
Contents

1 Interrupts and interrupt handling . 1
1.1 Introduction . 1
1.2 Interrupts . 2

1.2.1 Types of interrupts . 6
1.2.2 Handling interrupts . 6

1.3 ARM Cortex-M7 exceptions and interrupts . 8
1.3.1 ARM Cortex-M7 programmer’s model 8
1.3.2 System Control Block . 10
1.3.3 Exceptions . 11
1.3.4 Exception numbers and priorities . 13
1.3.5 Vector table and Exception handlers . 15
1.3.6 Exception entry and exit . 17
1.3.7 Case Study: A simple task scheduler on ARM Cortex-M7 . . 22

1.4 RISC-V interrupts and exceptions . 41
1.4.1 RISC-V Privileged Modes . 42
1.4.2 RISC-V Machine Modes Exceptions . 43
1.4.3 FE-310 Interrupts . 47
1.4.4 Interrupt Entry and Exit . 49
1.4.5 Implementing Vector Table and Handlers 50
1.4.6 Case study: A simple task scheduler on RISC-V based

FE310 . 57
1.5 ARM 9 exceptions and interrupts . 69

1.5.1 Vector table and interrupt priorities . 69
1.5.2 ARM9 interrupt handling . 71
1.5.3 Interrupt handlers in C . 73

1.6 Intel interrupts . 75
1.7 Interrupt controllers . 77

1.7.1 ARM Advanced Interrupt Controller . 81
1.7.2 RISC-V Platform-Level Interrupt Controller in FE310 84
1.7.3 ARM Cortex-M Nested Vectored Interrupt Controller 89

vii

viii Contents

1.7.4 Case study: External Interrupts in STM32H7xx
Microcontrollers . 92

1.7.5 Intel 8259A Programmable Interrupt Controler 99
1.7.6 8259A PIC Cascading . 102
1.7.7 Intel Advanced Programmable Interrupt Controler 106

1.8 PCI interrupts . 113
1.8.1 PCI Legacy interrupts . 113
1.8.2 PCI interrupts routing . 115
1.8.3 Message Signaled Interrupts . 118

Chapter 1
Interrupts and interrupt handling

CHAPTER GOALS

Have you ever wondered how computer components demand and get at-
tention from the CPU? How do they tell the CPU or operating system that
something important has just happened in the computer system, which re-
quires an immediate response from the CPU, e.g., new data has just arrived
at an I/O interface and should be processed immediately? This is done us-
ing so-called interrupts. This chapter will cover the theory and practice of
interrupts and their handling. An interrupt is a hardware-initiated procedure
that interrupts whatever program (CPU) is currently executing and requests
that the CPU immediately start running another program that is written to
service the particular interrupt request.
Upon completion of this chapter, you will be able to:

• Distinguish between interrupts and exceptions.
• Explain the operation of the interrupt signals.
• Explain the interrupt and exception handling.
• Explain the function of interrupt vectors and vector tabels.
• Explain the function of an interrupt controller.
• Explain the interrupts and interrupt handling in the Intel and ARM fam-

ily of processors.

1.1 Introduction

During my childhood, there were two powerful military blocs in Europe and the
world: the Eastern (Soviet) Block and the Western (USA) Block. That was a period
of geopolitical tension between the Soviet Union and the United States and their re-
spective allies, the Eastern Bloc and the Western Bloc. The country where I grew up,
former Yugoslavia, was not part of any of these military blocks, though politically, it

1

2 1 Interrupts and interrupt handling

was closer to the eastern block. In the 1970s, former Yugoslav air force purchased a
number of Soviet MIG-21 fighter aircraft from the USSR. The MIG-21 aircraft sold
to Yugoslav air force had virtually no modern electronic devices, and the military
of Yugoslavia wanted to install missile sensors in the planes. However, the USA
and its allies have imposed an embargo on the purchase of electronic and computer
components against Yugoslavia. Among all the universities in Yugoslavia, only the
University of Ljubljana was allowed to purchase a few pieces (up to 20) of each
chip that would be used only in the educational process. That’s why the Yugoslav
Army approached the University of Ljubljana to buy all the necessary electronic and
computer components and develop a system that would be installed on the aircraft
and would detect missiles. The system at the time had to be based on the modern
Motorola 6800 microprocessors from the US. At its core, the system had a micro-
computer built on the Motorola 6800 processor and a missile sensor. In addition to
detecting missiles, the microcomputer had to do other things, also. If the missile
sensor detected a rocket, the computer system had to immediately stop whatever it
was currently doing and alert the pilot to the approaching missile. But how would a
missile sensor be able to communicate to the CPU if the CPU could do nothing but
fetch and execute instructions from memory? Remember that the CPU fetches and
executes instructions every clock cycle. That’s all it is able to do. So there must be
some mechanism by which the CPU can be immediately interrupted and required
to start another program. In our case, the CPU would run another program (e.g.,
display the current altitude and speed of the aircraft). In the event that the sensor
detects a missile, it must, in some way, immediately suspend the currently running
program and require the CPU to execute a program to flash the warning lights and
alert the pilot. So, the CPU must have some mechanism in place to immediately
stop the execution of one program and start another program. This mechanism is
called interrupts, and the program that the CPU starts running in the response to an
is called interrupt service program (ISP) or interrupt handler.

Interrupts and interrupt handling must be transparent. This means that the
stopped (interrupted) program must not know that it has been stopped and must
continue after the termination of the interrupt service program as if it had not been
interrupted at all.

In the following chapters, we will learn about the interrupt mechanism and inter-
rupt handling.

1.2 Interrupts

As we said in the previous section, we want to have to ability to service external
interrupts. This is useful if a device external to the processor needs attention. Figure
1.1 illustrates a simplified system with a CPU and a peripheral device. To be able to
respond to interrupt requests from a peripheral device, a CPU usually has at least one
interrupt request (IRQ) pin and one interrupt acknowledge (INTA) pin. The IRQ pin
is the input used by a peripheral device to interrupt the processor (i.e., to interrupt

1.2 Interrupts 3

the normal program flow in the CPU.). Since the CPU should finish executing the
current instruction(s) before servicing any external interrupts, the peripheral device
may have to wait for several clock cycles before the CPU responds to the interrupt
request. The INTA pin is the output used to signal the peripheral device, which has
requested an interrupt via the IRQ signal, that the CPU has started servicing the
interrupt request and that the IRQ signal can be deactivated. Both pins in Figure 1.1,
IRQ and INTA, are active low. Two resistors are used to establish a logic one on
both signals IRQ and INTA (i.e., both signals are deactivated) when no one drives
them.

CPU

IRQ#

I/O
Device

INT

Vdd

INTA# INTA

Vdd

RR

Fig. 1.1: A simplified block diagram of a computer system with interrupt controlling
signals.

In general, CPUs can respond to interrupts in two different ways: in either an
edge-sensitive or level-sensitive manner. In an edge-sensitive manner, the interrupt
signal input is designed to be triggered by a particular signal edge (level transition):
either a falling edge (high to low) or a rising edge (low to high). In a level-sensitive
manner, the interrupt signal input is designed to be triggered by a logic signal level.
A peripheral device invokes a level-triggered interrupt by driving the signal to and
holding it at the active level. We refer to this operation as asserting the signal. It
de-asserts the signal when the processor signals it to do so. One advantage of level-
triggered interrupt inputs is that they allow multiple devices to share a common
interrupt signal. Most often, the active level of an interrupt input signal is LOW. In
such a case, the interrupt signal is tied to the HIGH voltage level using a pull-up
resistor. When multiple peripheral devices share one level-triggered interrupt input
signal, the device that wants to assert the interrupt request simply connects the signal
to the ground (pulls thew signal LOW). The system in Figure 1.1 uses level-sensitive
interrupt signals.

4 1 Interrupts and interrupt handling

Summary: Assering and de-asserting a signal

Some signals are active high, and some signals are active low. To avoid the
problem of high vs. low and the fact that for some signals, active means high
and for some signals active means low, we just say asserted (activated) vs.
de-asserted (deactivated).

When the device needs the attention from the CPU, it activates (asserts) the IRQ
pin on the CPU. During the normal flow of execution through a program, the pro-
gram counter increases sequentially through the address space, with branches to
nearby labels or branches and links to subroutines. The CPU checks the status of
the IRQ pin every time before a new instruction pointed to by the program counter
is fetched from memory. When a peripheral device requests the interrupt, it is nec-
essary to preserve the previous processor status while handling the interrupt, so that
execution of the program that was running when the interrupt request occurred can
resume when the appropriate interrupt handler has completed. We say that the in-
terrupts must be 100% transparent. So, when an interrupt request occurs, the CPU

The I/O device
asserts the
IRQ# signal

The I/O device
de-asserts the
IRQ# signal

CPU asserts
the INTA signal

CPU de-asserts
the INTA signal

CPU executes the fetched
instructions of the
interrupted program

CPU sees the
IRQ signal and stops
instruction fetching

CPU starts executing
the interrupt handler

Fig. 1.2: A timing diagram for an external interrupt request.

completes the current instruction and asserts the INTA signal. When a peripheral de-
vice sees the INTA signal, it de-asserts the IRQ signal. Figure 1.2 shows the timing
diagram for an external interrupt request for the simple system from Figure 1.1.

Then the CPU saves the part of the context of the interrupted program in the
stack. A context is a state of the program counter, status register, stack pointer, and
all other program-visible CPU registers. Some CPUs save the whole context in the
stack, while others save only a part of the context in the stack. Since interrupts
can happen at any time, there is no way for the active programs to prepare for the
interrupt (e.g., by saving registers that the interrupt handler might write to). It is
important to note that calling conventions do not apply when handling interrupts:
the interrupt is not being "called" by the active program; it is interrupting the active
program. Thus, the interrupt handler code must preserve the content ensure that it

1.2 Interrupts 5

does not overwrite any registers that the program may be using before their con-
tent is saved. After the CPU has saved the context, the CPU automatically loads
the address of the interrupt handler into the program counter. The interrupt handler
is a program written by the user and depends on the peripheral device’s function-
ality. Depending on how much of the context is automatically saved by the CPU,
the interrupt handler must first save every register it intends to use in the stack or
somewhere in memory.

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction i

Instruction i+1

Instruction i+2

Instruction i+3

Instruction i+4

Instruction n

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction m

INTERRUPT
HANDLER

USER
PROGRAM

t 1

t 2

t 3
t 4

tim
e

Fig. 1.3: The procedure involved in interrupts.

Figure 1.3 shows the procedure involved in interrupts: the CPU executes the se-
quence of instructions from a user program until an interrupt request occurs at the
time t1. When the IRQ signal is asserted, the CPU stops executing the user code and
starts executing the interrupt handler. But before executing the interrupt handler at
time t2, the CPU must finish the execution of already fetched instructions, save the
(part of) context, and obtain the address of the interrupt handler. The time t2� t1 re-
quired for this procedure is called interrupt latency. In general, interrupt latency is
the time that elapses from when the IRQ signal is asserted to when the CPU starts to
execute the interrupt handler. Interrupt latency duration is usually not predetermined
and depends on how many instructions are already in the CPU’s pipeline, on how
CPU saves the context and on whether any new interrupt requests are temporarily

6 1 Interrupts and interrupt handling

disabled. Once the CPU completes the execution of the interrupt handler at time t3,
it returns back to the execution of the user code at time t4. Before returning to user
code, the CPU must automatically restore the previously saved context.

1.2.1 Types of interrupts

There are typically three types of interrupts regarding the source of the interrupt: ex-
ternal interrupts (or simply interrupts), traps or exceptions, and software interrupts.
External interrupts are triggered by an external device by activating the interrupt
request pin on the CPU. Traps or exceptions are activated internally in the CPU,
usually as a result of some exceptional condition caused by instruction. For exam-
ple, traps are caused when illegal or undefined instruction is fetched, or when the
CPU attempts to execute an instruction that was not fetched because the address was
illegal. A special instruction triggers software interrupts. Such instructions function
similarly to subroutine calls, but the subroutine, in this case, the interrupt handler, is
not being "called", but an interrupt-like sequence occurs. These software-interrupt
instructions are useful when the user program does not know or is not allowed to
know the address of the routine which it would like to "call", e.g., they are usually
used for requesting operating system services and routines.

External interrupts are divided into two types: maskable and non-maskable inter-
rupts. Maskable interrupts can be enabled or disabled by setting a bit in the CPU’s
control register or by executing a special instruction. For example, Intel has the CLI
instruction to mask the interrupts, and ARM has CPSID instruction for this pur-
pose. Non-maskable interrupts have a higher priority than maskable interrupts. That
means that if both maskable and non-maskable interrupts are activated at the same
time, the CPU will service the non-maskable interrupt first.

1.2.2 Handling interrupts

In a situation where multiple types of interrupts and exceptions can occur, there must
be a mechanism in place where different handler code can be executed for different
types of events. In general, there are two methods for handling this problem: polled
interrupts and vectored interrupts.

In polled interrupts, the processor branches to a specific address that begins a
sequence of instructions that check the cause of the interrupt or exception and branch
to handler code for the type of interrupt/exception encountered. This is also called
polled interrupt/exception handling.

