the active stack pointer (0 for MSP, 1 for PSP).

3. Three exception masking registers:

a.

4. The PRIMASK register is a 1-bit wide interrupt mask register. When set, it
blocks all exceptions (including interrupts) apart from the Non-Maskable In-
terrupt (NMI) and the HardFault exception. The FAULTMASK register is very
similar to PRIMASK, but it also blocks the HardFault exception. The BASEPRI
register masks (blocks) exceptions or interrupts based on their priority level

Special registers are not memory mapped and can be accessed using special register
access instructions MSR and MRS:
MRS reg, special_reg
reads special register into general-purpose register, and
MSR special_reg, reg
writes to special register from general-purpose register.

1.4.2 System Control Block

In addition to the registers we have just covered, ARM Cortex-M7 processors main-
tain another important register bank called System Control Block (SCB). The Sys-
tem Control Block is a crucial part of the processor’s control and configuration.
The SCB is a memory-mapped register bank that includes several registers and con-
trol bits that influence the processor’s behaviour, manage exceptions, and provide
system-level control. For example, the SCB registers for controlling processor con-
figurations (e.g., low power modes), providing fault status information (fault status
registers), relocating the vector table and controlling/obtaining the status of some
interrupts. Here, we provide a brief description of only one CSB register related to
interruptions and exceptions. This is the Interrupt Control and State Register (ICSR).
This register provides bits for setting and clearing two software interrupts, PendSV

1.4 ARM Cortex-M7 exceptions and interrupts 27

and SysTick. The ICSR register is memory-mapped at address 0xE000ED04. For
example, writing 1 to bit 28 in ICSR will set the PendSV exception to pending.

1.4.3 Exceptions

ARM architecture distinguishes between the two types of exceptions: interrupts
originate from the external hardware, and exceptions originate from the CPU core or
software (e.g., access to an invalid memory location or an SVC assembly instruction,
which is commonly used as a convenient way to enter the operating system kernel).
The following information identifies each ARM Cortex-M7 exception:

1. Exception Number - A unique number referencing a particular exception
(starting at 1). This number is also used as the offset within the vector ta-
ble, where the address of the handling routine for the exception is stored. This
routine is usually referred to as the exception handler or interrupt service
routine (ISR) and is the procedure which runs when an exception is triggered.
The ARM hardware will automatically look up this function pointer (address
of the exception handler) in the vector table when an exception is triggered and
start executing the code. When the CPU is servicing an exception, its exception
number is in the lower nine bits of the xPSR register.

2. Priority Level / Priority Number - Each exception has a priority associated
with it. For most exceptions, this number is configurable. Counter-intuitively,
the lower the priority number, the higher the precedence the exception has. So,
for example, if two exceptions of priority level 2 and priority level 1 occur
simultaneously, the exception with priority level 1 exception will be serviced
first. When we say an exception has the “highest priority”, it will have the lowest
priority number. If two exceptions have the same priority number, the exception
with the lowest exception number will run first.

3. Synchronous or Asynchronous - As the name implies, some exceptions will
fire immediately after an instruction is executed (e.g. SVCall). These exceptions
are referred to as synchronous. Exceptions that do not fire immediately after a
particular code path is executed are referred to as asynchronous (e.g. external
interrupts).

ARM Cortex-M7 exceptions can be broadly categorised into four main types:

1. Interrupts are asynchronous events that can occur anytime and interrupt the
normal program execution. They are typically generated by external peripherals
(e.g., timers, UARTs, GPIO), and the processor responds to them by temporarily
halting the current execution and transferring control to an interrupt service
routine (ISR). For instance, a UART may use an interrupt request to indicate
that new data have been received. A corresponding exception handler (ISR) is
then executed that reads the received data. Interrupts can be divided into two
main categories:

28 1 Interrupts and interrupt handling

a. External Interrupts: These are generated by external peripherals or de-
vices to request the processor’s attention. The Cortex-M7 processor sup-
ports a set of external interrupts (IRQs) that can be individually configured
and prioritized.

b. NMI (Non-Maskable Interrupt): This is a special type of interrupt that
has higher priority than regular interrupts and cannot be disabled or masked.
NMIs are typically used for critical system functions. Like ordinary inter-
rupt requests, Non-Maskable Interrupt (NMI) requests can be issued by
either hardware or software (e.g. if errors happen in other exception han-
dlers, an NMI will be triggered). The main difference is that their priority is
extremely high, namely, the highest in the system below the reset exception.

Two more exceptions also belong to this category and are generated within the
processor rather than from external peripheral devices. They are:

a. SysTick exception, generated periodically by the 24-bit count-down system
timer and often used by operating systems to drive time slicing. If needed,
the same exception can also be issued by software.

b. PendSV exception can only be triggered by software. Operating systems
often use it to indicate that a context switch is due and perform it in the
future when no other exceptions are waiting to be handled. The PendSV
exception can be triggered by writing 1 to bit 28 in the ICSR (a part of the
System Control block), which is memory-mapped at address 0xE000ED04.

2. Faults are synchronous events generated due to an abnormal event detected
by the processor, either internally or while communicating with memory and
other devices. These exceptions are of great interest and concern because they
indicate serious hardware or software issues that likely prevent the software
itself from continuing with normal activities. The following faults are present
in Cortex-M7 processors:

a. UsageFault occurs when the processor detects an issue with the program’s
execution or when an instruction cannot be executed for various reasons.
For instance, the instruction may be undefined or may contain a misaligned
address that prevents it from accessing memory correctly. Another reason
for raising a UsageFault exception is an attempt to divide by zero. Some
of the faults mentioned above (like dividing by zero) can be masked in
software, i.e., the processor can be instructed to just ignore them without
generating any exception, whereas others (such as undefined instruction)
cannot, for obvious reasons.

b. BusFault triggers when an error occurs on the data or instruction bus while
accessing memory. In other words, it can be generated as a consequence of
an explicit memory access performed by an instruction during its execution
and also by fetching an instruction from memory. BusFaults result from
issues in memory access, most often as attempting to access a location with
no valid memory. As Cortex-M7 is a memory-mapped input-output (I/O)
architecture, whenever we refer to a memory address, we actually mean

1.4 ARM Cortex-M7 exceptions and interrupts 29

an address within the processor’s address space that may refer to either a
memory location or an I/O register.

c. MemManage (Memory Management Fault) faults occur when there is a
memory access violation, such as accessing restricted memory regions.
In other words, this fault occurs when the memory protection mechanism
blocks memory access. An optional Memory Protection Unit (MPU) pro-
vides a programmable way of protecting memory regions against data read
and write operations, as well as instruction fetches. For instance, the pro-
cessor’s MPU can be programmed to forbid instruction fetch from address
areas containing I/O registers.

d. HardFault is a severe fault that can be generated when an error occurs dur-
ing exception processing, thus disrupting the normal exception handling
flow. HardFaults have a higher priority than any exception with config-
urable priority. HardFaults are typically unrecoverable, meaning the pro-
cessor cannot continue the normal program execution from the point of the
fault. Usually, the application or CPU must be reset. To prevent HardFaults,
developers should follow best practices for writing robust and well-tested
code. This includes avoiding undefined instructions, ensuring valid memory
accesses, and monitoring stack usage to prevent stack overflows. Addition-
ally, proper fault handling and diagnostics can help identify and address
issues before they lead to a HardFault. Hard faults in Cortex-M7 processors
are a critical part of system reliability and safety, as they help detect and re-
port severe issues that could otherwise result in unpredictable or incorrect
system behaviour.

3. Supervisor call (SVC) is a software-initiated exception. It is used to transi-
tion from the user or application mode to a more privileged mode, typically for
making requests to the operating system or kernel. The execution of an SVC
assembly instruction raises this exception. It is commonly used as a convenient
way to enter the operating system kernel and request it to perform a function on
behalf of the application.

4. Reset Exception (Reset) is invoked on power up or a warm reset. The exception
model treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an instruction. When
reset is de-asserted, execution restarts from the address provided by the reset
entry in the vector table. It is handled as other exceptions for the most part,
except that instruction execution can stop at an arbitrary point.

1.4.4 Exception numbers and priorities

Table 1.4 lists different types of exceptions with their priorities, exception numbers
and vector addresses. All exceptions have an associated priority with a lower num-
ber value indicating a higher priority. The programmer (software) configures the

30 1 Interrupts and interrupt handling

Table 1.4: Exception types in Cortex-M7.