In vectored interrupts, the processor branches to a different address for each type
of interrupt or exception. Each exception address is separated by only one word,
and these addresses form a table called interrupt vector table. Each entry of the
interrupt vector table is called interrupt vector, and it is the address of an interrupt

1.2 Interrupts 7

handler. Hence, the vector table contains the start addresses, called interrupt vectors,
for all exception handlers. This method is called vectored interrupt handling. This
concept is common across many processor architectures, although interrupt vector
tables may be implemented in other architecture-specific fashions. For example,
another common concept is to place a jump instruction (instead of vectors) at each
entry in the table. Each of these jump instructions forces the processor to jump to
the handler code for each type of interrupt/exception. In this case, the address of
each table entry is considered as an interrupt vector.

8 1 Interrupts and interrupt handling

1.3 ARM Cortex-M7 exceptions and interrupts

In the terminology ARM uses, all events or conditions that can interrupt the normal
program flow and transfer control to a specific handler (service) routine are referred
to as exceptions. ARM Cortex-M7 processors support a variety of exceptions, and
they are essential for handling events like interrupts, faults, and system calls. In
general, exceptions can originate both by the hardware and the software.

1.3.1 ARM Cortex-M7 programmer’s model

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

SP(R13)
LR(R14)
PC(R15)

xPSR
PRIMASK

FAULTMASK
BASEPRI

CONTROL

MSP

PSP
Stack Pointer
Link Register
Program Counter

G
en

er
al

 P
ur

po
se

 R
eg

ist
er

s

Program Status Register
Interrupt Mask Register

Control Register (Stack definition)
Base priority mask register
Fault mask register

SPECIAL REGISTERSREGISTER BANK

Main Stack Pointer

Process Stack Pointer

Fig. 1.4: ARM Cortex-M7 core registers.

In this subsection, we will briefly describe the ARM Cortex-M7 programmer’s
model. The ARM Cortex-M7 processor core features a set of registers used for
various purposes in program execution and system control. These registers can be
categorized into two groups: register bank and special registers (see Figure 1.4).

1.3.1.1 Register bank

The register bank contains 16 32-bit registers. Thirteen of them are general-purpose
registers, and the other three have special uses:

1. Registers R0 to R12 are general-purpose registers for data storage and data
operations.

1.3 ARM Cortex-M7 exceptions and interrupts 9

2. R13 is Stack Pointer (SP) for maintaining the stack, typically used for local vari-
ables and function call frames. The Cortex-M7 contains two physically different
stack pointers for different privilege levels:

a. The Main Stack Pointer (MSP)is the default Stack Pointer after reset and is
mainly used when the processor runs in privileged or system mode.

b. The Process Stack Pointer (PSP) can only be used in unprivileged or user
mode.

3. R14 is Link Register (LR), which stores the return address when calling sub-
routines or functions. On reset, the processor sets the LR value to 0xFFFFFFFF.

4. R15 is Program Counter (PC), which holds the memory address of the currently
executing instruction.

Because the stack pointer register in ARM Cortex-M7 has two physical copies,
we say it is banked. In the context of ARM Cortex processors, the term ’banked
register’ refers to a type of register that has multiple copies or ’banks’, each as-
sociated with a specific execution mode or privilege level. These banks allow the
processor to maintain separate register sets for different execution contexts, such as
user mode, privileged mode, and exception modes. The selection of the stack pointer
is determined by a special register called the CONTROL register, which is a part of
the special register set.

1.3.1.2 Special registers

Besides the registers in the register bank, there are several special registers. These
registers contain the processor status and define the operation states and interrup-
t/exception masking. The special registers are:

1. xPSR is a 32-bit Program Status Register. Some of the bit fields in the xPSR

EXCEPTION NUMBERN Z C V T

31 24 8 030 29 28

Overflow
Carry
Zero
Negative

Indicates which exception the
processor is handling.

Fig. 1.5: xPSR register.

register are N (negative flag), Z (zero flag), V (overflow flag), C (carry flag),
T (Thumb state) and EXCEPTION NUMBER representing the number of the
current exception (interrupt).

2. CONTROL register is a 32-bit register that allows the processor to manage priv-
ileged and unprivileged execution modes and select the active stack pointer. It

10 1 Interrupts and interrupt handling

1 0

SP
SE

L
nP

RI
V

not Priviledged:
0 - Priviledged
1 - not Priviledged

SP selection:
0- MSP
1- PSP

Fig. 1.6: CONTROL register.

includes the following fields: nPRIV (Privilege Level Bit) determines the priv-
ilege level of the processor (0 for privileged, 1 for unprivileged), and SPSEL
(Stack Pointer Select Bit) selects the active stack pointer (0 for MSP, 1 for PSP).

3. Three exception masking registers:

a. The PRIMASK register is a 1-bit wide interrupt mask register. When set,
it blocks all exceptions (including interrupts) apart from the Non-Maskable
Interrupt (NMI) and the HardFault exception.

b. The FAULTMASK register is very similar to PRIMASK, but it also blocks
the HardFault exception.

c. The BASEPRI register masks (blocks) exceptions or interrupts based on
their priority level.

Special registers are not memory mapped and can be accessed using special register
access instructions MSR and MRS:
MRS reg, special_reg
reads special register into general-purpose register, and
MSR special_reg, reg
writes to special register from general-purpose register.

1.3.2 System Control Block

In addition to the registers we have just covered, ARM Cortex-M7 processors main-
tain another important register bank called System Control Block (SCB). The Sys-
tem Control Block is a crucial part of the processor’s control and configuration.
The SCB is a memory-mapped register bank that includes several registers and con-
trol bits that influence the processor’s behaviour, manage exceptions, and provide
system-level control. For example, the SCB registers for controlling processor con-
figurations (e.g., low power modes), providing fault status information (fault status
registers), relocating the vector table and controlling/obtaining the status of some
interrupts. Here, we provide a brief description of only one CSB register related to
interruptions and exceptions. This is the Interrupt Control and State Register (ICSR).

1.3 ARM Cortex-M7 exceptions and interrupts 11

This register provides bits for setting and clearing two software interrupts, PendSV
and SysTick. The ICSR register is memory-mapped at address 0xE000ED04. For
example, writing 1 to bit 28 in ICSR will set the PendSV exception to pending.

1.3.3 Exceptions

ARM architecture distinguishes between the two types of exceptions: interrupts
originate from the external hardware, and exceptions originate from the CPU core or
software (e.g., access to an invalid memory location or an SVC assembly instruction,
which is commonly used as a convenient way to enter the operating system kernel).
The following information identifies each ARM Cortex-M7 exception:

1. Exception Number - A unique number referencing a particular exception
(starting at 1). This number is also used as the offset within the vector ta-
ble, where the address of the handling routine for the exception is stored. This
routine is usually referred to as the exception handler or interrupt service
routine (ISR) and is the procedure which runs when an exception is triggered.
The ARM hardware will automatically look up this function pointer (address
of the exception handler) in the vector table when an exception is triggered and
start executing the code. When the CPU is servicing an exception, its exception
number is in the lower nine bits of the xPSR register.

2. Priority Level / Priority Number - Each exception has a priority associated
with it. For most exceptions, this number is configurable. Counter-intuitively,
the lower the priority number, the higher the precedence the exception has. So,
for example, if two exceptions of priority level 2 and priority level 1 occur
simultaneously, the exception with priority level 1 exception will be serviced
first. When we say an exception has the “highest priority”, it will have the lowest
priority number. If two exceptions have the same priority number, the exception
with the lowest exception number will run first.

3. Synchronous or Asynchronous - As the name implies, some exceptions will
fire immediately after an instruction is executed (e.g. SVCall). These exceptions
are referred to as synchronous. Exceptions that do not fire immediately after a
particular code path is executed are referred to as asynchronous (e.g. external
interrupts).

ARM Cortex-M7 exceptions can be broadly categorised into four main types:

1. Interrupts are asynchronous events that can occur anytime and interrupt the
normal program execution. They are typically generated by external peripherals
(e.g., timers, UARTs, GPIO), and the processor responds to them by temporarily
halting the current execution and transferring control to an interrupt service
routine (ISR). For instance, a UART may use an interrupt request to indicate
that new data have been received. A corresponding exception handler (ISR) is
then executed that reads the received data. Interrupts can be divided into two
main categories:

12 1 Interrupts and interrupt handling

a. External Interrupts: These are generated by external peripherals or de-
vices to request the processor’s attention. The Cortex-M7 processor sup-
ports a set of external interrupts (IRQs) that can be individually configured
and prioritized.

b. NMI (Non-Maskable Interrupt): This is a special type of interrupt that
has higher priority than regular interrupts and cannot be disabled or masked.
NMIs are typically used for critical system functions. Like ordinary inter-
rupt requests, Non-Maskable Interrupt (NMI) requests can be issued by
either hardware or software (e.g. if errors happen in other exception han-
dlers, an NMI will be triggered). The main difference is that their priority is
extremely high, namely, the highest in the system below the reset exception.

Two more exceptions also belong to this category and are generated within the
processor rather than from external peripheral devices. They are:

a. SysTick exception, generated periodically by the 24-bit count-down system
timer and often used by operating systems to drive time slicing. If needed,
the same exception can also be issued by software.

b. PendSV exception can only be triggered by software. Operating systems
often use it to indicate that a context switch is due and perform it in the
future when no other exceptions are waiting to be handled. The PendSV
exception can be triggered by writing 1 to bit 28 in the ICSR (a part of the
System Control block), which is memory-mapped at address 0xE000ED04.

2. Faults are synchronous events generated due to an abnormal event detected
by the processor, either internally or while communicating with memory and
other devices. These exceptions are of great interest and concern because they
indicate serious hardware or software issues that likely prevent the software
itself from continuing with normal activities. The following faults are present
in Cortex-M7 processors:

a. UsageFault occurs when the processor detects an issue with the program’s
execution or when an instruction cannot be executed for various reasons.
For instance, the instruction may be undefined or may contain a misaligned
address that prevents it from accessing memory correctly. Another reason
for raising a UsageFault exception is an attempt to divide by zero. Some
of the faults mentioned above (like dividing by zero) can be masked in
software, i.e., the processor can be instructed to just ignore them without
generating any exception, whereas others (such as undefined instruction)
cannot, for obvious reasons.

b. BusFault triggers when an error occurs on the data or instruction bus while
accessing memory. In other words, it can be generated as a consequence of
an explicit memory access performed by an instruction during its execution
and also by fetching an instruction from memory. BusFaults result from
issues in memory access, most often as attempting to access a location with
no valid memory. As Cortex-M7 is a memory-mapped input-output (I/O)
architecture, whenever we refer to a memory address, we actually mean

1.3 ARM Cortex-M7 exceptions and interrupts 13

an address within the processor’s address space that may refer to either a
memory location or an I/O register.

c. MemManage (Memory Management Fault) faults occur when there is a
memory access violation, such as accessing restricted memory regions.
In other words, this fault occurs when the memory protection mechanism
blocks memory access. An optional Memory Protection Unit (MPU) pro-
vides a programmable way of protecting memory regions against data read
and write operations, as well as instruction fetches. For instance, the pro-
cessor’s MPU can be programmed to forbid instruction fetch from address
areas containing I/O registers.

d. HardFault is a severe fault that can be generated when an error occurs dur-
ing exception processing, thus disrupting the normal exception handling
flow. HardFaults have a higher priority than any exception with config-
urable priority. HardFaults are typically unrecoverable, meaning the pro-
cessor cannot continue the normal program execution from the point of the
fault. Usually, the application or CPU must be reset. To prevent HardFaults,
developers should follow best practices for writing robust and well-tested
code. This includes avoiding undefined instructions, ensuring valid memory
accesses, and monitoring stack usage to prevent stack overflows. Addition-
ally, proper fault handling and diagnostics can help identify and address
issues before they lead to a HardFault. Hard faults in Cortex-M7 processors
are a critical part of system reliability and safety, as they help detect and re-
port severe issues that could otherwise result in unpredictable or incorrect
system behaviour.

3. Supervisor call (SVC) is a software-initiated exception. It is used to transi-
tion from the user or application mode to a more privileged mode, typically for
making requests to the operating system or kernel. The execution of an SVC
assembly instruction raises this exception. It is commonly used as a convenient
way to enter the operating system kernel and request it to perform a function on
behalf of the application.

4. Reset Exception (Reset) is invoked on power up or a warm reset. The exception
model treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an instruction. When
reset is de-asserted, execution restarts from the address provided by the reset
entry in the vector table. It is handled as other exceptions for the most part,
except that instruction execution can stop at an arbitrary point.

1.3.4 Exception numbers and priorities

Table 1.1 lists different types of exceptions with their priorities, exception numbers
and vector addresses. All exceptions have an associated priority with a lower num-
ber value indicating a higher priority. The programmer (software) configures the

14 1 Interrupts and interrupt handling

Table 1.1: Exception types in Cortex-M7.

Exception
Number

Exception
Type Priority Vector

Address Activation

1 Reset -3 (Highest) 0x00000004 Asynchronous
2 NMI -2 0x00000008 Asynchronous
3 HardFault -1 0x0000000C Synchronous
4 MemManage Configurable 0x00000010 Synchronous
5 BusFault Configurable 0x00000014 Synchronous
6 UsageFault Configurable 0x00000018 Synchronous
7-10 unused - - -
11 SVCall Configurable 0x0000002C Synchronous
12-13 unused - - -
14 PendSV Configurable 0x00000038 Asynchronous
15 SysTick Configurable 0x0000003C Asynchronous

16 and above Interrupt (IRQ) Configurable 0x00000040
and above Asynchronous

priorities for most exceptions, except for Reset, NMI and HardFault. If the software
does not configure any priorities, then all exceptions with a configurable priority
have a priority of 0. Configurable priority values are in the range 0-15. Here is the
rule of order of execution of exceptions:

1. If two or more exceptions are pending, the exception with the highest priority
runs first.

2. If two or more exceptions with the same priority are pending, the exception with
the lowest exception number runs first.

3. When the processor executes an exception handler, the exception handler is
preempted if a higher-priority exception occurs. If an exception occurs with
the same priority as the exception being handled, the handler is not preempted,
irrespective of the exception number. However, the status of the new interrupt
remains pending.

The exceptions with exception numbers 1-15 are so-called built-in exceptions.
The built-in exceptions are a mandatory part of every ARM Cortex-M core. The
ARM Cortex-M specifications reserve exception numbers 1-15, inclusive, for built-
in exceptions.

ARM Cortex-M7 processors support a fixed-priority scheme where each inter-
rupt source (or exception) can have a unique priority level assigned to it. Each
priority is associated with its priority value, where a lower priority value indi-
cates a higher exception priority. Cortex-M7 processors support up to 16 priority
levels, where the value 0 represents the highest priority, and the value 15 represents
the lowest priority. If the software does not configure any priorities, then all the ex-
ceptions with a configurable priority have a priority value of 0. A higher-priority
(smaller priority level) exception can preempt a lower-priority (larger priority level)

1.3 ARM Cortex-M7 exceptions and interrupts 15

exception. Some exceptions (reset, NMI, and HardFault) have fixed priority levels.
Their priority levels are represented with negative values to indicate that they are of
higher priority than other exceptions. The BASEPRI (Base Priority) register (Fig-

034731

BASEPRI

Fig. 1.7: BASEPRI register.

ure 1.7), which is a part of special registers in the ARM Cortex-M7 core registers
block, provides a mechanism to set a threshold for exception priorities, allowing
the processor to temporarily restrict the servicing of specific exceptions to prevent
lower-priority interrupts from preempting critical tasks. The 4-bit BASEPRI field in
the BASEPRI register defines a priority mask. The processor does not process any
exception with a priority value greater than or equal to the value in the BASEPRI
field.

1.3.5 Vector table and Exception handlers

The vector table contains the reset value of the stack pointer and the start addresses,
also called exception vectors, for all exception handlers. On system reset, the vec-
tor table is at address 0x00000000. This is the default start address of the vector
table, where Cortex-M7 expects to find it. This is usually a linker job that places
the vector table at the beginning of the binary file we upload to the flash memory.
Figure 1.8 shows how the vector table is organized in memory and the order of the
exception vectors in the vector table. The first entry of this array is the value of the
stack pointer. Note that the programmer is responsible for setting the first value into
the stack pointer (which is the address of the beginning of the stack). Usually, this
address corresponds to the end of the SRAM, as we often use the stack that expands
in the direction of descending addresses. Starting from the second entry of this ta-
ble, we can find the starting addresses for all exception handlers. This means that
the vector table has a length of up to 256 for Cortex-7 and depends on the number
of interrupts implemented. The silicon vendor that uses an ARM Cortex-M7 core
can implement up to 240 interrupts. The silicon vendor must configure the top range
value, which is dependent on the number of interrupts implemented. ARM requires
that we always adjust the vector table’s size by rounding up to the next power of
two. For example, if there are 16 interrupts, the minimum size of the vector table
is 32 words, enough for 16 built-in exceptions and up to 16 interrupts. If the user
(silicon vendor) requires 21 interrupts, the size of the vector table must be 64 words
because the required table size is 37 words, and the next power of two is 64. The

16 1 Interrupts and interrupt handling

_estack

Reset_Handler

NMI_Handler

HardFault_Handler

MemManage_Handler

BusFault_Handler

UsageFault_Handler

0

0

0

0

SVC_Handler

0

0

PendSV_Handler

SysTick_Handler

WWDG_Handler

PVD_AVD_IRQHandler

EXTI0_IRQHandler

EXTI1_IRQHandler

EXTI2_IRQHandler

.

.

.

0x00000004

0x00000000

0x0000000C

0x00000008

0x00000014

0x00000010

0x00000018

0x0000002C

0x0000003C

0x00000038

0x0000001C

0x00000024

0x00000020

0x00000028

0x00000034

0x00000030

0x00000044

0x00000040

0x00000058

0x0000005C

0x00000060

.

.

.

NMI_Handler(){

 ...

}

EXTI0_Handler(){

 ...

}

Reset_Handler(){

 ...

 main();

}

Vector Table:

EXTI2_Handler(){

 ...

}

SRAM
0x20000000

FLASH

main(){

 ...

}

Fig. 1.8: The memory layout of the vector table and exception handlers in ARM
Cortex-M7 cores.

name of the exception handlers in Figure 1.8 is just a convention, and we are totally
free to rename them if we like a different one. They are just symbols.

Defining a vector table for a Cortex-M7 processor involves setting up a table of
exception handler addresses that the processor will jump to when specific excep-
tions occur. As said before, the vector table must be placed at the beginning of the
flash memory, where the processor expects to find it. In ARM Cortex-M microcon-
troller development, the .isr_vector is a special section in the microcontroller’s
memory where the vector table for exceptions and interrupts is defined. The vec-
tor table contains addresses of exception and interrupt service routines (ISRs). The
.isr_vector section is a label used in the linker script to specify the location of
the vector table in memory. Commonly, the vector table is implemented in assembly
code in the startup file (e.g. for the Cortex-M7-based STM32H753 microcontroller,
the startup file would be startup_stm32h753xx.s) as:

1 .section .isr_vector
2

3 g_pfnVectors:
4 .word _estack
5 /* Built -in Exceptions */
6 .word Reset_Handler

1.3 ARM Cortex-M7 exceptions and interrupts 17

7 .word NMI_Handler
8 .word HardFault_Handler
9 .word MemManage_Handler

10 .word BusFault_Handler
11 .word UsageFault_Handler
12 .word 0
13 .word 0
14 .word 0
15 .word 0
16 .word SVC_Handler
17 .word DebugMon_Handler
18 .word 0
19 .word PendSV_Handler
20 .word SysTick_Handler
21 /* External Interrupts */
22 .word WWDG_IRQHandler
23 .word PVD_AVD_IRQHandler
24 ...
25 .word EXTI0_IRQHandler
26 .word EXTI1_IRQHandler
27 .word EXTI2_IRQHandler
28 ...
29 .word WAKEUP_PIN_IRQHandler

Listing 1.1: The vector table for Cortex-M7.

Then, the exception and interrupt handler functions should be implemented in the
code. These functions are called when their corresponding exceptions or interrupts
occur. The handler function names should match the names of the entries in the
vector table for a very obvious reason:

1 void Reset_Handler(void) {
// Reset handler code

3 }

5 void NMI_Handler(void) {
// NMI handler code

7 }

9 void HardFault_Handler(void) {
// HardFault handler code

11 }

13 void EXTI0_IRQHandler (void) {
// HardFault handler code

15 }

Listing 1.2: Exception handlers in C.

1.3.6 Exception entry and exit

Exception entry and exit in an ARM Cortex-M7 processor is a well-defined process
that enables the CPU to handle various exceptions, including interrupts and faults
while preserving the state of the currently executing program. This mechanism en-
sures that the system can respond to events without compromising the integrity of

18 1 Interrupts and interrupt handling

the application code. Here, we provide a detailed description of the exception entry
and exit process in a Cortex-M7.

1.3.6.1 Exception entry

The exception entry occurs when there is a pending exception with sufficient pri-
ority and either:

1. The processor is executing a normal program and the new exception terminates
the currently executing program.

2. The processor executes the exception handler, and the new exception is of
higher priority than the exception being handled, in which case the new excep-
tion preempts the original exception. When one exception preempts another, we
say the exceptions are nested.

When the processor takes an exception, the processor pushes the current exe-
cution context onto the current stack. The execution context consists of eight 32-
bit words: registers R0 through R3, R12, the link register LR (also accessible as
R14), the program counter PC (R15), and the program status register xPSR, for
a total of 32 bytes. This operation is referred to as stacking, and the structure of
eight 32-bit data words is referred to as the stack frame. The reason behind auto-
matically saving the execution context is that accepting and handling an exception
should not necessarily prevent the processor from returning to its current activity
later. This is particularly true for interrupts and other exception requests that occur
asynchronously to current processor activities and are most often totally unrelated
to them. Thus, the exceptions and interrupts should be transparent with respect to
any code executing when they arrive. Figure 1.9 shows the exception stack frame
after stacking. Immediately after stacking, the stack pointer indicates the lowest ad-
dress in the stack frame. The reader will notice that Cortex-M processors use the
full-descending stack (the stack grows downward in memory, and the stack pointer
points to the lowest memory address in use). The stack frame includes the return
address, as the PC is also saved during stacking. This is the address of the next in-
struction in the interrupted program. This value is restored to the PC at exception
return so that the interrupted program resumes.

Here, we have to describe stack pointers and processing modes in ARM Cortex-
M processors in more detail. In ARM Cortex-M processors, there are two registers
used to access and manipulate stack: the Main Stack Pointer (MSP) and the Pro-
cess Stack Pointer (PSP). These stack pointers are critical in managing the execu-
tion context and handling exceptions in the processor. Additionally, the Cortex-M
architecture defines two processing modes: Thread mode and Handler mode, each
with distinct purposes and behaviours. The Main Stack Pointer (MSP) and Process
Stack Pointer (PSP) can be accessed and manipulated through the stack pointer (SP),
also known as register r13. Commonly, operating mode defines which of the two
(MSP or PSP) is accessible through SP (i.e. visible as SP).

1.3 ARM Cortex-M7 exceptions and interrupts 19

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es IRQ top of stack

Pre-IRQ top of stack

Fig. 1.9: The layout of the stack frame after stacking in ARM Cortex-M7.

Thread mode is the typical execution mode for user/application code. The pro-
cessor often uses the PSP (although it is possible to use MSP in this mode also) as
the current stack pointer in this mode. The processor enters Thread mode after a re-
set or when returning from an exception or interrupt. User-level code runs in Thread
mode, and the PSP is often used for function calls and managing thread-specific
context. Handler mode is a privileged execution mode used for handling exceptions
and interrupts. The processor switches from Thread mode to Handler mode when an
exception or interrupt occurs. The processor automatically saves the current context
onto the PSP or MSP stack (depending on the operation mode of the interrupted
program) before executing the exception handler. The MSP is then used in Handler
mode as the stack pointer. Handler mode is reserved for system-level tasks and en-
sures that critical operations can be carried out even when the application stack is
compromised.

In parallel to the stacking operation, the processor writes an exception return
value (called EXC_RETURN value in the ARM documentation) to the link register
(LR). This indicates which stack pointer corresponds to the stack frame and what
operation mode the processor was in before the entry occurred. The information
provided by the EXEC_RETURN value allows the processor to locate the stack
frame to be restored upon returning from an exception, interpret it in the right way,
and bring back the processor to the execution mode of the interrupted program.
Table 1.2 shows the EXC_RETURN values and their meaning upon returning from
an exception.

In parallel to the stacking operation, the processor also performs a vector fetch
that reads the exception handler start address from the vector table. The processors
determines the exception vector to be fetched into the PC by the exception number:

PC M[0x0000 0000+4⇥ (exception number)].

When stacking is complete, the processor starts executing the exception handler,
switching to Handler Mode. Associated with the execution mode switch, the pro-
cessor may also use a new stack. As mentioned previously, handler mode execution

20 1 Interrupts and interrupt handling

Table 1.2: Exception return values and their behaviour upon returning from an ex-
ception.

EXC_RETURN[31:0] Description

0xFFFFFFF1 Return to Handler mode, exception return uses the exception stack frame from
the MSP and execution uses MSP after return.

0xFFFFFFF9 Return to Thread mode, exception return uses the exception stack frame from
the MSP and execution uses MSP after return.

0xFFFFFFFD Return to Thread mode, exception return uses the exception stack frame from
the PSP and execution uses PSP after return.

always uses MSP, whereas thread mode execution may use either MSP or PSP, de-
pending on processor configuration. The Reset exception is a deviation from this
general rule. The Reset exception is handled in Thread mode instead. Upon reset,
execution starts in Thread mode, and the processor is automatically configured to
use MSP.

1.3.6.2 Exception return

The exception return occurs when the processor is in Handler mode and executes
an instruction which loads the EXC_RETURN value into the PC (for example bx
lr). Recall that EXC_RETURN is the value loaded into the LR on exception en-
try. The exception mechanism relies on this value to detect when the processor has
completed an exception handler. The lowest bits of this value provide information
on the return stack and processor mode. When this value is loaded into the PC, it
indicates to the processor that the exception is complete, and the processor should
initiate the appropriate exception return sequence instead of fetching an instruction.

When an exception return value is loaded into the program counter PC as part
of an exception handler epilogue, it directs the processor to initiate an exception
handler return sequence instead of simply returning to the caller. In fact, the ARM
Architecture Procedure Calling Standard (AAPCS) states that a function call must
save into the link register LR the return address before setting the program counter
PC to the function entry point. This is typically accomplished by executing a branch
and link instruction bl with a PC-relative target address. In the epilogue of the called
function, it is then possible to return to the caller by storing back into PC the value
stored into LR at the time of the call. This can be done, for instance, by means of a
branch and exchange instruction bx, using LR as argument.