Exception
Number

Exception
Type Priority Vector

Address Activation

1 Reset -3 (Highest) 0x00000004 Asynchronous
2 NMI -2 0x00000008 Asynchronous
3 HardFault -1 0x0000000C Synchronous
4 MemManage Configurable 0x00000010 Synchronous
5 BusFault Configurable 0x00000014 Synchronous
6 UsageFault Configurable 0x00000018 Synchronous
7-10 unused - - -
11 SVCall Configurable 0x0000002C Synchronous
12-13 unused - - -
14 PendSV Configurable 0x00000038 Asynchronous
15 SysTick Configurable 0x0000003C Asynchronous

16 and above Interrupt (IRQ) Configurable 0x00000040
and above Asynchronous

priorities for most exceptions, except for Reset, NMI and HardFault. If the software
does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. Configurable priority values are in the range 0-15. Here is the
rule of order of execution of exceptions:

1. If two or more exceptions are pending, the exception with the highest priority
runs first.

2. If two or more exceptions with the same priority are pending, the exception with
the lowest exception number runs first.

3. When the processor executes an exception handler, the exception handler is
preempted if a higher-priority exception occurs. If an exception occurs with
the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt
remains pending.

The exceptions with exception numbers 1-15 are so-called built-in exceptions.
The built-in exceptions are a mandatory part of every ARM Cortex-M core. The
ARM Cortex-M specifications reserve exception numbers 1-15, inclusive, for built-
in exceptions.

1.4.5 Vector table and Exception handlers

The vector table contains the reset value of the stack pointer and the start addresses,
also called exception vectors, for all exception handlers. On system reset, the vec-
tor table is at address 0x00000000. This is the default start address of the vector

1.4 ARM Cortex-M7 exceptions and interrupts 31

_estack

Reset_Handler

NMI_Handler

HardFault_Handler

MemManage_Handler

BusFault_Handler

UsageFault_Handler

0

0

0

0

SVC_Handler

0

0

PendSV_Handler

SysTick_Handler

WWDG_Handler

PVD_AVD_IRQHandler

EXTI0_IRQHandler

EXTI1_IRQHandler

EXTI2_IRQHandler

.

.

.

0x00000004

0x00000000

0x0000000C

0x00000008

0x00000014

0x00000010

0x00000018

0x0000002C

0x0000003C

0x00000038

0x0000001C

0x00000024

0x00000020

0x00000028

0x00000034

0x00000030

0x00000044

0x00000040

0x00000058

0x0000005C

0x00000060

.

.

.

NMI_Handler(){

 ...

}

EXTI0_Handler(){

 ...

}

Reset_Handler(){

 ...

 main();

}

Vector Table:

EXTI2_Handler(){

 ...

}

SRAM
0x20000000

FLASH

main(){

 ...

}

Fig. 1.13: The memory layout of the vector table and exception handlers in ARM
Cortex-M7 cores.

table, where Cortex-M7 expects to find it. This is usually a linker job that places
the vector table at the beginning of the binary file we upload to the flash memory.
Figure 1.13 shows how the vector table is organized in memory and the order of the
exception vectors in the vector table. The first entry of this array is the value of the
stack pointer. Note that the programmer is responsible for setting the first value into
the stack pointer (which is the address of the beginning of the stack). Usually, this
address corresponds to the end of the SRAM, as we often use the stack that expands
in the direction of descending addresses. Starting from the second entry of this ta-
ble, we can find the starting addresses for all exception handlers. This means that
the vector table has a length of up to 256 for Cortex-7 and depends on the number
of interrupts implemented. The silicon vendor that uses an ARM Cortex-M7 core
can implement up to 240 interrupts. The silicon vendor must configure the top range
value, which is dependent on the number of interrupts implemented. ARM requires
that we always adjust the vector table’s size by rounding up to the next power of
two. For example, if there are 16 interrupts, the minimum size of the vector table
is 32 words, enough for 16 built-in exceptions and up to 16 interrupts. If the user
(silicon vendor) requires 21 interrupts, the size of the vector table must be 64 words
because the required table size is 37 words, and the next power of two is 64. The

32 1 Interrupts and interrupt handling

name of the exception handlers in Figure 1.13 is just a convention, and we are totally
free to rename them if we like a different one. They are just symbols.

Defining a vector table for a Cortex-M7 processor involves setting up a table of
exception handler addresses that the processor will jump to when specific excep-
tions occur. As said before, the vector table must be placed at the beginning of the
flash memory, where the processor expects to find it. In ARM Cortex-M microcon-
troller development, the .isr_vector is a special section in the microcontroller’s
memory where the vector table for exceptions and interrupts is defined. The vec-
tor table contains addresses of exception and interrupt service routines (ISRs). The
.isr_vector section is a label used in the linker script to specify the location of
the vector table in memory. Commonly, the vector table is implemented in assembly
code in the startup file (e.g. for the Cortex-M7-based STM32H753 microcontroller,
the startup file would be startup_stm32h753xx.s) as:

1 .section .isr_vector
2

3 g_pfnVectors:
4 .word _estack
5 /* Built -in Exceptions */
6 .word Reset_Handler
7 .word NMI_Handler
8 .word HardFault_Handler
9 .word MemManage_Handler

10 .word BusFault_Handler
11 .word UsageFault_Handler
12 .word 0
13 .word 0
14 .word 0
15 .word 0
16 .word SVC_Handler
17 .word DebugMon_Handler
18 .word 0
19 .word PendSV_Handler
20 .word SysTick_Handler
21 /* External Interrupts */
22 .word WWDG_IRQHandler
23 .word PVD_AVD_IRQHandler
24 ...
25 .word EXTI0_IRQHandler
26 .word EXTI1_IRQHandler
27 .word EXTI2_IRQHandler
28 ...
29 .word WAKEUP_PIN_IRQHandler

Listing 1.9: The vector table for Cortex-M7.

Then, the exception and interrupt handler functions should be implemented in the
code. These functions are called when their corresponding exceptions or interrupts
occur. The handler function names should match the names of the entries in the
vector table for a very obvious reason:

1 void Reset_Handler(void) {
// Reset handler code

3 }

5 void NMI_Handler(void) {

1.4 ARM Cortex-M7 exceptions and interrupts 33

// NMI handler code
7 }

9 void HardFault_Handler(void) {
// HardFault handler code

11 }

13 void EXTI0_IRQHandler (void) {
// HardFault handler code

15 }

Listing 1.10: Exception handlers in C.

1.4.6 Exception entry and exit

Exception entry and exit in an ARM Cortex-M7 processor is a well-defined process
that enables the CPU to handle various exceptions, including interrupts and faults
while preserving the state of the currently executing program. This mechanism en-
sures that the system can respond to events without compromising the integrity of
the application code. Here, we provide a detailed description of the exception entry
and exit process in a Cortex-M7.

1.4.6.1 Exception entry

The exception entry occurs when there is a pending exception with sufficient pri-
ority and either:

1. The processor is executing a normal program and the new exception terminates
the currently executing program.

2. The processor executes the exception handler, and the new exception is of
higher priority than the exception being handled, in which case the new excep-
tion preempts the original exception. When one exception preempts another, we
say the exceptions are nested.

When the processor takes an exception, the processor pushes the current exe-
cution context onto the current stack. The execution context consists of eight 32-
bit words: registers R0 through R3, R12, the link register LR (also accessible as
R14), the program counter PC (R15), and the program status register xPSR, for
a total of 32 bytes. This operation is referred to as stacking, and the structure of
eight 32-bit data words is referred to as the stack frame. The reason behind auto-
matically saving the execution context is that accepting and handling an exception
should not necessarily prevent the processor from returning to its current activity
later. This is particularly true for interrupts and other exception requests that occur
asynchronously to current processor activities and are most often totally unrelated
to them. Thus, the exceptions and interrupts should be transparent with respect to
any code executing when they arrive. Figure 1.14 shows the exception stack frame

34 1 Interrupts and interrupt handling

after stacking. Immediately after stacking, the stack pointer indicates the lowest ad-
dress in the stack frame. The reader will notice that Cortex-M processors use the
full-descending stack (the stack grows downward in memory, and the stack pointer
points to the lowest memory address in use). The stack frame includes the return

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es IRQ top of stack

Pre-IRQ top of stack

Fig. 1.14: The layout of the stack frame after stacking in ARM Cortex-M7.

address, as the PC is also saved during stacking. This is the address of the next in-
struction in the interrupted program. This value is restored to the PC at exception
return so that the interrupted program resumes.

Here, we have to describe stack pointers and processing modes in ARM Cortex-
M processors in more detail. In ARM Cortex-M processors, there are two registers
used to access and manipulate stack: the Main Stack Pointer (MSP) and the Pro-
cess Stack Pointer (PSP). These stack pointers are critical in managing the execu-
tion context and handling exceptions in the processor. Additionally, the Cortex-M
architecture defines two processing modes: Thread mode and Handler mode, each
with distinct purposes and behaviours. The Main Stack Pointer (MSP) and Process
Stack Pointer (PSP) can be accessed and manipulated through the stack pointer (SP),
also known as register r13. Commonly, operating mode defines which of the two
(MSP or PSP) is accessible through SP (i.e. visible as SP).