This aspect of the exception return has been architected to permit any
AAPCS-compliant function to be used directly as an exception handler. In this
way, any AAPCS-compliant function can be used as an exception handler. This is
especially important when exception handlers are written in a high-level language
like C because compilers are able to generate AAPCS-compliant code by default,
and hence, they can also generate exception-handling code without treating it as a
special case. The exception handlers for ARM Cortex-M processors are thus im-
plemented as regular C functions and do not require a special function declaration

1.3 ARM Cortex-M7 exceptions and interrupts 21

keyword. As a result, an exception handler return performed by hardware is indis-
tinguishable from a regular software-managed function return.

The following code presents the exception handler for an exception triggered by
GPIO Pin 13 through EXTI15_10 lines. The exception handler is implemented just
as a regular C function without any special function declaration:

void EXTI15_10_IRQHandler(void)
2 {

// Check if GPIO_PIN_13 triggered the interrupt :
4 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != 0x00U)

{
6 // Your code to handle the GPIO_PIN_13 interrupt goes here

8 // Clear the GPIO_PIN_13 interrupt flag
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13);

10 }
}

Listing 1.3: The exception handler for EXTI15_10 interrupt implemented as a
regular C function.

22 1 Interrupts and interrupt handling

1.3.7 Case Study: A simple task scheduler on ARM Cortex-M7

In the realm of computer systems and real-time operating systems (RTOS), the con-
cept of context switching is the linchpin of multitasking and responsiveness. It’s a
finely tuned mechanism that orchestrates the efficient execution of multiple tasks,
allowing a processor to handle numerous concurrent operations with precision and
determinism. The ability to seamlessly transition between multiple tasks, known
as context switching, lies at the heart of efficient and responsive systems. Context
switching refers to the process where the state of one task is saved, allowing another
task to take precedence and execute. These tasks may be threads of a single appli-
cation or various concurrent applications. At its core, context switching is a process
by which the processor transitions from executing one task to another. This transi-
tion involves the preservation of the current task’s context, the loading of the new
task’s context, and the seamless continuation of the latter’s execution. The context
of each task includes the task’s state of the processor—registers, program counter,
stack pointer, and system variables.

Context switching begins with a trigger—typically a timer interrupt signalling
the need to switch contexts. The processor diligently saves the current context onto a
task’s stack and retrieves the context of the next task to be executed from its stack. A
successful context switch involves the preservation of the current execution context
and restoration of a new execution context, enabling the next task to resume from
precisely where it left off. This process demands meticulous stack management and
the precise handling of interrupts and exceptions.

An RTOS relies on a task scheduler, interrupt handling mechanisms, and precise
memory management to orchestrate this performance. The scheduler keeps a record
of tasks and manages their execution, while the interrupt system plays a pivotal role
in triggering context switches when a timer interrupt occurs.

Understanding the intricacies of context switching is paramount for engineers
working with computer systems to create efficient, deterministic, and robust appli-
cations. So, let’s raise the curtain and delve into the intricacies of context switching,
where the processor seamlessly switches tasks, and the computer system transforms
into a multitasking maestro.

1.3.7.1 Background

A simple round-robin task scheduler (Figure 1.10) on Cortex-M7 processors effec-
tively manages multiple tasks or threads in a cooperative multitasking environment.
In this scheduler, each task is given a fixed time slice (quantum) during which it
can execute. When its time slice expires, the scheduler switches to the next task
in the queue. The task scheduler relies on the interrupts and stacks to achieve
context switching. The SysTick and PendSV interrupts can both be used for context
switching. The SysTick peripheral is a 24-bit timer that interrupts the processor each
time it counts down to zero. This makes it well-suited to round-robin style context
switching, and we are going to use the SysTick to perform a context switch.

1.3 ARM Cortex-M7 exceptions and interrupts 23

Task0 Task1 Task2 Task3

Context
switch

Context
switch

Context
switch

Context
switch

Task0

Mode

Time

Handler

Thread

Time slice Time slice Time slice Time slice

SysTick SysTick SysTick SysTick SysTick

Fig. 1.10: A simple task scheduler.

When switching contexts, the scheduler needs a way to keep track of which tasks
are doing what using a task table. Recall from the previous sections that the ARM
Cortex-M7 processor has two separate stack pointers which can be accessed through
a banked SP register: Main Stack Pointer (MSP), which is the default one after
startup and is used in exception handlers running in the Handler mode, and Pro-
cess Stack Pointer (PSP), which is often used in regular user procedures running
in the Thread mode. In our application, tasks run in the Thread Mode with PSP,
and the context-switcher (kernel) runs in the Handler Mode with MSP. This allows
stack separation between the kernel and tasks (which simplifies the context switch
procedure) and prevents tasks from accessing important registers and affecting the
kernel.

Task1 Task2

Mode

Time

Handler

Thread

Time slice

SysTick

Exception
frame

stacking

PUSH Task1
registers
R4-R11

Save PSP
into

Task1 TCB

Select
next
task

Load PSP
from

Task2 TCB

POP Task2
registers
R4-R11

Exception
frame

destacking

Systick Handler

SysTick

Fig. 1.11: A simple task scheduler.

Figure 1.11 shows the scheduler operations during a context switch in more de-
tail. The scheduler relies on exception entry and exit mechanisms, which automat-
ically save and restore the critical CPU context (registers R0-R3, R12, LR, PC and
xPSR) using the exception frame on the stack. When a SysTick exception occurs,

24 1 Interrupts and interrupt handling

the Task1 critical registers are automatically saved into the Task1 exception stack
frame. Once in the SysTick handler, the scheduler is responsible for pushing the
interrupted task Task1 registers R4-R11 onto the task’s stack and saving its PSP in
the task’s TCB. Then, the scheduler selects the next task (Task2) in a round-robin
fashion. Before returning from the SysTick handler, the scheduler is responsible for
loading the Task2 SP into the PSP register and restoring the Task2 registers R4-
R11 from the Task2 stack. Then, upon exception exit, the Task2 critical registers are
restored from its exception stack frame, and the execution returns to the new task.

Usually, three routines are required to implement and run the scheduler: create
new tasks, initialize tasks, and perform the context switch. Besides, several data
structures are required to implement and manage the stack for each task and rep-
resent each task’s state. In the following subsections, we provide a step-by-step
description of implementing a very simple round-robin scheduler on a Cortex-M7
processor.

1.3.7.2 Tasks

A task is a piece of code or a function that does a specific job when it is allowed to
run. Usually, a task is an infinite loop which can repeatedly do multiple steps. In our
simple scheduler application, the tasks cannot be finished (they never return) and do
not take any arguments. Here is a C implementation of a task:

1 void task() {
// init task:

3 ...
// main loop

5 while (1) {
// do things over and over

7 }
}

Listing 1.4: A task in C. In our application, a task never returns and does not take
any arguments.

1.3.7.3 Stacks

In a multitasking environment, where multiple tasks are executed in a time-sharing
manner, each task needs to have its own stack. Each task executes within its own
context with no coincidental dependency on other tasks within the system or the
scheduler itself. Each task’s stack provides isolation between tasks. It ensures that
local variables and function call frames of one task do not interfere with those of
another task. This isolation is crucial for maintaining data integrity and preventing
unintended side effects between tasks. Only one task within the application can ex-
ecute at any point in time, and the scheduler is responsible for deciding which task
this should be. As a task does not know of the scheduler activity, it is the scheduler’s

1.3 ARM Cortex-M7 exceptions and interrupts 25

responsibility to ensure that the processor context (register values, stack contents,
etc.) when a task is swapped in is exactly the same as when the same task was
swapped out. In other words, each task’s stack allows tasks to be reentrant. Reen-
trancy means that a task can be interrupted while executing and later resume from
where it left off without corrupting its state. The stack stores the task’s execution
context, enabling reentrant behaviour. Besides, each task should be able to make
function calls and put arguments on the stack without worrying about function call
frames interfering with those of other tasks. Furthermore, allocating a fixed amount
of stack space for each task makes it easier to predict memory usage and stack re-
quirements for each task, simplifying system design and analysis.

To achieve this, each task is provided with its own stack in our simple task
scheduler. The size of each task’s stack is 1 kB (256 32-bit words). So, for four
tasks we create a memory block that holds all four stacks as follows:

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];

Listing 1.5: Memory block for tasks’ stacks. NTASKS equals 4 and
TASK_STACK_SIZE equals 256.

1.3.7.4 Task control block

A Task Control Block (TCB), also known as a Task Control Structure (TCS), is a
data structure used in real-time operating systems (RTOS) and multitasking environ-
ments to manage and control individual tasks or threads. The TCB holds essential
information about a task’s state, allowing the operating system or scheduler to man-
age and switch between tasks efficiently. The exact contents and structure of a TCB
may vary depending on the operating system or RTOS, but it typically includes the
following information: task identifier, task state (e.g., ready to run, blocked, sus-
pended, etc.), task priority, stack pointer, task name, and additional task’s parame-
ters.

In our implementation, each task will always be ready to run, so we will omit the
task state from TCB. Besides, all tasks in our scheduler will have the same priority
and will be selected on a round-robin basis, so we will omit the task priority from
TCB. Because each task should have its own stack to save its local variable and
exception frame, our TCB must include the SP value, which points to the current
stack pointer of the task. The scheduler will select the next task in a round-robin
fashion and write its SP value into the PSP register. The scheduler will also copy the
PSP register of the interrupted task into its SP value. Also, in our implementation,
the Task Control Block will contain the start address of the task. Here is a minimal
TCB implementation using struct in C:

1 typedef struct{
unsigned int *sp;

3 void (* pTaskFunction)();

26 1 Interrupts and interrupt handling

} TCB_Type;

Listing 1.6: TCB structure.

In our simple implementation, our scheduler will contain only four tasks. It
would be easy to add additional tasks later, but for now, we will keep the code
as simple as possible. Each of the four tasks should have its TCB. Hence, we create
a TCB table as:

TCB_Type TCB[NTASKS];

Listing 1.7: TCB table. NTASKS is a constant equal to 4.

1.3.7.5 Task creation

The TaskCreate() function saves the address of the task’s stack and the address
of the task’s function into the task’s TCB.

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000460

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000460

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

Fig. 1.12: Memory layout and content after calling the TaskCreate() function.

The following code presents the function used to create a new task:

1 void TaskCreate(TCB_Type* pTCB ,
unsigned int* pTaskStackBase ,

3 void (* TaskFunction)()){

1.3 ARM Cortex-M7 exceptions and interrupts 27

5 pTCB ->sp = (unsigned int*) pTaskStackBase;
pTCB ->pTaskFunction = TaskFunction;

7 }

Listing 1.8: The function TaskCreate() that creates a new task.

The parameters of the above TaskCreaet() function are:

• pTCB - a pointer to a task’s TCB,
• pStackBase - pointer task’s stack block,
• TaskFunction - address of a task’s function.

Figure 1.12 illustrates the memory layout and the contents of the task’s stack and
TCB after creating Task1 using the TaskCreate() function.

1.3.7.6 Task initialisation

The following code presents the function used to initialize a new task:

1 void TaskInit(TCB_Type* pTCB){
HWSF_Type* pHWStackFrame;

3 SWSF_Type* pSWStackFrame;

5

// Set pointers to HWSF and SWSF:
7 pHWStackFrame = (HWSF_Type *)((void*)pTCB ->sp - sizeof(HWSF_Type));

pSWStackFrame = (SWSF_Type *)((void*) pHWStackFrame
9 - sizeof(SWSF_Type));

11

// populate HW Stack Frame
13 pHWStackFrame ->r0 = 0;

pHWStackFrame ->r1 = 0;
15 pHWStackFrame ->r2 = 0;

pHWStackFrame ->r3 = 0;
17 pHWStackFrame ->r12 = 0;

pHWStackFrame ->lr = 0xFFFFFFFF; // (reset val - task never exits)
19 pHWStackFrame ->pc = (unsigned int) (pTCB ->pTaskFunction);

pHWStackFrame ->psr = 0x01000000; // Set T bit (bit 24) in EPSR.
21 // The Cortex -M4 processor only

// supports execution of
23 // instructions in Thumb state.

// Attempting to execute
25 // instructions when the T bit

// is 0 (Debug state)
27 // results in a fault.

// populate SW Stack Frame
29 pSWStackFrame ->r4 = 0x04040404;

pSWStackFrame ->r5 = 0x05050505;
31 pSWStackFrame ->r6 = 0x06060606;

pSWStackFrame ->r7 = 0x07070707;
33 pSWStackFrame ->r8 = 0x08080808;

pSWStackFrame ->r9 = 0x09090909;
35 pSWStackFrame ->r10 = 0x0a0a0a0a;

pSWStackFrame ->r11 = 0x0b0b0b0b;
37

// Set task ’s stack pointer in the TCB to point at the top
39 // of the task ’s SW stack frame

pTCB ->sp = (unsigned int*) pSWStackFrame;

28 1 Interrupts and interrupt handling

41

}

Listing 1.9: The function TaskInit() that creates a new task.

The only parameter of the above TaskInit() function is a pointer to a task’s TCB.
The TaskInit() function performs the following steps:

1. Initialize pointers to two stack frames that hold the exception stack frame (so-
called hardware stack frame) and the so-called software stack frame. The hard-
ware stack frame will hold eight registers saved by the CPU during exception
entry. Besides these eight registers, we need to save the remaining eight regis-
ters from the task’s context (R4-R11). We need to prepare these stack frames for
each new task so that when the task switch occurs, both frames will be ready for
de-stacking and, hence, entering a new task. To make this task easier, we will
abstract the frames with two structures:

typedef struct{
2 unsigned int r0;

unsigned int r1;
4 unsigned int r2;

unsigned int r3;
6 unsigned int r12;

unsigned int lr;
8 unsigned int pc;

unsigned int psr;
10 } HWSF_Type;

12 typedef struct{
unsigned int r4;

14 unsigned int r5;
unsigned int r6;

16 unsigned int r7;
unsigned int r8;

18 unsigned int r9;
unsigned int r10;

20 unsigned int r11;
} SWSF_Type;

Listing 1.10: Structures used to abstract the hardware and software stack frames.

The hardware stack frame resides at the bottom of the task’s stack, and the
software stack frame resides above the hardware stack frame.

2. Now, as two pointers to stack frames, pHWStackFrame and pHWStackFrame,
are set, we can populate both frames with initial values. The hardware stack
frame is populated as follows:

• PSR = 0x01000000 - this is the default reset value in the program status
register,

• PC = the address of the task,
• LR = 0xFFFFFFFF - in our case, tasks never finish, so LR=0xFFFFFFFF

(reset value),
• r12, r3-r0 = 0x00000000 - we may also pass the arguments into the task via

r0-r3, but this is not the case in our simple scheduler.

1.3 ARM Cortex-M7 exceptions and interrupts 29

3. Finally, it saves the address of the top of the software stack frame into the task’s
SP entry in the task’s TCB.

After these steps, a new task is ready to be executed for the first time when the
task switch occurs, and the task is selected for execution. Figure 1.13 illustrates the
memory layout and the contents of the task’s stack and TCB after creating Task1
using the TaskInit() function.

xPSR=0x01000000
PC=0x08000540

LR = 0xffffffff
R12 = 0
R3 = 0
R2 = 0
R1 = 0
R0 = 0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es 0x24000840

0x24000860

R11 = 0
R10 = 0
R9 = 0
R8 = 0
R7 = 0
R6 = 0
R5 = 0
R4 = 0 0x24000820

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x20000820

pTaskFunction= 0x080006cc

0x20000038

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

0x080006cc

Fig. 1.13: Memory layout and content after calling the TaskInit() function.

1.3.7.7 Scheduler initialisation

The following code presents the function used to initialize all four tasks:

1 void InitScheduler(unsigned int* pStackRegion ,
TCB_Type pTCB[],

3 void (* TaskFunctions [])()){
unsigned int* pTaskStackBase;

5

// 1. create all tasks:
7 for(int i=0; i<NTASKS; i++){

pTaskStackBase = pStackRegion + (i+1)*TASK_STACK_SIZE;
9 TaskCreate (&pTCB[i], pTaskStackBase , TaskFunctions[i]);

}
11 // 2. initialize all tasks except the Task0.

// Task0 will be called by main ()
13 // and will be the first task interrupted .

// Its HWSF and SWSF will be created upon

30 1 Interrupts and interrupt handling

15 // interrupt/contecxt switch
for(int i=1; i<NTASKS; i++){

17 TaskInit (&pTCB[i]);
}

19 // set PSP to Task0.SP:
__set_PSP ((unsigned int)pTCB [0].sp);

21 }

Listing 1.11: The function InitScheduler() creates all tasks and initializes all
tasks except the first one (Task0). At the end, it sets the top of the stack of the first
task (Task0) into the PSP register.

The function InitScheduler() performs the following steps:

1. Creates all tasks.
2. Initializes all tasks except the first one (Task0). Task0 will be called from the

main function and will be the first task interrupted by the SysTick timer. Hence,
its stack frames will be populated during the context switch.

3. Saves the top of the stack of the first task (Task0) into the PSP register.

To read or write the PSP register, which is not memory-mapped, requires the us-
age of special CPU instructions MSR and MRS. Hence, in order to access the PSP
register, we are forced to use assembly. To make programming easier, the above
code relies on the __set_PSP function defined in the Cortex Microcontroller Soft-
ware Interface Standard (CMSIS) library to write into the PSP register. CMSIS is a
vendor-independent hardware abstraction layer (HAL) for ARM Cortex-M proces-
sors. It simplifies software development for a wide range of microcontroller devices,
promoting code portability and reusability across various microcontroller families
and manufacturers. CMSIS defines two inline assembly functions to read or write
the PSP register:

1 /**
\brief Set Process Stack Pointer

3 \details Assigns the given value to the Process Stack Pointer (PSP)
\param [in] topOfProcStack Process Stack Pointer value to set

5 */
__attribute__ ((always_inline))

7 static inline void __set_PSP(uint32_t topOfProcStack)
{

9 __asm volatile ("MSR psp , %0" : : "r" (topOfProcStack) :);
}

11

/**
13 \brief Get Process Stack Pointer

\details Returns the current value of the Process Stack Pointer (PSP)
15 \return PSP Register value

*/
17 __attribute__ ((always_inline))

static inline void uint32_t __get_PSP(void)
19 {

uint32_t result;
21

__asm volatile ("MRS %0, psp" : "=r" (result));
23 return(result);

}

1.3 ARM Cortex-M7 exceptions and interrupts 31

Listing 1.12: The CMSIS definition of inline assembly functions for accessing the
PSP register.

After these steps, everything is set up for the first context switch. Figure 1.14

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000840

0x24000860

R11
R10
R9
R8
R7
R6
R5
R4

0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x24000c40

0x24000c60

R11
R10
R9
R8
R7
R6
R5
R4

0x24000c20

Task 1 stack

Task 2 stack

0x0800688

0x08006cc

void Task0(){
 while(1){
 ...
 }
}

void Task1(){
 while(1){
 ...
 }
}

FLASH

Task 0 stack

Task 1 stack

Task 3 stack

Task 2 stack

void Task2(){
 while(1){
 ...
 }
}

void Task3(){
 while(1){
 ...
 }
}

0x08006d0

0x0800701

Task 3 TCB

SP=0x24001020

Task 2 TCB

SP=0x24000c20

Task 1 TCB

SP=0x2400820

Task 0 TCB

SP=0x24000460 StackRegion=
0x24000060

SRAM
TCBs

Fig. 1.14: Memory layout and content after initializing four tasks during the sched-
uler initialization.

illustrates the memory layout and the task’s stack after initializing the scheduler
using the InitScheduler() function.

1.3.7.8 Context switch

Context switching in multitasking environments can be performed using stack
pointer (SP) swapping. The process involves saving the current task’s context onto
its stack and then loading the context of the next task to be executed by swapping the
SP. Figure 1.16 shows the process of context switching using stack pointer swap-
ping. Here’s a step-by-step description of how context switching is accomplished
using this method:

1. When a trigger for context switching occurs (the trigger is a timer interrupt), the
CPU saves the exception stack frame onto the Task1 stack using the PSP stack
pointer and enters the timer’s interrupt handler.

32 1 Interrupts and interrupt handling

Running Task1 Running Task2

Save Task1
Exception Frame

Restore Task2
Exception Frame

Push additional
Task1 registers

Pop additional
Task2 registers

Save Task1 PSP
to Task1 TCB

Load Task2 PSP
of Task2 TCB

Select next
task

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6
R5
R4

Task 1 stack

xPSR
PC
LR

R12
R3
R2
R1
R0

R11
R10
R9
R8
R7
R6
R5
R4

Task 2 stack

SysTick_Handler()

switch_context()

SysTick

Fig. 1.15: Context switching using stack pointer swapping.

2. The remaining eight registers (R4-R11) are saved the onto the Task1 stack. The
context switcher saves the current PSP into the Task1 TCB.

3. The context switcher determines which task should run next. The scheduler
considers the round-robin scheduling policy to make this decision.

4. The context switcher retrieves the SP of Task2 from the Task2 TCB and saves
it into the PSP register. The PSP now points to the stack where the context of
Task2 is saved.

5. The eight registers (R4-R11) of Task2 are popped from stack.
6. The timer handler exits; hence, the de-stacking operation performed by the CPU

retrieves the exception frame from the Task2 stack. As the PC of Task2 is part
of its exception frame, the CPU returns to Task2

Figure 1.16 shows the chronology of the stack pointer when a context switch hap-
pens between Task1 and Task2. The following code presents the function that im-
plements the context switcher:

int ContextSwitch(int current_task , TCB_Type pTCB []){
2 volatile int new_task;

4 pTCB[current_task].sp = (unsigned int*) __get_PSP ();

6 // select next task in round -robin fashion
new_task = current_task + 1;

8 if (new_task == NTASKS) new_task = 0;

10 __set_PSP ((unsigned int)pTCB[new_task].sp);

12 return new_task;
}

1.3 ARM Cortex-M7 exceptions and interrupts 33

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es PSP after HW stacking = 0x24000840

Pre-IRQ top of stack = 0x24000860

R11
R10
R9
R8
R7
R6
R5
R4

PSP after SW stacking = 0x24000820

xPSR
PC
LR

R12
R3
R2
R1
R0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es PSP after SW destacking = 0x24000c40

Post-IRQ top of stack = 0x24000c60

R11
R10
R9
R8
R7
R6
R5
R4

PSP after context switch = 0x24000c20

Task 1 stack Task 2 stack

Pushed by CPU
during HW stacking
on exception entry

Pushed by context switcher
(SW stacking)

Popped by CPU
during HW destacking
on exception exit

Popped by context switcher
(SW destacking)

Context switcher
re-assigns PSP

0x08006cc

0x08006d0

void Task1(){
 while(1){
 . . .
 }
}

void Task2(){
 while(1){
 . . .
 }
}

FLASH

SRAM SRAM

Fig. 1.16: The modification progress of the PSP stack pointer during context switch-
ing.

Listing 1.13: The functions ContextSwitch() that implements context switching.

The parameters of the ContextSwitch functions are the index of the current task
(current_task) and the pointer to the TCB table (pTCB). The function return the
index of a new task.

1.3.7.9 SysTick handler

Finally, we can implement the SysTick handler that will perform the task switch:

1 void SysTick_Handler(void)
{

3 unsigned int tmp;
// 1. Save context of the interrupted task:

34 1 Interrupts and interrupt handling

5 if (current_task != -1){
__asm__ volatile ("MRS %0, psp\n\t"

7 "STMFD %0!, {r4-r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp));

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4-r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp));

}
19 }

Listing 1.14: The SysTick handler used to perform task switch.

The SysTick handler performs the following steps:

1. Saves the context (R4-R11) of the interrupted task on the task’s stack using PSP.
2. Switch context (swap stack pointers) using the textttswitch_context() function.
3. Restore the context (R4-R11) of the new task from its stack using PSP.
4. Return from interrupt and restore the exception frame of the new task from its

stack.

1.3.7.10 Starting the scheduler

Finally, we are ready to start our scheduler within the main function. To do so, we
need to:

1. Initialize scheduler.
2. Switch to NOT PRIVILEGED mode with PSP as the stack pointer by setting

the last two bits in the CONTROL register.
3. Call Task0.
4. Within Task0, wait for the first SysTick interrupt.

The following code shows how to start the scheduler:

1

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];
3 TCB_Type TCB[NTASKS];

void (* TaskFunctions[NTASKS])();
5 int current_task = -1;

7 void Task0(){
while (1) {}

9 }
void Task1(){

11 while (1) {}
}

13 void Task2(){
while (1) {}

15 }
void Task3(){

17 while (1) {}

1.3 ARM Cortex-M7 exceptions and interrupts 35

}
19

21 int main(void)
{

23 TaskFunctions [0] = Task0;
TaskFunctions [1] = Task1;

25 TaskFunctions [2] = Task2;
TaskFunctions [3] = Task3;

27 // Init scheduler :
InitScheduler(stackRegion , TCB , TaskFunctions);

29 current_task = 0;
// Start SysTick timer with the highest priority:

31 HAL_InitTick (0);
// Switch to NOT PRIVILEDGED with PSP:

33 __set_CONTROL (0 x00000003);
// Call the first task:

35 Task0(); // never return!
while (1){}

37 }

Listing 1.15: Starting the scheduler.

To write into the CONTROL register (which is not memory-mapped), the above
code uses the __set_CONTROL function defined in the CMSIS library as:

1 /**
\brief Set Control Register

3 \details Writes the given value to the Control Register.
\param [in] control Control Register value to set

5 */
__STATIC_FORCEINLINE void __set_CONTROL(uint32_t control)

7 {
__ASM volatile ("MSR control , %0" : : "r" (control) : "memory");

9 }

Listing 1.16: The CMSIS definition of inline assembly function for writing into the
CONTROL register.

1.3.7.11 Using PendSV for context switching

The approach with the SysTick handler used to perform the context switching
would, however, not work with other interrupts (peripheral interrupts, for exam-
ple). The SysTick handler would interrupt IRQ handlers as well, and stack regis-
ters affected by the peripheral IRQ handler and unstack task’s registers, resulting
in undefined behaviour of both tasks and peripheral interrupt handler. This would
undoubtedly result in the hard fault.

The PendSV (Pending Supervisor Call) interrupt is commonly used for context
switching in ARM Cortex-M microcontrollers due to several advantages and char-
acteristics that make it well-suited for this purpose. The PendSV interrupt has the
lowest possible priority among all exceptions and interrupts. This makes it an ideal
choice for context switching, as it doesn’t interfere with other higher-priority in-
terrupts or exceptions. The PendSV exception will interrupt only the non-priority
tasks and certainly not any exception handler. The low-priority nature of PendSV

36 1 Interrupts and interrupt handling

ensures that it doesn’t preempt other exceptions or interrupts, providing predictable
and deterministic behaviour during context switches. This predictability is essen-
tial in real-time systems. PendSV can be triggered explicitly through software by
setting the PendSV bit in the ICSR register within the System Control Block. This
allows for precise control over when context switches occur. Typically, the PendSV
interrupt is set pending from the SysTick handler.