Thread mode is the typical execution mode for user/application code. The pro-
cessor often uses the PSP (although it is possible to use MSP in this mode also) as
the current stack pointer in this mode. The processor enters Thread mode after a re-
set or when returning from an exception or interrupt. User-level code runs in Thread
mode, and the PSP is often used for function calls and managing thread-specific
context. Handler mode is a privileged execution mode used for handling exceptions
and interrupts. The processor switches from Thread mode to Handler mode when an
exception or interrupt occurs. The processor automatically saves the current context
onto the PSP or MSP stack (depending on the operation mode of the interrupted
program) before executing the exception handler. The MSP is then used in Handler
mode as the stack pointer. Handler mode is reserved for system-level tasks and en-

1.4 ARM Cortex-M7 exceptions and interrupts 35

sures that critical operations can be carried out even when the application stack is
compromised.

In parallel to the stacking operation, the processor writes an exception return
value (called EXC_RETURN value in the ARM documentation) to the link register
(LR). This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred. The information
provided by the EXEC_RETURN value allows the processor to locate the stack
frame to be restored upon returning from an exception, interpret it in the right way,
and bring back the processor to the execution mode of the interrupted program.
Table 1.5 shows the EXC_RETURN values and their meaning upon returning from
an exception.

Table 1.5: Exception return values and their behaviour upon returning from an ex-
ception.

EXC_RETURN[31:0] Description

0xFFFFFFF1 Return to Handler mode, exception return uses the exception stack frame from
the MSP and execution uses MSP after return.

0xFFFFFFF9 Return to Thread mode, exception return uses the exception stack frame from
the MSP and execution uses MSP after return.

0xFFFFFFFD Return to Thread mode, exception return uses the exception stack frame from
the PSP and execution uses PSP after return.

In parallel to the stacking operation, the processor also performs a vector fetch
that reads the exception handler start address from the vector table. The processors
determines the exception vector to be fetched into the PC by the exception number:

PC M[0x0000 0000+4⇥ (exception number)].

When stacking is complete, the processor starts executing the exception handler,
switching to Handler Mode. Associated with the execution mode switch, the pro-
cessor may also use a new stack. As mentioned previously, handler mode execution
always uses MSP, whereas thread mode execution may use either MSP or PSP, de-
pending on processor configuration. The Reset exception is a deviation from this
general rule. The Reset exception is handled in Thread mode instead. Upon reset,
execution starts in Thread mode, and the processor is automatically configured to
use MSP.

1.4.6.2 Exception return

The exception return occurs when the processor is in Handler mode and executes
an instruction which loads the EXC_RETURN value into the PC (for example bx
lr). Recall that EXC_RETURN is the value loaded into the LR on exception en-
try. The exception mechanism relies on this value to detect when the processor has
completed an exception handler. The lowest bits of this value provide information

36 1 Interrupts and interrupt handling

on the return stack and processor mode. When this value is loaded into the PC, it
indicates to the processor that the exception is complete, and the processor should
initiate the appropriate exception return sequence instead of fetching an instruction.

When an exception return value is loaded into the program counter PC as part
of an exception handler epilogue, it directs the processor to initiate an exception
handler return sequence instead of simply returning to the caller. In fact, the ARM
Architecture Procedure Calling Standard (AAPCS) states that a function call must
save into the link register LR the return address before setting the program counter
PC to the function entry point. This is typically accomplished by executing a branch
and link instruction bl with a PC-relative target address. In the epilogue of the called
function, it is then possible to return to the caller by storing back into PC the value
stored into LR at the time of the call. This can be done, for instance, by means of a
branch and exchange instruction bx, using LR as argument.

This aspect of the exception return has been architected to permit any
AAPCS-compliant function to be used directly as an exception handler. In this
way, any AAPCS-compliant function can be used as an exception handler. This is
especially important when exception handlers are written in a high-level language
like C because compilers are able to generate AAPCS-compliant code by default,
and hence, they can also generate exception-handling code without treating it as a
special case. The exception handlers for ARM Cortex-M processors are thus im-
plemented as regular C functions and do not require a special function declaration
keyword. As a result, an exception handler return performed by hardware is indis-
tinguishable from a regular software-managed function return.

The following code presents the exception handler for an exception triggered by
GPIO Pin 13 through EXTI15_10 lines. The exception handler is implemented just
as a regular C function without any special function declaration:

void EXTI15_10_IRQHandler(void)
2 {

// Check if GPIO_PIN_13 triggered the interrupt :
4 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != 0x00U)

{
6 // Your code to handle the GPIO_PIN_13 interrupt goes here

8 // Clear the GPIO_PIN_13 interrupt flag
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13);

10 }
}

Listing 1.11: The exception handler for EXTI15_10 interrupt implemented as a
regular C function.

1.4 ARM Cortex-M7 exceptions and interrupts 37

1.4.7 Case Study: A simple task scheduler on ARM Cortex-M7

In the realm of computer systems and real-time operating systems (RTOS), the con-
cept of context switching is the linchpin of multitasking and responsiveness. It’s a
finely tuned mechanism that orchestrates the efficient execution of multiple tasks,
allowing a processor to handle numerous concurrent operations with precision and
determinism. At its core, context switching is a process by which the proces-
sor transitions from executing one task to another. The context of each task
includes the task’s state of the processor—registers, program counter, stack
pointer, and system variables. This transition involves the preservation of the cur-
rent task’s context, the loading of the new task’s context, and the seamless continu-
ation of the latter’s execution.

Context switching begins with a trigger—typically a timer interrupt signalling
the need to switch contexts. The processor diligently saves the current context onto
a task’s stack and retrieves the context of the next task to be executed from its stack.
An RTOS relies on a task scheduler, interrupt handling mechanisms, and precise
memory management to orchestrate this performance. The scheduler keeps a record
of tasks and manages their execution, while the interrupt system plays a pivotal role
in triggering context switches when a timer interrupt occurs.

Understanding the intricacies of context switching is paramount for engineers
working with computer systems to create efficient, deterministic, and robust appli-
cations. So, let’s raise the curtain and delve into the intricacies of context switching,
where the processor seamlessly switches tasks, and the computer system transforms
into a multitasking maestro.

1.4.7.1 Background

Task0 Task1 Task2 Task3

Context
switch

Context
switch

Context
switch

Context
switch

Task0

Mode

Time

Handler

Thread

Time slice Time slice Time slice Time slice

SysTick SysTick SysTick SysTick SysTick

Fig. 1.15: A simple task scheduler.

A simple round-robin task scheduler (Figure 1.15) on Cortex-M7 processors ef-
fectively manages multiple tasks or threads in a cooperative multitasking environ-

38 1 Interrupts and interrupt handling

ment. In this scheduler, each task is given a fixed time slice (quantum) during which
it can execute. When its time slice expires, the scheduler switches to the next task
in the queue. The task scheduler relies on the interrupts and stacks to achieve
context switching. The SysTick and PendSV interrupts can both be used for context
switching. The SysTick peripheral is a 24-bit timer that interrupts the processor each
time it counts down to zero. This makes it well-suited to round-robin style context
switching, and we are going to use the SysTick to perform a context switch.

When switching contexts, the scheduler needs a way to keep track of which tasks
are doing what using a task table. Recall from the previous sections that the ARM
Cortex-M7 processor has two separate stack pointers which can be accessed through
a banked SP register: Main Stack Pointer (MSP), which is the default one after
startup and is used in exception handlers running in the Handler mode, and Pro-
cess Stack Pointer (PSP), which is often used in regular user procedures running
in the Thread mode. In our application, tasks run in the Thread Mode with PSP,
and the context-switcher (kernel) runs in the Handler Mode with MSP. This allows
stack separation between the kernel and tasks (which simplifies the context switch
procedure) and prevents tasks from accessing important registers and affecting the
kernel.

Task1 Task2

Mode

Time

Handler

Thread

Time slice

SysTick

Exception
frame

stacking

PUSH Task1
registers
R4-R11

Save PSP
into

Task1 TCB

Select
next
task

Load PSP
from

Task2 TCB

POP Task2
registers
R4-R11

Exception
frame

destacking

Systick Handler

SysTick

Fig. 1.16: A simple task scheduler.

Figure 1.16 shows the scheduler operations during a context switch in more de-
tail. The scheduler relies on exception entry and exit mechanisms, which automat-
ically save and restore the critical CPU context (registers R0-R3, R12, LR, PC and
xPSR) using the exception frame on the stack. When a SysTich exception occurs,
the Task1 critical registers are automatically saved into the Task1 exception stack
frame. Once in the Systick handler, the scheduler is responsible for pushing the in-
terrupted task Task1 registers R4-R11 onto the task’s stack and saving its PSP in
the task’s TCB. Then, the scheduler selects the next task (Task2) in a round-robin
fashion. Before returning from the SysTick handler, the scheduler is responsible for
loading the Task2 SP into the PSP register and restoring the Task2 registers R4-

1.4 ARM Cortex-M7 exceptions and interrupts 39

R11 from the Task2 stack. Then, upon exception exit, the Task2 critical registers are
restored from its exception stack frame, and the execution returns to the new task.

Usually, three routines are required to implement and run the scheduler: create
new tasks, initialize tasks, and perform the context switch. Besides, several data
structures are required to implement and manage the stack for each task and rep-
resent each task’s state. In the following subsections, we provide a step-by-step
description of implementing a very simple round-robin scheduler on a Cortex-M7
processor.

1.4.7.2 Tasks

A task is a piece of code or a function that does a specific job when it is allowed to
run. Usually, a task is an infinite loop which can repeatedly do multiple steps. In our
simple scheduler application, the tasks cannot be finished (they never return) and do
not take any arguments. Here is a C implementation of a task:

1 void task() {
// init task:

3 ...
// main loop

5 while (1) {
// do things over and over

7 }
}

Listing 1.12: A task in C. In our application, a task never returns and does not take
any arguments.

1.4.7.3 Stacks

In a multitasking environment, where multiple tasks are executed in a time-sharing
manner, each task needs to have its own stack. Each task executes within its own
context with no coincidental dependency on other tasks within the system or the
scheduler itself. Each task’s stack provides isolation between tasks. It ensures that
local variables and function call frames of one task do not interfere with those of
another task. This isolation is crucial for maintaining data integrity and preventing
unintended side effects between tasks. Only one task within the application can ex-
ecute at any point in time, and the scheduler is responsible for deciding which task
this should be. As a task does not know of the scheduler activity, it is the scheduler’s
responsibility to ensure that the processor context (register values, stack contents,
etc.) when a task is swapped in is exactly the same as when the same task was
swapped out. In other words, each task’s stack allows tasks to be reentrant. Reen-
trancy means that a task can be interrupted while executing and later resume from
where it left off without corrupting its state. The stack stores the task’s execution
context, enabling reentrant behaviour. Besides, each task should be able to make

40 1 Interrupts and interrupt handling

function calls and put arguments on the stack without worrying about function call
frames interfering with those of other tasks. Furthermore, allocating a fixed amount
of stack space for each task makes it easier to predict memory usage and stack re-
quirements for each task, simplifying system design and analysis.

To achieve this, each task is provided with its own stack in our simple task
scheduler. The size of each task’s stack is 1 kB (256 32-bit words). So, for four
tasks we create a memory block that holds all four stacks as follows:

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];

Listing 1.13: Memory block for tasks’ stacks. NTASKS equals 4 and
TASK_STACK_SIZE equals 256.

1.4.7.4 Task control block

A Task Control Block (TCB), also known as a Task Control Structure (TCS), is a
data structure used in real-time operating systems (RTOS) and multitasking environ-
ments to manage and control individual tasks or threads. The TCB holds essential
information about a task’s state, allowing the operating system or scheduler to man-
age and switch between tasks efficiently. The exact contents and structure of a TCB
may vary depending on the operating system or RTOS, but it typically includes the
following information: task identifier, task state (e.g., ready to run, blocked, sus-
pended, etc.), task priority, stack pointer, task name, and additional task’s parame-
ters.

In our implementation, each task will always be ready to run, so we will omit the
task state from TCB. Besides, all tasks in our scheduler will have the same priority
and will be selected on a round-robin basis, so we will omit the task priority from
TCB. Because each task should have its own stack to save its local variable and
exception frame, our TCB must include the SP value, which points to the current
stack pointer of the task. The scheduler will select the next task in a round-robin
fashion and write its SP value into the PSP register. The scheduler will also copy the
PSP register of the interrupted task into its SP value. Also, in our implementation,
the Task Control Block will contain the start address of the task. Here is a minimal
TCB implementation using struct in C:

1 typedef struct{
unsigned int *sp;

3 void (* pTaskFunction)();
} TCB_Type;

Listing 1.14: TCB structure.

In our simple implementation, our scheduler will contain only four tasks. It
would be easy to add additional tasks later, but for now, we will keep the code

1.4 ARM Cortex-M7 exceptions and interrupts 41

as simple as possible. Each of the four tasks should have its TCB. Hence, we create
a TCB table as:

TCB_Type TCB[NTASKS];

Listing 1.15: TCB table. NTASKS is a constant equal to 4.

1.4.7.5 Task creation

The TaskCreate() function saves the address of the task’s stack and the address
of the task’s function into the task’s TCB.

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000460

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000460

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

Fig. 1.17: Memory layout and content after calling the TaskCreate() function.

The following code presents the function used to create a new task:

1 void TaskCreate(TCB_Type* pTCB ,
unsigned int* pTaskStackBase ,

3 void (* TaskFunction)()){

5 pTCB ->sp = (unsigned int*) pTaskStackBase;
pTCB ->pTaskFunction = TaskFunction;

7 }

Listing 1.16: The function TaskCreate() that creates a new task.

The parameters of the above TaskCreaet() function are:

42 1 Interrupts and interrupt handling

• pTCB - a pointer to a task’s TCB,
• pStackBase - pointer task’s stack block,
• TaskFunction - address of a task’s function.

Figure 1.17 illustrates the memory layout and the contents of the task’s stack and
TCB after creating Task1 using the TaskCreate() function.

1.4.7.6 Task initialisation

The following code presents the function used to initialize a new task:

1 void TaskInit(TCB_Type* pTCB){
HWSF_Type* pHWStackFrame;

3 SWSF_Type* pSWStackFrame;

5

// Set pointers to HWSF and SWSF:
7 pHWStackFrame = (HWSF_Type *)((void*)pTCB ->sp - sizeof(HWSF_Type));

pSWStackFrame = (SWSF_Type *)((void*) pHWStackFrame
9 - sizeof(SWSF_Type));

11

// populate HW Stack Frame
13 pHWStackFrame ->r0 = 0;

pHWStackFrame ->r1 = 0;
15 pHWStackFrame ->r2 = 0;

pHWStackFrame ->r3 = 0;
17 pHWStackFrame ->r12 = 0;

pHWStackFrame ->lr = 0xFFFFFFFF; // (reset val - task never exits)
19 pHWStackFrame ->pc = (unsigned int) (pTCB ->pTaskFunction);

pHWStackFrame ->psr = 0x01000000; // Set T bit (bit 24) in EPSR.
21 // The Cortex -M4 processor only

// supports execution of
23 // instructions in Thumb state.

// Attempting to execute
25 // instructions when the T bit

// is 0 (Debug state)
27 // results in a fault.

// populate SW Stack Frame
29 pSWStackFrame ->r4 = 0x04040404;

pSWStackFrame ->r5 = 0x05050505;
31 pSWStackFrame ->r6 = 0x06060606;

pSWStackFrame ->r7 = 0x07070707;
33 pSWStackFrame ->r8 = 0x08080808;

pSWStackFrame ->r9 = 0x09090909;
35 pSWStackFrame ->r10 = 0x0a0a0a0a;

pSWStackFrame ->r11 = 0x0b0b0b0b;
37

// Set task ’s stack pointer in the TCB to point at the top
39 // of the task ’s SW stack frame

pTCB ->sp = (unsigned int*) pSWStackFrame;
41

}

Listing 1.17: The function TaskInit() that creates a new task.

The only parameter of the above TaskInit() function is a pointer to a task’s TCB.
The TaskInit() function performs the following steps:

1.4 ARM Cortex-M7 exceptions and interrupts 43

1. Initialize pointers to two stack frames that hold the exception stack frame (so-
called hardware stack frame) and the so-called software stack frame. The hard-
ware stack frame will hold eight registers saved by the CPU during exception
entry. Besides these eight registers, we need to save the remaining eight regis-
ters from the task’s context (R4-R11). We need to prepare these stack frames for
each new task so that when the task switch occurs, both frames will be ready for
de-stacking and, hence, entering a new task. To make this task easier, we will
abstract the frames with two structures:

typedef struct{
2 unsigned int r0;

unsigned int r1;
4 unsigned int r2;

unsigned int r3;
6 unsigned int r12;

unsigned int lr;
8 unsigned int pc;

unsigned int psr;
10 } HWSF_Type;

12 typedef struct{
unsigned int r4;

14 unsigned int r5;
unsigned int r6;

16 unsigned int r7;
unsigned int r8;

18 unsigned int r9;
unsigned int r10;

20 unsigned int r11;
} SWSF_Type;

Listing 1.18: Structures used to abstract the hardware and software stack frames.