Task1 Task2

Priority

Time

Handler mode
with MSP

Thread mode
with PSP

IRQ

Stacking
with PSP

PendSVSysTick

IRQ Handler

Stacking
with MSP

SysTick
Handler

Destacking
with MSP

IRQ Handler

PendSV Handler
(context switch)

Destacking
with PSP

PendSV=1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Task1

Destacking
with PSP

Stacking
with PSP

(13)

Fig. 1.17: A simple task scheduler based on PendSV interrupts.

Figure 1.17 shows the solution to this problem with the PendSV interrupt. Usu-
ally, the SysTick interrupt has the highest priority among all exceptions and inter-
rupts with configurable priority. If an interrupt request (IRQ) takes place before
the SysTick exception, the SysTick exception might preempt the IRQ handler. In
this case, we should not carry out the context switching. The PendSV exception
solves the problem by delaying the context-switching request until all other IRQ
handlers have completed their processing. To do this, the PendSV is programmed
as the lowest-priority exception. The Systick handler sets the pending status of the
PendSV, and the context switching is carried out within the PendSV exception. Let
us describe the solution in Figure 1.17:

1. Task1 is preempted by an IRQ interrupt request.
2. Task1’s hardware stack frame is stacked on the process stack using the PSP.
3. The IRQ handler executes.
4. The SysTick exception eventually preempts the IRQ handler.
5. The ardware stack frame of the IRQ handler is stacked on the main stack using

the MSP register.
6. The SysTick handler sets the PendSV bit. Hence, PendSV interrupt is pending.
7. The SysTick exits, and the hardware stack frame of the IRQ handler is popped

from the main stack.
8. The IRQ handler continues its execution.

1.3 ARM Cortex-M7 exceptions and interrupts 37

9. The IRQ handler exits, and the hardware stack frame of the Task1 is popped
from the process stack.

10. The Task1 continues its execution.
11. PendSV is fired and the Task1’s hardware stack frame is stacked on the process

stack using the PSP.
12. PendSV handler performs the context switching.
13. PendSV handler exits and the Task2’s hardware stack frame is popped from the

process stack using the PSP.
14. Task2 executes.

Hence, the solution to implement a scheduler based on the SysTick and PendSV ex-
ceptions is simple. Firstly, we move the code for context switching from the SysTick
handler into the PendSV handler:

1 void PendSV_Handler(void)
{

3 volatile unsigned int tmp1 =0;
volatile unsigned int tmp2 =0;

5 // 1. Save context of the interrupted task:
__asm__ volatile ("MRS %0, psp\n\t"

7 "STMFD %0!, {r4-r11}\n\t"
"MSR psp , %0\n\t" : "=r" (tmp1));

9

11 // 2. Switch context:
current_task = ContextSwitch(current_task , TCB);

13

// 3. restore context of the new task:
15 __asm__ volatile ("MRS %0, psp\n\t"

"LDMFD %0!, {r4-r11}\n\t"
17 "MSR psp , %0\n\t" : "=r" (tmp2));

}

Listing 1.17: Starting the scheduler.

Secondly, the SysTick handler only sets PendSV pending in the ICSR register:

void SysTick_Handler(void)
2 {

// Set the PendSV Pending bit in ICSR:
4 SCB ->ICSR |= (unsigned long)0x01 << 28;

}

Listing 1.18: The SysTick handler only sets PendSV pending.

1.3.7.12 Using the Supervisor call (SVC) exception to start the scheduler

Instead of directly calling the first task (Task0) from the main function, the first task
should be initialized and started in the same way as the others. In other words, the
scheduler should rely on the exception return to start the first task. For this purpose,
we can use the Supervisor Call (SVC) exception. Recall that the SVC instruction

38 1 Interrupts and interrupt handling

triggers the SVC exception. Due to the interrupt priority behaviour of the Cortex-
M processors, the SVC instruction can only be used in thread mode or exception
handlers that have a lower priority than the SVC itself. Otherwise, a HardFault ex-
ception would be generated. The SVC instruction is a privileged operation that al-
lows a task in an unprivileged mode to request a service from the operating system
(or kernel) running in a privileged mode. This separation of privilege levels ensures
that only trusted code can initiate scheduling or other system-related operations.
Figure 1.18 shows the process of starting and running the scheduler using the SVC

main() Task0

Priority

Time

Handler

Thread

SVC

Stacking
with PSP

PendSVSysTick

SVC
Handler

PendSV Handler
(context switch)

Destacking
with PSP

PendSV=1

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

SysTick
Handler

Stacking
with PSP

Task0

Stacking
with PSP

Destacking
with PSP

Task1

Destacking
with PSP

Fig. 1.18: Starting the scheduler with the SVC exception.

exception. Let us describe the solution in Figure 1.18:

1. The main() function initializes the scheduler (i.e., initializes all tasks) and
eventually executes the SVC instruction.

2. The main() function is preempted by the SVC exception, and its hardware
stack frame is stacked on the process stack using the PSP

3. The SVC handler sets the PSP to point to the top of the Task0 stack, restores
the context (R4-R11) of the Task0 and exits.

4. Upon exception exit, the hardware stack frame of Task0 is restored, therefore
returning control to Task0.

5. Task0 executes until the end of its time slot.
6. The SysTick exception preempts Task0, saving its hardware stack frame onto

its stack.
7. The SysTick handler sets the PendSV bit. Hence, the PendSV interrupt is pend-

ing.
8. The SysTick exits, and the hardware stack frame of Task0 is popped from the

main stack.
9. Task0 continues its execution.

10. PendSV is fired, and the Task0 hardware stack frame is stacked on the process
stack using the PSP.

11. PendSV handler performs the context switching.

1.3 ARM Cortex-M7 exceptions and interrupts 39

12. PendSV handler exits, and Task1’s hardware stack frame is popped from the
process stack using the PSP.

13. Task1 now executes.

To initialize the scheduler that uses the SVC exception to start the first task, we
use the following function:

1 void InitSchedulerSVC(unsigned int* pStackRegion ,
TCB_Type pTCB[],

3 void (* TaskFunctions [])()){
unsigned int* pTaskStackBase;

5

// 1. create all tasks:
7 for(int i=0; i<NTASKS; i++){

pTaskStackBase = pStackRegion + (i+1)*TASK_STACK_SIZE;
9 TaskCreate (&pTCB[i], pTaskStackBase , TaskFunctions[i]);

}
11

// 2. initialize all tasks
13 // The main () and will be first interrupted by SVC.

// Task0 will be entered from SVC Handler
15 for(int i=0; i<NTASKS; i++){

TaskInit (&pTCB[i]);
17 }

19 // set PSP to Task0.SP:
__set_PSP ((unsigned int)pTCB [0].sp);

21 }

Listing 1.19: The function InitSchedulerSVC() creates all tasks and initializes
the stack frames for all tasks.

Contrary to the function InitScheduler(), the function InitSchedulerSVC()
initializes the stack and both stack frames of all tasks. The SVC handler simply sets
the PSP to point to the top of Task0’s stack and restores the context (R4-R11) of the
first task:

1 void SVC_Handler(void)
{

3 /* We are here , because main () called SVC. As we interrupted main (),
* there is no need to save its context.

5 * We should never return to main ()!!
* The SVC_Handler should start the first task - Task0

7 * The Task 0 is started by restoring its SW context and
* its HW context upon the exception return.

9 */
// set PSP to Task0.SP:

11 __set_PSP ((unsigned int)TCB [0].sp);
current_task = 0;

13 // Restore the context of the Task 0:
__RESTORE_CONTEXT ();

15 }

Listing 1.20: The SVC Handler.

The following code shows how to start the scheduler:

1

40 1 Interrupts and interrupt handling

unsigned int stackRegion[NTASKS * TASK_STACK_SIZE];
3 TCB_Type TCB[NTASKS];

void (* TaskFunctions[NTASKS])();
5 int current_task = -1;

7 void Task0(){
while (1) {}

9 }
void Task1(){

11 while (1) {}
}

13 void Task2(){
while (1) {}

15 }
void Task3(){

17 while (1) {}
}

19

21 int main(void)
{

23 TaskFunctions [0] = Task0;
TaskFunctions [1] = Task1;

25 TaskFunctions [2] = Task2;
TaskFunctions [3] = Task3;

27 // Init scheduler :
InitSchedulerSVC(stackRegion , TCB , TaskFunctions);

29 // Start SysTick timer:
HAL_InitTick (0);

31 // Switch to NOT PRIVILEDGED with PSP:
__set_CONTROL (0 x00000003);

33 // Start the scheduler :
__asm volatile("svc 0");

35 while (1){}
}

Listing 1.21: Starting the scheduler using the SVC exception.

The code for the scheduler can be found here:
https://github.com/bulicp/ContextSwitchM7-book.git.

https://github.com/bulicp/ContextSwitchM7-book.git

1.4 RISC-V interrupts and exceptions 41

1.4 RISC-V interrupts and exceptions

RISC-V architecture defines different privilege modes that determine the level of ac-
cess and control a program or process has over the system’s resources. A privileged
mode in a CPU refers to a specific operating mode in which the CPU has access
to various system resources. Privileged modes are often used in modern computer
architectures to ensure the proper operation, security, and control of the system.
Privileged modes are crucial in separating user-level programs from system-level
operations and for managing system security, isolation, and resource allocation. For
example, a modern CPU restricts a user program from accessing system critical
resources (e.g. special CPU registers, memory regions, special instructions, etc.),
while the system programs may access all system resources. Privileged modes are
the mechanism to achieve this differentiation between user-level and system-level
programs. Modern CPUs usually have a separate set of control and status registers
(CSRs) for each privileged mode and a special control register that tells which priv-
ileged mode the CPU is currently running. Depending on the status of this special
control register (i.e. current privileged mode), the CPU can access the correspond-
ing set of CSRs and execute only the instructions allowed in the current privileged
level. For example, if the CPU is currently running in a user-privileged mode, it can
execute only the standard instruction set. At the same time, executing some special
instructions that can alter critical system resources is prohibited. Besides, programs
running in user-privileged mode can never alter the content of this special control
register and thus switch between privileged modes. But wait, how can we change a
privileged mode once the CPU runs in user-privileged mode? Well, it depends on
the current privileged mode:

1. If the CPU runs in user-level privileged mode, the only way to switch to a
system-level privileged mode is through exceptions (traps or interrupts). Excep-
tions can trigger mode transitions. When an exception (a trap or an interrupt)
occurs, the CPU automatically switches to system-level privileged mode, and
the exception handling routine executes in the system-level privileged mode.
Upon exiting the exception handler, the CPU automatically switches to the pre-
vious (e.g., user-level) privileged mode.

2. If the CPU runs in system-level privileged mode, the CPU can switch to a user-
level privileged mode simply by executing a special instruction that alters the
content of the special control register and, hence, changes the current system-
level privileged mode to user-level privileged mode. CPUs have specific in-
structions that are used to initiate mode transitions. These instructions are often
called privileged and can only be executed when the CPU is in a system-level
privileged mode.

42 1 Interrupts and interrupt handling

1.4.1 RISC-V Privileged Modes

In order to be able to understand interrupts and interrupts handling in RISC-V, we’ll
briefly describe and explain the privileged modes in RISC-V. Privileged modes are a
fundamental part of RISC-V’s flexibility, as they enable various operating systems,
hypervisors, and security models to be implemented on the same instruction set
architecture. Here is a brief description and explanation of three basic privileged
modes in RISC-V:

1. User Mode (U): User mode is the lowest privilege mode in RISC-V. In this
mode, a user-level application or program runs with restricted access to system
resources. User mode provides the least privilege and is suitable for application-
level code. In user mode, applications can execute most instructions but have
limited access to privileged instructions and control registers. User mode can
execute basic instructions, access memory, and perform arithmetic operations.
However, it cannot directly manipulate control and status registers (CSRs) re-
lated to exception handling or interrupt control.

2. Supervisor Mode (S): Supervisor mode is a privilege level above user mode.
It is designed for operating system kernel code, which needs greater control
over system resources and privilege to perform tasks like context switching and
managing hardware devices. Supervisor mode has more access to control reg-
isters and instructions compared to user mode. It can perform operations re-
lated to exception handling, interrupt control, and system management. S-mode
can execute privileged instructions that deal with system control and exception
handling. It can access and modify most control and status registers (CSRs),
including those related to interrupts and exceptions.

3. Machine Mode (M): Machine mode is the highest privilege mode in RISC-V. It
provides complete control over the system, including access to all resources and
system-wide configuration. M-mode has full access to all instructions, control
registers, and hardware resources, making it suitable for tasks such as system
initialization, low-level device control, and platform management. M-mode can
execute all RISC-V instructions, including those reserved for privileged and
system-level operations. It can access and modify all control and status registers
(CSRs), and it has control over exceptions and interrupts across all privilege
levels. Upon reset, RISC-V enters machine mode.

The E31 RISC-V core in FE-310 SoC supports only Machine and User privilege
modes. The transition between privilege modes in E31 RISC-V is typically con-
trolled by changing specific bits in control and status registers (CSRs). The machine
mode handles these transitions, ensuring that the processor switches between user
and machine modes appropriately. Additionally, exceptions and interrupts may trig-
ger mode transitions, allowing the processor to respond to exceptional conditions or
external events. As all exceptions (traps and interrupts) execute in Machine mode,
we will restrict the description of exceptions only to this privilege mode.

1.4 RISC-V interrupts and exceptions 43

1.4.2 RISC-V Machine Modes Exceptions

According to the RISC-V Privileged Architecture [?], the E31 RISC-V CPU com-
prises five control and status registers for Machine privilege mode:

1. mstatus: In RISC-V, the mstatus (Machine Status) register is a critical control
and status register (CSR) used to manage and store various information related
to the Machine privilege mode. The mstatus register plays a central role in con-
trolling exception handling, interrupt handling, and the overall operation of the
processor in machine mode. The mstatus register keeps track of and controls
the CPU’s current operating state, including whether or not interrupts are en-
abled. A summary of the mstatus bits related to interrupts in the E31 RISC-V
CPU is provided in Figure 1.19. Note that this is not a complete description

3712 11 031

M
IE

M
PI

E

M
PP

Fig. 1.19: The mstatus register.

of mstatus as it contains fields unrelated to interrupts. For the full descrip-
tion of mstatus, please consult the RISC-V Instruction Set Manual, Volume II:
Privileged Architecture. The mstatus register contains the following exception-
related bits:

a. MIE (Machine Interrupt Enable): This bit controls whether machine-level
interrupts are globally enabled or disabled. When MIE is set, the CPU can
process machine-level interrupts; when it is cleared, machine-level inter-
rupts are disabled.

b. MPIE (Machine Previous Interrupt Enable): This bit stores the previous
state of MIE before it was modified due to an interrupt. It helps manage
interrupt nesting by preserving the previous interrupt-enable state.

c. MPP (Machine Previous Privilege Mode): This two-bit field stores the pre-
vious privilege mode before the CPU entered machine mode due to an in-
terrupt. It is used during return from interrupt to return to the appropriate
privilege mode after processing an interrupt.

2. mie: The mie (Machine Interrupt Enable) register is responsible for enabling or
disabling various types of interrupts that can interrupt the execution of the CPU
in machine mode. Individual interrupts are enabled by setting the appropriate
bit in the mie register. The mie register is depicted in Figure 1.20. The mie
register contains the following bits:

a. MSIE (Machine Software Interrupt Enable): This bit controls whether
machine-level software interrupts are enabled or disabled. When MSIE

44 1 Interrupts and interrupt handling

3712 11 031

M
SI

E

M
TI

E

M
EI

E

Fig. 1.20: The mie register.

is set, the CPU can process machine-level software interrupts; otherwise,
machine-level software interrupts are disabled.

b. MTIE (Machine Timer Interrupt Enable): This bit controls whether
machine-level timer interrupts are enabled or disabled. When MTIE is set,
the CPU can process machine-level timer interrupts.

c. MEIE (Machine External Interrupt Enable): This bit controls whether
machine-level external interrupts are enabled or disabled. When MEIE is
set, the CPU can process machine-level external interrupts.

3. mip: The mip (Machine Interrupt Pending) register indicates which interrupts
are currently pending. The mip register is depicted in Figure 1.21. When an

3712 11 031

M
SI

P

M
TI

P

M
EI

P

Fig. 1.21: The mip register.

interrupt occurs, the corresponding bit in mip is set to 1. When the CPU takes
an interrupt, the corresponding bit in mip is cleared. The mip register contains
the following bits:

a. MSIP (Machine Software Interrupt Pending): When MSIP is set, the Ma-
chine Software Interrupt is pending.

b. MTIP (Machine Timer Interrupt Pending): When MTIP is set, the Machine
Timer Interrupt is pending.

c. MEIP (Machine External Interrupt Pending): When MEIP is set, the Ma-
chineExternal Interrupt is pending.

If more than one interrupt is pending, the RISC-V CPU prioritizes the interrupts
as follows, in decreasing order of priority: Machine External Interrupts (highest
priority), Machine Software Interrupts, and Machine Timer Interrupts (lowest
priority).

4. mcause: In RISC-V architecture, the mcause register is a control and status
register (CSR) that is used to provide information about the cause of an excep-
tion or interrupt that occurred in machine mode. A summary of the mcause bits
related to interrupts in the E31 RISC-V CPU is provided in Figure 1.22. When
a trap is taken in machine mode, the most significant bit in mcause (bit INT) is

1.4 RISC-V interrupts and exceptions 45

910 031

IN
T

30

EXCEPTION CODE

Fig. 1.22: The mcause register.

0, and the ten least-significant bits (EXCEPTION CODE field) are written with
a code indicating the event that caused the trap. When an interrupt is taken, the
most significant bit of mcause (bit INT) is set to 1, and the ten least-significant
bits (EXCEPTION CODE field) contain the interrupt number, using the same
encoding as the bit positions in the mip register. Table 1.3 lists exception codes
and their description. For example, a Machine Timer Interrupt causes mcause
to be set to 0x80000007.

Table 1.3: mcause Exception Codes and their description.

INT EXCEPTION
CODE Description

0 0 Instruction address misaligned
0 1 Instruction access fault
0 2 Illegal instruction
0 3 Breakpoint
0 4 Load address misaligned
0 5 Load access fault
0 6 Store address misaligned
0 7 Store access fault
0 8 Environment call from U-mode
0 11 Environment call from M-mode
1 3 Machine software interrupt
1 7 Machine timer interrupt
1 11 Machine external interrupt

5. mtvec: The mtvec register has two main functions. Firstly, it specifies the base
address for the vector table, which contains the addresses of exception handlers.
Secondly, it sets the mode by which the E31 CPU will process exceptions. The
RISC-V CPU can process exceptions in two modes: direct and vectored. In
direct mode, the mtvec register holds the address of a single global exception
handler. The processor directly jumps to this global handler’s address when a
trap or interrupt occurs. In direct mode, we might use a single handler for all
exceptions, simplifying the exception-handling process. However, it may not be
suitable for systems requiring fine-grained control over exception handling. In
vectored mode, the mtvec register holds the base address of the vector table. In
this mode, the processor uses a 10-bit field in the In mcause register to index
the vector table and find the appropriate handler for the specific trap or interrupt
that occurred. The vectored mode allows more flexibility in handling various
exceptions and interrupts with different routines. In vectored mode, we can have

46 1 Interrupts and interrupt handling

multiple handlers for different exceptions and interrupts, allowing us to handle
each type of exception or interrupt differently. This is often the preferred way
of interrupt handling. The mtvec register is depicted in Figure 1.23. The mtvec

12 031

BASE MODE

Fig. 1.23: The mtvec register.

register contains the following bit fields:

a. MODE: This 2-bit field sets the interrupt processing mode (00-Direct, 01-
Vectored).

b. BASE: This 30-bit field contains the vector table base address. This field
requires 64-byte alignment.

Table 1.4 describes how an address of the exception handler is computed in
two different interrupt processing modes. Direct mode means all interrupts and
exceptions trap to the same handler, and there is no vector table implemented.
It is the handler’s responsibility to execute code to figure out which interrupt
occurred. The handler in direct mode should first read the bit 31 in mcause to
determine if an interrupt or exception occurred. It should then execute appro-
priate code based on the EXCEPTION CODE field in mcause, which contains
the respective interrupt or exception code. Exceptions always use the direct
mode. Hence, all exceptions trap to the same handler. For example, suppose
the BASE is set to 0x20011500. When an exception occurs, the PC is set to
0x20011500, and the first instruction of the exception handler should be at this
address. Vectored mode allows for creating a vector table that hardware uses

Table 1.4: mtvec Modes and Address of Exception Handler Encoding.

MODE
Interrupt
Processing

Mode

Address of
Exception Handler

0 Direct

PC = BASE

NOTE: Exceptions are not vectored. All exceptions trap to the same handler.

The handler executes code to figure out which exception occurred.

1 Vectored

PC = BASE + 4 x mcause[EXCEPTION CODE]

NOTE: BASE must be 64-byte aligned. This is to avoid an adder

in the above computation

for lower interrupt handling latency. Only interrupts can use the vectored

1.4 RISC-V interrupts and exceptions 47

mode. When an interrupt occurs in vectored mode, the PC will get assigned by
the hardware to the address of the vector table index corresponding to the inter-
rupt ID. From the vector table index, a subsequent jump will occur from there to
service the interrupt. The interrupt handler offset is calculated by PC = BASE
+ 4 x mcause[EXCEPTION CODE]. The vectored mode does not require the
software overhead to determine which interrupt occurred. In this mode, when
an interrupt occurs, the execution jumps directly to the vector table offset for the
corresponding interrupt. For example, suppose the global and machine timer in-
terrupts are enabled, and the BASE is set to 0x20011500. If the vectored mode
is selected and a machine timer interrupt occurs, the EXCEPTION CODE in
the mcause register will be 0x07. Then, the address of the interrupt handler
that processes the machine timer interrupts will be 0x20011500 + 4 x 0x07 =
0x20011500 + 0x1C = 0x2001151C. Hence, when the interrupt is taken, the PC
is set to 0x2001151C, and the first instruction of the interrupt handler should be
at this address.

Configuring these five Control and Status Registers registers correctly is crucial
for proper exception handling in RISC-V systems, as they dictate where the proces-
sor should jump when an exception occurs and how exceptions are managed. These
CSRs are not memory-mapped and can only be accessed through special privileged
instructions: csrr and csrw for read and write, respectively. Hence, To work with
these CSRs, developers must use assembly language instructions to read and mod-
ify these registers as needed.

1.4.3 FE-310 Interrupts

The SiFive Freedom E310, also known as FE310, is a microcontroller based on the
RISC-V architecture. It’s designed for embedded and IoT applications and is notable
for being one of the early implementations of the RISC-V ISA. Let us have a deeper
view of interrupts supported in SiFive Freedom E310. The FE310 SoC supports two
types of RISC-V interrupts: local and global. Local interrupts are signalled directly
to the RISC-V E31 CPU with a dedicated interrupt line for each local interrupt. The
RISC-V E31 CPU has three interrupt lines for external, software and timer interrupts
(Figure 1.24). Software and timer interrupts are local interrupts generated by the
Core-Local Interruptor (CLINT). Besides software and timer interrupts, various I/O
devices (e.g., UART, GPIO, etc.) can use global interrupts to activate the external
interrupt line and to interrupt the CPU. Global interrupts from I/O devices are routed
through a Platform-Level Interrupt Controller (PLIC), which will be described later.

The CLINT is a mandatory component in RISC-V processor systems. It’s re-
sponsible for managing timer-related and software-generated interrupts at the core
level. The CLINT generates two interrupts:

48 1 Interrupts and interrupt handling

1

Machine External Interrupt

Machine Software Interrupt

Machine Timer Interrupt

32

3

2

2

12

I2C

3x PWM

GPIO

3x QSPI

2x UART

AON

PLIC

CLINT

E31
RISC-V

Fig. 1.24: FE310 Interrupt Architecture Block Diagram.

1. Machine Timer Interrupts: The CLINT contains a timer called the Machine
Timer, which can generate timer interrupts for various purposes, including time-
keeping, scheduling, and triggering tasks at specific intervals.

2. Machine Software Interrupts: In RISC-V, the software can generate software
interrupts to communicate with the operating system. In general, the program
running in user mode is not allowed to call operating system procedures. Hence,
the only way a user program makes a system call is by generating a software
interrupt. The software interrupt handler running in machine mode then calls an
operating system procedure. The CLINT can be used to handle these software-
generated interrupts.

The CLINT comprises memory-mapped control and status registers related to soft-
ware and timer interrupts. Table 1.5 shows the memory map for CLINT on SiFive
FE310.

Table 1.5: Memory map for CLINT registers on SiFive FE310 SoC.

Address Width Register
0x02000000 4B msip
0x02004000 8B mtimecmp
0x0200BFF8 8B mtime

1.4 RISC-V interrupts and exceptions 49

1.4.3.1 Machine Software Interrupts

A machine software interrupt is an interrupt generated by software running in ma-
chine mode to request attention from the processor for specific tasks or events. Ma-
chine software interrupts are generated by writing ’1’ to the msip register within
CLINT. The msip register is a 32-bit memory-mapped register where the upper 31
bits are hardwired to zero. The least significant bit of the msip register is reflected
in the MSIP bit of the mip register. On reset, the msip register is cleared to zero.

1.4.3.2 Machine Timer Interrupts

CLINT, which is a mandatory part of RISC-V architecture, provides a 64-bit real-
time counter, which monotonically increases at a clock speed, and its content is
visible as a memory-mapped register mtime. In the FE310 SoC, CLINT is respon-
sible for providing the real-time counter. Machine timer interrupt is a local interrupt,
which can be generated by using two architecturally defined timer registers: mtime
and mtimecmp:

1. mtime register: The 64-bit mtime register stores the current value of the 64-bit
timer counter. The software can read this register to determine the current time.

2. mtimecmp register: The mtimecmp register holds a value that is compared
with the mtime register. When mtime reaches the value stored in mtimecmp,
it triggers a timer interrupt. This register is used to set up timer interrupts for
specific time intervals.

In summary, the machine timer generates timer interrupts when the mtime matches
or exceeds the value stored in the mtimecmp register. This feature is crucial for
implementing preemptive multitasking, where the processor can switch between
tasks at predefined time intervals.

1.4.4 Interrupt Entry and Exit

Interrupt entry and exit refer to the processes by which a RISC-V processor handles
interrupts. These processes involve transitioning from regular program execution to
an interrupt handler and returning to regular program execution after the interrupt is
serviced. In the following subsections, we describe and explain interrupt entry and
exit in RISC-V.