The hardware stack frame resides at the bottom of the task’s stack, and the
software stack frame resides above the hardware stack frame.

2. Now, as two pointers to stack frames, pHWStackFrame and pHWStackFrame,
are set, we can populate both frames with initial values. The hardware stack
frame is populated as follows:

• PSR = 0x01000000 - this is the default reset value in the program status
register,

• PC = the address of the task,
• LR = 0xFFFFFFFF - in our case, tasks never finish, so LR=0xFFFFFFFF

(reset value),
• r12, r3-r0 = 0x00000000 - we may also pass the arguments into the task via

r0-r3, but this is not the case in our simple scheduler.

3. Finally, it saves the address of the top of the software stack frame into the task’s
SP enttry in the task’s TCB.

After these steps, a new task is ready to be executed for the first time when the
task switch occurs, and the task is selected for execution. Figure 1.18 illustrates the
memory layout and the contents of the task’s stack and TCB after creating Task1
using the TaskInit() function.

44 1 Interrupts and interrupt handling

xPSR=0x01000000
PC=0x08000540

LR = 0xffffffff
R12 = 0
R3 = 0
R2 = 0
R1 = 0
R0 = 0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es 0x24000840

0x24000860

R11 = 0
R10 = 0
R9 = 0
R8 = 0
R7 = 0
R6 = 0
R5 = 0
R4 = 0 0x24000820

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000820

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

0x080006cc

Fig. 1.18: Memory layout and content after calling the TaskInit() function.

1.4.7.7 Scheduler initialisation

The following code presents the function used to initialize all four tasks:

1 void InitScheduler(unsigned int* pStackRegion ,
TCB_Type pTCB[],

3 void (* TaskFunctions [])()){
unsigned int* pTaskStackBase;

5

// 1. create all tasks:
7 for(int i=0; i<NTASKS; i++){

pTaskStackBase = pStackRegion + (i+1)*TASK_STACK_SIZE;
9 TaskCreate (&pTCB[i], pTaskStackBase , TaskFunctions[i]);

}
11 // 2. initialize all tasks except the Task0.

// Task0 will be called by main ()
13 // and will be the first task interrupted .

// Its HWSF and SWSF will be created upon
15 // interrupt/contecxt switch

for(int i=1; i<NTASKS; i++){
17 TaskInit (&pTCB[i]);

}
19 // set PSP to Task0.SP:

__set_PSP ((unsigned int)pTCB [0].sp);
21 }

Listing 1.19: The function InitScheduler() creates all tasks and initializes all
tasks except the firt one (Task0). At the end, it sets the top of the stack of the first
task (Task0) into the PSP register.

The function InitScheduler() performs the following steps:

1.4 ARM Cortex-M7 exceptions and interrupts 45

1. Creates all tasks.
2. Initializes all tasks except the first one (Task0). Task0 will be called from the

main function and will be the first task interrupted by the SysTick timer. Hence,
its stack frames will be populated during the context switch.

3. Saves the top of the stack of the first task (Task0) into the PSP register.

To read or write the PSP register, which is not memory-mapped, requires the us-
age of special CPU instructions MSR and MRS. Hence, in order to access the PSP
register, we are forced to use assembly. To make programming easier, the above
code relies on the __set_PSP function defined in the Cortex Microcontroller Soft-
ware Interface Standard (CMSIS) library to write intio the PSP register. CMSIS is a
vendor-independent hardware abstraction layer (HAL) for ARM Cortex-M proces-
sors. It simplifies software development for a wide range of microcontroller devices,
promoting code portability and reusability across various microcontroller families
and manufacturers. CMSIS defines two inline assembly functions to read or write
the PSP register:

1 /**
\brief Set Process Stack Pointer

3 \details Assigns the given value to the Process Stack Pointer (PSP)
\param [in] topOfProcStack Process Stack Pointer value to set

5 */
__attribute__ ((always_inline))

7 static inline void __set_PSP(uint32_t topOfProcStack)
{

9 __asm volatile ("MSR psp , %0" : : "r" (topOfProcStack) :);
}

11

/**
13 \brief Get Process Stack Pointer

\details Returns the current value of the Process Stack Pointer (PSP)
15 \return PSP Register value

*/
17 __attribute__ ((always_inline))

static inline void uint32_t __get_PSP(void)
19 {

uint32_t result;
21

__asm volatile ("MRS %0, psp" : "=r" (result));
23 return(result);

}

Listing 1.20: The CMSIS definition of inline assembly functions for accessing the
PSP register.

After these steps, everything is set up for the first context switch. Figure 1.19
illustrates the memory layout and the task’s stack after initializing scheduler using
the InitScheduler() function.

1.4.7.8 Context switch

Context switching in multitasking environments can be performed using stack
pointer (SP) swapping. The process involves saving the current task’s context onto

46 1 Interrupts and interrupt handling

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000840

0x24000860

R11
R10
R9
R8
R7
R6
R5
R4

0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000c40

0x24000c60

R11
R10
R9
R8
R7
R6
R5
R4

0x24000c20

Task 1 stack

Task 2 stack

0x0800688

0x08006cc

void Task0(){
 while(1){
 ...
 }
}

void Task1(){
 while(1){
 ...
 }
}

FLASH

Task 0 stack

Task 1 stack

Task 3 stack

Task 2 stack

void Task2(){
 while(1){
 ...
 }
}

void Task3(){
 while(1){
 ...
 }
}

0x08006d0

0x0800701

Task 3 TCB

SP=0x24001020

Task 2 TCB

SP=0x24000c20

Task 1 TCB

SP=0x2400820

Task 0 TCB

SP=0x24000460 StackRegion=
0x24000060

SRAM
TCBs

Fig. 1.19: Memory layout and content after creating four tasks.

its stack and then loading the context of the next task to be executed by swapping the
SP. Figure 1.21 shows the process of context switching using stack pointer swap-
ping. Here’s a step-by-step description of how context switching is accomplished

Running Task1 Running Task2

Save Task1
Exception Frame

Restore Task2
Exception Frame

Push additional
Task1 registers

Pop additional
Task2 registers

Save Task1 PSP
to Task1 TCB

Load Task2 PSP
of Task2 TCB

Select next
task

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6
R5
R4

Task 1 stack

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6
R5
R4

Task 2 stack

SysTick_Handler()

switch_context()

SysTick

Fig. 1.20: Context switching using stack pointer swapping.

1.4 ARM Cortex-M7 exceptions and interrupts 47

using this method:

1. When a trigger for context switching occurs (the trigger is a timer interrupt), the
CPU saves the exception stack frame onto the Task1 stack using the PSP stack
pointer and enters the timer’s interrupt handler.

2. The remaining eight registers (R4-R11) are saved the onto the Task1 stack. The
context switcher saves the current PSP into the Task1 TCB.

3. The context switcher determines which task should run next. The scheduler
considers the round-robin scheduling policy to make this decision.

4. The context switcher retrieves the SP of Task2 from the Task2 TCB and saves
it into the PSP register. The PSP now points to the stack where the context of
Task2 is saved.

5. The eight registers (R4-R11) of Task2 are popped from stack.
6. The timer handler exits; hence, the de-stacking operation performed by the CPU

retrieves the exception frame from the Task2 stack. As the PC of Task2 is part
of its exception frame, the CPU returns to Task2

Figure 1.21 shows the chronology of the stack pointer when a context switch hap-
pens between Task1 and Task2. The following code presents the function that im-
plements the context switcher:

int ContextSwitch(int current_task , TCB_Type pTCB []){
2 volatile int new_task;

4 pTCB[current_task].sp = (unsigned int*) __get_PSP ();

6 // select next task in round -robin fashion
new_task = current_task + 1;

8 if (new_task == NTASKS) new_task = 0;

10 __set_PSP ((unsigned int)pTCB[new_task].sp);

12 return new_task;
}

Listing 1.21: The functions ContextSwitch() that implements context switching.

The parameters of the ContextSwitch functions are the index of the current task
(current_task) and the pointer to the TCB table (pTCB). The function return the
index of a new task.

1.4.7.9 SysTick handler

Finally, we can implement the SysTick handler that will perform task switch:

1 void SysTick_Handler(void)
{

3 unsigned int tmp;
// 1. Save context of the interrupted task:

5 if (current_task != -1){
__asm__ volatile ("MRS %0, psp\n\t"

48 1 Interrupts and interrupt handling

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es PSP after HW stacking = 0x24000840

Pre-IRQ top of stack = 0x24000860

R11
R10
R9
R8
R7
R6
R5
R4

PSP after SW stacking = 0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es PSP after SW destacking = 0x24000c40

Post-IRQ top of stack = 0x24000c60

R11
R10
R9
R8
R7
R6
R5
R4

PSP after context switch = 0x24000c20

Task 1 stack Task 2 stack

Pushed by CPU
during HW stacking
on exception entry

Pushed by context switcher
(SW stacking)

Popped by CPU
during HW destacking
on exception exit

Popped by context switcher
(SW destacking)

Context switcher
re-assigns PSP

0x08006cc

0x08006d0

void Task1(){
 while(1){
 . . .
 }
}

void Task2(){
 while(1){
 . . .
 }
}

FLASH

SRAM SRAM

Fig. 1.21: The modification progress of the PSP stack pointer during context switch-
ing.

7 "STMFD %0!, {r4-r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp));

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4-r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp));

}
19 }

Listing 1.22: The SysTick handler used to perform task switch.

The SysTick handler performs the following steps:

1. Saves the context (R4-R11) of the interrupted task on the task’s stack using PSP.
2. Switch context (swap stack pointers) using the textttswitch_context() function.

1.4 ARM Cortex-M7 exceptions and interrupts 49

3. Restore the context (R4-R11) of the new task from its stack using PSP.
4. Return from interrupt and restore the exception frame of the new task from its

stack.

1.4.7.10 Starting the scheduler

Finally, we are ready to start our scheduler within the main function. To do so, we
need to:

1. Initialize scheduler.
2. Switch to NOT PRIVILEGED mode with PSP as the stack pointer by setting

the last two bits in the CONTROL register.
3. Call Task0.
4. Within Task0, wait for the first SysTick interrupt.

The following code shows how to start the scheduler:

1

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];
3 TCB_Type TCB[NTASKS]; // Array of Tasks Control Blocks

void (* TaskFunctions[NTASKS])(); // Tabela naslovov funkcij opravil
5 int current_task = -1;

7 void Task0(){
while (1) {}

9 }
void Task1(){

11 while (1) {}
}

13 void Task2(){
while (1) {}

15 }
void Task3(){

17 while (1) {}
}

19

21 int main(void)
{

23 TaskFunctions [0] = Task0;
TaskFunctions [1] = Task1;

25 TaskFunctions [2] = Task2;
TaskFunctions [3] = Task3;

27 // Init scheduler :
InitScheduler(stackRegion , TCB , TaskFunctions);

29 current_task = 0;
// Start SysTick timer with the highest priority:

31 HAL_InitTick (0);
// Switch to NOT PRIVILEDGED with PSP:

33 __set_CONTROL (0 x00000003);
// Call the first task:

35 Task0(); // never return!
while (1){}

37 }

Listing 1.23: Starting the scheduler.

50 1 Interrupts and interrupt handling

To write into the CONTROL register (which is not memory-mapped), the above
code uses the __set_CONTROL function defined in the CMSIS library as:

1 /**
\brief Set Control Register

3 \details Writes the given value to the Control Register.
\param [in] control Control Register value to set

5 */
__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)

7 {
__ASM volatile ("MSR control , %0" : : "r" (control) : "memory");

9 }

Listing 1.24: The CMSIS definition of inline assembly function for writing into the
CONTROL register.

1.4.7.11 Using PendSV for context switching

The approach with the SysTick handler used to perform the context switching
would, however, not work with other interrupts (peripheral interrupts, for exam-
ple). The SysTick handler would interrupt IRQ handlers as well, and stack regis-
ters affected by the peripheral IRQ handler and unstack task’s registers, resulting
in undefined behaviour of both tasks and peripheral interrupt handler. This would
undoubtedly result in the hard fault.

The PendSV (Pending Supervisor Call) interrupt is commonly used for context
switching in ARM Cortex-M microcontrollers due to several advantages and char-
acteristics that make it well-suited for this purpose. The PendSV interrupt has the
lowest possible priority among all exceptions and interrupts. This makes it an ideal
choice for context switching, as it doesn’t interfere with other higher-priority in-
terrupts or exceptions. The PendSV exception will interrupt only the non-priority
tasks and certainly not any exception handler. The low-priority nature of PendSV
ensures that it doesn’t preempt other exceptions or interrupts, providing predictable
and deterministic behaviour during context switches. This predictability is essen-
tial in real-time systems. PendSV can be triggered explicitly through software by
setting the PendSV bit in the ICSR register within the System Control Block. This
allows for precise control over when context switches occur. Typically, the PendSV
interrupt is set pending from the SysTick handler.

Figure 1.22 shows the solution to this problem with the PendSV interrupt. Usu-
ally, the SysTick interrupt has the highest priority among all exceptions and inter-
rupts with configurable priority. If an interrupt request (IRQ) takes place before
the SysTick exception, the SysTick exception might preempt the IRQ handler. In
this case, we should not carry out the context switching. The PendSV exception
solves the problem by delaying the context-switching request until all other IRQ
handlers have completed their processing. To do this, the PendSV is programmed
as the lowest-priority exception. The Systick handler sets the pending status of the

1.4 ARM Cortex-M7 exceptions and interrupts 51

Task1 Task2

Priority

Time

Handler mode
with MSP

Thread mode
with PSP

IRQ

Stacking
with PSP

PendSVSysTick

IRQ Handler

Stacking
with MSP

SysTick
Handler

Destacking
with MSP

IRQ Handler

PendSV Handler
(context switch)

Destacking
with PSP

PendSV=1

Fig. 1.22: A simple task scheduler based on PendSV interrupts.

PendSV, and the context switching is carried out within the PendSV exception. Let
us describe the solution in Figure 1.22:

1. Task1 is preempted by an IRQ interrupt request.
2. Task1’s hardware stack frame is stacked on the process stack using the PSP.
3. The IRQ handler executes.
4. The SysTick exception eventually preempts the IRQ handler.
5. The ardware stack frame of the IRQ handler is stacked on the main stack using

the MSP register.
6. The SysTick handler sets the PendSV bit. Hence, PendSV interrupt is pending.
7. The SysTick exits, and the hardware stack frame of the IRQ handler is popped

from the main stack.
8. The IRQ handler continues its execution.
9. The IRQ handler exits, and the PendSV interrupt is taken immediately.

10. PendSV handler performs the context switching.
11. PendSV handler exits and the Task2’s hardware stack frame is popped from the

process stack using the PSP.
12. Task2 executes.

Hence, the solution to implement a scheduler based on the SysTick and PendSV ex-
ceptions is simple. Firstly, we move the code for context switching from the SysTick
handler into the PendSV handler:

1 void PendSV_Handler(void)
{

3 unsigned int tmp;
// 1. Save context of the interrupted task:

5 if (current_task != -1){
__asm__ volatile ("MRS %0, psp\n\t"

7 "STMFD %0!, {r4-r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp));

52 1 Interrupts and interrupt handling

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4-r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp));

}
19 }

Listing 1.25: Starting the scheduler.

Secondly, the SysTick handler only sets PendSV pending in the ICSR register:

1 void SysTick_Handler(void)
{

3 // Set the PendSV Pending bit in ICSR:
SCB ->ICSR |= (unsigned long)0x01 << 28;

5 }

Listing 1.26: The SysTick handler only sets PendSV pending.

The code for the scheduler can be found here:
https://github.com/bulicp/ContextSwitchM7-book.git.

https://github.com/bulicp/ContextSwitchM7-book.git

1.5 ARM 9 exceptions and interrupts 53

1.5 ARM 9 exceptions and interrupts

The ARM9 supports the following six types of interrupts and exceptions:

• Fast interrupt Request,
• Interrupt Request,
• Data and Prefetched abort exceptions,
• Undefined instruction exception, and
• Software interrupt, and
• Reset.

The interrupt instruction SWI raises the software interrupts. The software interrupts
allow a program running in the user mode to request privileged operations such
as OS functions. The Prefetch abort exception occurs when the CPU fetches an
instruction from an illegal address. The Data abort exception occurs when a data
transfer instruction attempts to load or store data at an illegal address. The Unde-
fined instruction exception occurs when the processor cannot recognize the currently
fetched instruction. The Interrupt request occurs when the processor’s external in-
terrupt request pin (IRQ) is asserted (LOW), and the interrupt mask bit (I) in the
current program status register (CPSR) is cleared (interrupts enabled). The Fast in-
terrupt request occurs when the processor’s external fast interrupt request pin (FIQ)
is asserted (LOW), and the interrupt mask bit (F) in the current program status reg-
ister (CPSR) is cleared (fast interrupts enabled). The Reset interrupt occurs when
the processor’s reset pin is asserted.

1.5.1 Vector table and interrupt priorities

Table 1.6: ARM9 vector table.

Interrupt/Exception Vector Table
Address

Priority
(1-High, 6-Low)

Reset 0x00000000 1
Undefined Instruction 0x00000004 6
Software Interrupt 0x00000008 6
Prefetch Abort 0x0000000C 5
Data Abort 0x00000010 2
Interrupt Request 0x00000018 4
Fast Interrupt Request 0x0000001C 3

ARM9 processors use the vectored interrupt handling method. Each interrupt/ex-
ception has its own entry in the vector table. Each entry in the vector table has only

54 1 Interrupts and interrupt handling

32 bits, which is not enough to contain the full code for a handler; hence, each entry
commonly contains a branch instruction or load pc instruction to the actual handler.
Table 1.6 shows the interrupt/exception, its address in the vector table, and its prior-
ity. As interrupts/exceptions can coincide, the CPU has to use a priority mechanism
to handle the most important interrupt/exception. For example, the Reset interrupt
has the highest priority, and it takes precedence over all other interrupts/exceptions.
All interrupts/exceptions disable further interrupts/exceptions by setting the I bit in
the CPSR register. The Reset and Fast Interrupt Request also set the F bit in the
CPSR register and thus mask the Fast interrupt request. Listing 1.27 shows a typical
method of implementing a vector table for ARM9 processors.

1 .org 0x00000000
2 Vector_Table:
3 b Reset_Handler
4 b Undefined_Handler
5 b SWI_Handler
6 b Prefetch_Handler
7 b Abort_Handler
8 nop // never used
9 b IRQ_Handler

10 b FIQ_HAndler
11

12

13 Reset_Handler:
14 <handler instructions >
15 Undefined_Handler:
16 <handler instructions >
17 SWI_Handler:
18 <handler instructions >
19 Prefetch_Handler:
20 <handler instructions >
21 Abort_Handler:
22 <handler instructions >
23 IRQ_Handler:
24 <handler instructions >
25 FIQ_Handler:
26 <handler instructions >

Listing 1.27: ARM vector table and interrupt handlers.

Listing 1.27 shows a typical method of implementing a vector table for ARM9 pro-
cessors. The vector table starts at the address 0x00000000. Each entry in the vector
table is 32 bits long and contains a branch instruction (B) to the interrupt handler.
When, for example, a Data Abort exception occurs, the CPU stops the execution
of the current running program, saves the program context, and moves the vector
0x00000010 into the program counter. This way, the b Abort_Handler instruc-
tion is fetched, and the CPU jumps to Abort_Handler.

As we already said, the Reset interrupt is the highest priority interrupt and is al-
ways taken whenever the Reset pin is asserted. The reset handler is responsible for
initializing the system and other interrupt sources, and to set the stack pointer. So the
Reset interrupt masks automatically all other interrupts before their sources are ini-
tialized. Only then the reset handler enables other interrupts. Hence, during the first
few instructions of the reset handler, we should avoid SWI, undefined instructions,
and memory accesses that can cause the Data and Prefetch aborts.

1.5 ARM 9 exceptions and interrupts 55

The Fast Interrupt Request (FIQ) occurs when a peripheral asserts the proces-
sor’s FIQ pin. The peripheral device mus hold the FIQ input low until the processor
acknowledges the interrupt request. As a response to FIQ, the CPU disables both In-
terrupt and Fast Interrupt requests. Hence, no external device can interrupt the CPU
unless the IRQ and FIQ interrupts are re-enabled by software. The Fast Interrupt
Request reduces the execution time of the exception handler relative to a normal
interrupt by removing the requirement for register saving (minimizing the overhead
of context switching).

The Interrupt Request (IRQ) is a normal interrupt that occurs when a peripheral
device asserts the IRQ pin. The peripheral device mus hold the IRQ input pin low
until the processor acknowledges the interrupt request. An IRQ has a lower prior-
ity than the FIQ and Data Abort and is masked on entry to an FIQ or Data Abort
sequence. On entry to the IRQ handler, the further IRQ interrupts are disabled and
should remain disabled until the current interrupt source has been acknowledged,
and the IRQ pin has been de-asserted.

We can notice from Table 1.6 that both Software Interrupt and Undefined Instruc-
tion have the same level of a priority since they cannot occur at the same time.

1.5.2 ARM9 interrupt handling

ARM9 processors are 5-stage pipelined machines with Instruction Fetch (IF), In-
struction Decode (ID), Execution (EX), Memory (MEM) and Write-Back (WB)
stages. In a pipelined machine, an instruction is executed step by step and is not
completed for several clock cycles. An external interrupt can occur at any time dur-
ing the execution of an instruction. Also, other instructions in the pipeline can raise
exceptions that may force the machine to abort the instructions in the pipeline be-
fore they have been completed. One of the problems with interrupts in the pipelined
CPUs is when to halt instruction in the pipeline. In the case of external interrupts,
one possible solution would be to execute all fetched instructions before handling
the interrupt request. But the problem with this approach would be a long interrupt
latency. The other solution would be to halt the execution of all fetched instructions
and fetch them again upon returning from the interrupt handler. This way, we would
have minimal interrupt latency. Obviously, this is not a good idea because some
instructions, such as STORE instructions, can modify the content in memory and
should not be stoped and executed again. Also, arithmetic instructions might have
already changed the content of the status register (usually in the Execution stage),
and should not be dismissed. The most common solution to the problem is to ex-
ecute all instructions that have been issued into the execution stage. In the case of
an external interrupt in ARM9, the CPU executes all instructions in the stages EX,
MEM nad WB, while dismissing two instructions in the stages IF and ID.

To resume, in the case of an external interrupt, the CPU has to let all instructions
that were issued for execution complete and flush all succeeding instructions from
the pipeline. In the case of an exception caused by an instruction, the CPU should

56 1 Interrupts and interrupt handling

stop executing the offending instruction, let all preceding instructions complete and
flush all succeeding instructions from the pipeline. Only then can CPU start saving
the context and fetching the instruction pointed by the interrupt vector (the first
instruction in the interrupt handler).

Let us now look at how ARM9 handles the IRQ interrupts. When an IRQ in-
terrupt occurs, the ARM 9 processor executes the three instructions that are issued
for execution and will flush the last two fetched instructions. The last two fetched
instructions are from the addresses PC (the instruction currently in the IF stage) and
PC-4 (the instruction currently in the ID stage). The instruction in the EX stage is
from the address PC-8. This is very important to notice because the last executed
instruction before entering the interrupt handler was from the address PC-8, but the
program counter contains the address PC. The first instruction to execute upon re-
turning from the interrupt handler is one that was in the ID stage when the interrupt
request occurs. Hence, the address of the instruction that should be fetched upon
returning from the interrupt handler is PC-4.

When an IRQ interrupt occurs, the ARM9 processor executes the instructions
that are issued for execution. Then, the following hardware procedure is executed:

• the CPU saves the Current Program Status (CPSR) register into the Saved Pro-
gram Status (SPSR) register; hence the processor automatically saves the status
of the interrupted program. The CPSR register is a special purpose register in
ARM9 processors that contains arithmetic flags and interrupt masks,

• the CPU automatically disables interrupts by setting the I bit in the CPSR reg-
ister,

• the CPU saves the current program counter (PC) into the link register (LR).
This way, the LR register holds the return address. It is important to note that the
CPU saves the address of the last fetched instruction and does not automatically
correct this value to point to the instruction that was in the ID stage when the
interrupt occurs. Hence, it is the programmer’s responsibility to adjust the value
in PC upon returning from the interrupt handler, and

• the CPU fetches the instruction from the interrupt vector 0x00000018.

Now, the interrupt handler starts. The above procedure is hard-wired in the CPU
and does not involve any instruction fetch and execution. When an interrupt handler
has completed, it must move both the return value in the LR register minus 4 to the
PC and the SPSR to the CPSR. This action restores both the PC and the CPSR and
returns to the interrupted program. Listing 1.28 shows a typical method of returning
from an IRQ interrupt handler.

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc, lr, #4 // pc <- lr -4

Listing 1.28: A typical IRQ interrupt handler

1.5 ARM 9 exceptions and interrupts 57

Many instructions in ARM9 can have an "s" suffix. The "s" suffix ensures that when
the program counter is the destination register, the CPSR register is automatically
restored from the SPSR register. The same holds for the subs instruction in Listing
1.28. Hence, the instruction subs pc,lr,#4 firstly saves the LR-4 into the program
counter (remember that the programmer is responsible to correctly restore the return
address into the program counter upon returning from the handler) and then restores
CPSR from SPSR.

It is important to stress that not all interrupt/exception handlers use the same
instruction to return. For example, the Data abort exception occurs in the MEM
stage. Hence, only the instruction in WB stage is executed, while the instructions
from IF, ID, and EX stages are flushed. When the Data abort exception occurs, the
instruction in the EX stage is from the address PC-8. Thus, the Data abort handler
uses subs pc,lr,#8 to return:

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc, lr, #8 // pc <- lr -8 !!!!

Listing 1.29: A typical Data abort exception handler

1.5.3 Interrupt handlers in C

Interrupt handlers can be written in assembler or in a high-level language like C.
Usually, we want to avoid the assembly language as much as possible and to pro-
gram in our favorite high-level language. Remember that an interrupt handler is
called directly by the CPU, and the protocol for calling an interrupt handler differs
from calling a C function. Most importantly, an ISR has to end with some "interrupt
return" opcode, whereas usual C functions end with ordinary "return" opcode. We
have seen previously that the ARM interrupt handlers should return with SUBS op-
code, which is used to restores the PC from LR-4 and CPSR from SPSR. In the case
of an ordinary subroutine, the return opcode for ARM would be MOV PC, LR (re-
stores PC from LR). A programmer could be tempted to write an interrupt handler
like this:

1 /* How NOT to write an interrupt handler */
void my_interrupt_handler(void)

3 {
/* do something */

5 }

Listing 1.30: How not to write an interrupt handler.

This simply cannot work. The compiler doesn’t understand that this is to be an
interrupt handler and that the SUBS PC,LR,#4 instruction should be the last instruc-

58 1 Interrupts and interrupt handling

tion used to return. The compiler will simply use the MOV PC, LR instruction to
return.

Some compilers, such as GCC, Clang, and ARMCC, to name a few, have direc-
tives like #pragma or special function attributes, allowing you to declare a routine
interrupt. For example, the interrupt function attribute in GCC indicates that the
specified function is an interrupt handler. The compiler then generates function en-
try and exit sequences suitable for use in an interrupt handler when this attribute is
present.

The correct (GCC) way of implementing an interrupt handler in C is:

1 /* GCC style interrupt handler */
__attribute__ ((interrupt)) void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 1.31: GCC style interrupt handler.

The ARMCC compiler offers the __irq function declaration keyword to write C
interrupt handlers. The __irq keyword preserves all registers used by the interrupt
handler and exits the handler by setting the PC to (LR–4) and restoring the CPSR to
its original value from SPSR. Also, if the kernel calls a subroutine, __irq preserves
the link register (LR), which is corrupted by the subroutine call.

1 /* ARMCC style interrupt handler */
__irq void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 1.32: ARMCC style interrupt handler.

But it is not only the directive or function qualifier that designates the inter-
rupt handlers. Often, compilers require that the handler declaration contains a spe-
cial function argument, which specifies the kind of interrupt (for example, IRQ or
Abort). The compiler uses this special argument to restore the PC from LR cor-
rectly (for example, LR-4 for IRQ or LR-8 for Data abort). All these attributes and
arguments defined and used by a particular compiler prevent the handler code from
being portable.

1.6 Intel interrupts 59

1.6 Intel interrupts

Intel processors have two external pins for external interrupts:

• INTR pin - it is used to signal for normal (maskable) interrupts.
• NMI pin - it is used to signal nonmaskable interrupts

Besides interrupts, Intel processors can detect exceptions from two sources:

• Processor exception - triggered form processor as a result of some exceptional
conditions within the processor (e.g., divide by zero). These exceptions are fur-
ther classified as faults, traps, and aborts.

• Software interrupts - triggered with the processor instruction INT.

Exceptions are classified as:

• Faults are either detected before the instruction begins to execute or during the
execution of the instruction. A fault is an exception that can generally be cor-
rected, and that, once corrected, allows the program to be restarted with no loss
of continuity. The return address for the fault handler points to the faulting in-
struction, rather than to the instruction following the faulting instruction.

• A trap is an exception that is reported immediately following the execution
of the instruction INT. Traps allow the execution of a program or task to be
continued without loss of program continuity. The return address for the trap
handler points to the instruction to be executed after the trapping instruction.

• An abort is an exception that does not allow a restart of the program or task that
caused the exception. Aborts are used to report severe errors.

The Intel processor services interrupts and exceptions only between the end of
one instruction and the beginning of the next. This is referred to as the instruction
boundary. Certain conditions and flag settings cause the processor to inhibit certain
interrupts and exceptions at instruction boundaries. The IF (interrupt-enable flag)
bit in the FLAGS register (this is the status register in Intel x86 microprocessors
that contains the current state of the processor.) controls the acceptance of exter-
nal interrupts signaled via the INTR pin. When IF=0, INTR interrupts are masked;
when IF=1, INTR interrupts are enabled. The Intel processor instructions CLI (Clear
Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) are used to clear/set the
IF flag.

If more than one interrupt or exception is pending at an instruction boundary,
the processor services one of them at a time according to their priority. In general,
aborts have the highest priority, followed by traps, NMI, and INTR. The faults have
the lowest priority.

Each architecturally defined exception and interrupt in Intel processors is as-
signed a unique identification number, called a vector number. The processor uses
the vector number assigned to an interrupt as an index into the interrupt vector table.
The allowable range for vector numbers is 0 to 255. The Intel architecture reserves
vector numbers in the range 0 through 31 for architecture-defined exceptions and

60 1 Interrupts and interrupt handling

interrupts. Vector numbers in the range 32 to 255 are designated as user-defined in-
terrupts and are assigned to external I/O devices to enable those devices to send in-
terrupts. One characteristic of Intel processors, which distinguish them from ARM
processors, is that the peripheral device that caused an interrupt must provide the
vector number to the CPU. Table 1.7 shows vector number assignments and excep-
tion types for architecturally defined exceptions and interrupts.

Table 1.7: Intel Exceptions and Interrupts. Only a few exceptions and interrupts are
shown.

Vector Number Description Type

0 Division by zero Fault
1 Debug Fault
2 NMI Interrupt
3 Breakpoint Trap
...

... ...
14 Page Fault Fault
...
32-255 External interrupts on INTR Interrupt

In the older Intel processors (before 80386), the interrupt table is called IVT
(interrupt vector table). The IVT is an array of 32-bit interrupt vectors stored con-
secutively in memory and indexed by an interrupt vector. The IVT always resides at
the same location in memory, ranging from 0x0000 to 0x03ff, and consists of 256
four-byte interrupt vectors (i.e. pointers to the interrupt/exception handles). When
responding to an exception or interrupt, the processor multiplies the vector number
by four to form the address of the entry in the IVT.

In modern Intel processors, the interrupt table is called IDT (interrupt descriptor
table). The IDT is an array of 8-byte descriptors stored consecutively in memory and
indexed by an interrupt vector. Each descriptor holds the information that describes
how to access the interrupt/exception handler. The IDT may reside anywhere in
physical memory. The processor has a special register (IDTR) to store both the
physical base address and the length in bytes of the IDT. When an interrupt occurs,
the processor multiplies the interrupt vector by eight and adds the result to the IDT
base address. With the help of the IDT length, the resulting memory address is
then verified to be within the table; if it is too large, an exception is generated. If
everything is okay, the 8-byte descriptor stored at the calculated memory location
is loaded, and actions are taken according to the descriptor’s contents. As said, the
interrupt descriptor table (IDT) associates each vector number with a descriptor for
the instructions that service the associated event. Because there are only 256 vector
numbers, the IDT contains up to 256 descriptors. It can contain fewer than 256
entries; entries are required only for vector numbers that are actually used.

The interrupt handling procedure in the Intel processor is rather complicated.
Here, we omit all the details and give only the basic concepts. When responding to

	Interrupts and interrupt handling
	Introduction
	Interrupts
	Types of interrupts
	Handling interrupts

	RISC-V interrupts
	RISC-V Privileged Modes
	RISC-V Machine Modes Exceptions
	FE-310 Interrupts
	Interrupt Entry and Exit
	Implementing Vector Table and Handlers

	ARM Cortex-M7 exceptions and interrupts
	ARM Cortex-M7 programmer's model
	System Control Block
	Exceptions
	Exception numbers and priorities
	Vector table and Exception handlers
	Exception entry and exit
	Case Study: A simple task scheduler on ARM Cortex-M7

	ARM 9 exceptions and interrupts
	Vector table and interrupt priorities
	ARM9 interrupt handling
	Interrupt handlers in C

	Intel interrupts
	Interrupt controllers
	ARM Advanced Interrupt Controller
	Intel 8259A Programmable Interrupt Controler
	8259A PIC Cascading
	Intel Advanced Programmable Interrupt Controler

	PCI interrupts
	PCI Legacy interrupts
	PCI interrupts routing
	Message Signaled Interrupts

	Case Study: Platform-Level Interrupt Controller in FE310
	Implementing PLIC Vector Table and Handlers