1.4.4.1 Interrupt Entry

When a machine interrupt occurs:

50 1 Interrupts and interrupt handling

1. The value of the MIE bit in mstatus is copied into the MPIE bit in mstatus,
and then MIE is cleared, effectively disabling interrupts.

2. The privilege mode prior to the interrupt is saved in the MPP field in mstatus.
3. The cause of the interrupt is encoded into EXCEPTION CODE in mcause.
4. The current PC is copied into the mepc register, and then the PC is set to the

value specified by mtvec as described in Table 1.4.

At this point, control is handed over to software in the interrupt handler with
interrupts disabled. Interrupts can be re-enabled by explicitly setting the MIE bit in
mstatus or by executing an mret instruction to exit the handler.

1.4.4.2 Interrupt Exit

To exit from a machine interrupt, the mret instruction must be executed at the end
of the interrupt handler. When a mret instruction is executed, the following occurs:

1. The privilege mode is set to the value encoded in the MPP field in mstatus.
2. In the mstatus register, the MIE bit is set to the value of MPIE.
3. The PC is set to the value of mepc, hence pointing to the instruction, which was

interrupted.

At this point, control is handed over to the previously interrupted program.

1.4.5 Implementing Vector Table and Handlers

Implementing a vector table and handlers in assembly language for RISC-V in-
volves setting up a program structure to store the addresses of exception handlers
and configuring the system to use this table when exceptions occur to jump to the
interrupt-specific handler. Below are the steps to implement an exception table and
handlers in RISC-V assembly:

1. Define the Vector Table: Create a program structure that serves as the vector
table. As we have learned, the address of the first instruction of an interrupt han-
dler is calculated using the BASE address of the vector table and the exception
cause (Table 1.4). Each entry in the vector table occupies exactly 4 bytes, and
there is only room for one instruction per handler in the vector table. Therefore,
the only instructions in the exception table should be the jump instructions that
transfer control to an interrupt-specific handler. An example of the vector table
is as follows:
The vector table is populated with jump instructions to transfer con-
trol to interrupt-specific handlers. For example, the jump instruction (j
_mtim_interrupt_handler) that causes the jump to the timer interrupt han-
dler is placed at the offset 7 x 4 = 0x1C from the beginning of the vector table.
So when a machine timer interrupt occurs, the PC is set to BASE + 0x1C and
the CPU will execute the j _mtim_interrupt_handler instruction.

1.4 RISC-V interrupts and exceptions 51

1 # ---------------------------------
2 #
3 # V E C T O R T A B L E
4 #
5 # must be 64-byte aligned.
6 # ---------------------------------
7

8 .balign 64
9 .global _vector_table

10 _vector_table: # BASE
11 j _default_handler
12 j _default_handler
13 j _default_handler
14 # -----------------------------
15 j _msw_interrupt_handler # 3
16 # -----------------------------
17 j _default_handler
18 j _default_handler
19 j _default_handler
20 # -----------------------------
21 j _mtim_interrupt_handler # 7
22 # -----------------------------
23 j _default_handler
24 j _default_handler
25 j _default_handler
26 # -----------------------------
27 j _mext_interrupt_handler # 11
28 # -----------------------------

Listing 1.22: A vector table for E31 RISC-V.

We can see from Listing 1.22 that besides the jump instructions to exception
handlers for software, timer and external interrupts, there is also a jump instruc-
tion to _default_handler in all other entries in the vector table. We have
already learned that there are only three interrupt sources in FE310 SOC (soft-
ware, timer and external), so why do we need the fourth interrupt handler _de-
fault_handler? This is to ensure that in case of a trap (INT=0 in mcause),
the CPU executes _default_handler.

2. Register the Base Vector Table Address: We should configure the mtvec reg-
ister to point to the exception table. Also, we should set the preferred interrupt
processing mode in mtvec. Listing 1.23 presents the RISC-V assembly code to
register the base address and to select the vectored mode:

1 # ---------------------------------------
2 # Register the base address for vector table
3 # in mtvec
4 #
5 # @arguments :
6 # # a0 - interrupt vector table base address
7 # # a1 - interrupt processing mode
8 # (0x0 - direct , 0x1 - vectored)
9 # ---------------------------------------

10 .balign 4
11 .global register_handler
12 .type register_handler , @function
13 register_handler:
14 # prologue:
15 addi sp, sp, -16 # Allocate the routine
16 # stack frame
17 sw ra, 12(sp) # Save the return address

52 1 Interrupts and interrupt handling

18 sw fp, 8(sp) # Save the frame pointer
19 sw s1, 4(sp)
20 sw s2, 0(sp)
21 addi fp, sp, 16 # Set the framepointer
22

23 or a0, a0, a1 # OR base address with mode
24 csrw mtvec , a0 # and save into mtvec
25

26 # epilogue:
27 lw s2, 0(sp)
28 lw s1, 4(sp)
29 lw fp, 8(sp) # restore the frame pointer
30 lw ra, 12(sp) # restore the return address
31 addi sp, sp, 16 # de -allocate the routine
32 # stack frame
33 ret

Listing 1.23: Assembly function for registering the vector table base addreess.

3.
4. Define Exception/Interrupt Handler: Write the exception/interrupt handler

routines in assembly language. Each handler should be a separate section of
code that corresponds to a specific exception type and ends with the mret in-
struction. The prologue of an interrupt handler usually begins with saving the
registers onto the stack to avoid overwriting the contents of the saved registers
(s0-s11). After the body of the exception handler executes, the epilogue of an
interrupt handler restores the saved registers from the stack. Finally, the handler
returns with mret, an instruction unique to machine mode. The mret instruc-
tion restores the PC from mepc, the previous interrupt-enable setting, and the
privilege mode as described in Subsection 1.4.4.2. For example, the following
code (Listing 1.24) presents the RISC-V assembly code for a machine timer
interrupt handler:

1 # --
2 # Machine Timer Interrupt Handler
3 # --
4 .balign 4
5 .global _mtim_interrupt_handler
6 _mtim_interrupt_handler:
7

8 # Prologue :
9 # save 16 ABI caller registers

10 # (ra , t0 -t6 , a0 -a7)
11 addi sp, sp, -16*4 # Allocate the routine stack frame
12 sw t0, 0*4(sp)
13 sw t1, 1*4(sp)
14 sw t2, 2*4(sp)
15 sw t3, 3*4(sp)
16 sw t4, 4*4(sp)
17 sw t5, 5*4(sp)
18 sw t6, 6*4(sp)
19 sw a0, 7*4(sp)
20 sw a1, 8*4(sp)
21 sw a2, 9*4(sp)
22 sw a3, 10*4(sp)
23 sw a4, 11*4(sp)
24 sw a5, 12*4(sp)
25 sw a6, 13*4(sp)
26 sw a7, 14*4(sp)

1.4 RISC-V interrupts and exceptions 53

27 sw ra, 15*4(sp)
28

29 # Decode interrupt cause
30 csrr t0, mcause # read exception cause
31 bgez t0, 1f # exit if not an interrupt
32

33 # Increment timer compare by 1000 cycles
34 li t0, 0x0200 BFF8 # load the mtime address
35 lw t1, 0(t0) # load mtime (LO)
36 lw t2, 4(t0) # load mtime (HI)
37 li t3, 1000 # load 1000 cycles
38 add t3, t1 , t3 # increment lower bits by 1000
39 sltu t1, t3, t1 # generate carry -out
40 add t2, t2 , t1 # increment upper bits with carry
41

42 li t0, 0x02004000 # load the mtimecmp address
43 sw t3, 0(t0) # update mtimecmp (LO)
44 sw t2, 4(t0) # update mtimecmp (HI)
45

46 1:
47 # Epilogue: restore ABI caller regs
48 lw t0, 0*4(sp)
49 lw t1, 1*4(sp)
50 lw t2, 2*4(sp)
51 lw t3, 3*4(sp)
52 lw t4, 4*4(sp)
53 lw t5, 5*4(sp)
54 lw t6, 6*4(sp)
55 lw a0, 7*4(sp)
56 lw a1, 8*4(sp)
57 lw a2, 9*4(sp)
58 lw a3, 10*4(sp)
59 lw a4, 11*4(sp)
60 lw a5, 12*4(sp)
61 lw a6, 13*4(sp)
62 lw a7, 14*4(sp)
63 lw ra, 15*4(sp)
64 addi sp, sp, 16*4 # de -allocate the routine stack frame
65 mret

Listing 1.24: Assembly code for the machine timer interrupt.

The code in Listing 1.24 assumes that interrupts are globally enabled in mstatus
(MIE=1), that timer interrupts have been enabled in mie, and that mtvec has
been set to the base address of the vector table with the interrupt processing
mode set to vectored. The prologue preserves 16 registers according to RISC-
V ABI (Application Binary Interface). You may find this a little odd — why
waste 16 instructions and 64 bytes in memory to save these registers? Well,
it turns out there is a very good reason we do this. When writing an interrupt
handler in RISC-V assembly language, it’s essential to save and restore the
necessary registers to ensure the proper operation of the interrupted program.
The specific registers that should be saved onto the stack can vary depending on
the RISC-V privilege mode, the interrupt source, and the calling conventions of
the platform. However, here’s a general guideline for which registers we should
consider saving:

a. ra register stores the return address for function calls. Saving and restor-
ing this register ensures that control can return correctly to the interrupted
program.

54 1 Interrupts and interrupt handling

b. Caller-Saved Registers t0-t6 can be freely modified by the caller (inter-
rupted program) without the caller being responsible for saving their origi-
nal values. If the interrupt handler modifies any of these registers, we should
save and restore them to maintain the integrity of the interrupted program.

c. Stack Pointer when the interrupt handler needs additional stack space. In
such a case, we need to save and restore the stack pointer to ensure that
stack operations do not interfere with the interrupted program’s stack.

d. Other Registers Used by the Interrupt Handler. Depending on the spe-
cific needs of the interrupt handler, we may use additional registers for tem-
porary storage or calculations or for passing arguments. If these registers
are modified, we should save and restore them.

After the prologue, the handler decodes the exception cause by examining
mcause: interrupt if mcause < 0, trap otherwise. Then, it simply increments
the time comparator so that the next timer interrupt occurs about 1000 timer cy-
cles in the future. The handler is not preemptible, as it keeps interrupts disabled
throughout the handler. Finally, the epilogue restores saved registers and returns
with mret.
We can also write interrupt handlers in C. To write an interrupt handler in C for
a RISC-V-based system, we typically need to use a combination of assembly
language and C code. For example, reading and writing CSRs (e.g., mcause) is
only possible with the special csrr, csrw instructions; hence, we are forced to
use assembly language for such operations. The exact details of how to imple-
ment interrupt handlers in C can vary depending on your platform and compiler,
but we will give a general outline of how to write an interrupt handler in C for
a RISC-V system:

a. Mark the Function as an Interrupt Handler: Usually, we use compiler-
specific attributes or pragmas to mark the function as an interrupt handler.
This attribute is crucial for the compiler to generate prologue and epilogue
sequences for an interrupt handler and to put the mret instruction at the
end of the generated code. The following C code presents how to mark a
function as an interrupt handler:

1 /*
* Use " interrupt" attribute to indicate that the specified

3 * function is an interrupt handler.
* The compiler generates function entry and exit

5 * sequences suitable for use in an interrupt handler
* when this attribute is present.

7 */

9 __attribute__ ((interrupt)) void interrupt_handler(void) {
// Interrupt handling code

11 }

Listing 1.25: Interrupt handler function in C.

b. Use inline assembly for accessing CSRs: To read/write the CSRs registers
in RISC-V, we should use inline assembly. The exact details of how to use

1.4 RISC-V interrupts and exceptions 55

inline assembly depend on the compiler, so we should always consult the
compiler manual. Here is an example of how to write inline assembly to
read the mcause register in C:

1 unsigned int mcause_value;

3 // Inline assembly to read mcause
asm volatile(

5 "csrr %0, mcause" // Read mcause into %0
: "=r" (mcause_value) // Output : mcause_value

7);

Listing 1.26: Inline assembly to read mcause.

The volatile qualifier is necessary as GCC optimizers sometimes discard
asm statements if they determine there is no need for the output variables.
Using the volatile qualifier disables these optimizations.

Listing 1.27) presents the machine timer interrupt handler.

1 unsigned int *pMTime = (unsigned int *)0x0200bff8;
unsigned int *pMTimeCmp = (unsigned int *)0x02004000;

3

__attribute__ ((interrupt)) void mtime__handler (void) {
5

unsigneg int mcause_value;
7 // Decode interrupt cause:

// Non memory -mapped CSR registers can only be accessed
9 // using special CSR instructions . Hence , we should use

// inline assembly:
11 __asm__ volatile ("csrr %0, mcause"

: "=r" (mcause_value) /* output */
13 : /* input : none */

: /* clobbers: none */
15);

17 if (mcause_value & 0x8000007) { // mtime interrupt !
// Increment timer compare by 500 ms:

19 *pMTimeCmp = *pMTime + 16384;
}

21 }

Listing 1.27: Machine timer interrupt handler in C.

5. Enable Global Interrupts: To enable machine-level interrupts, we should set
the MIE bit in the mstatus register. The following code (Listing 1.28) presents
the RISC-V assembly code to enable global machine-level interrupts :

1

2 .equ MSTATUS_MIE_BIT_MASK , 0x00000008 # bit 3
3

4 # ---------------------------------------
5 # Enable global interrupts in mstatus
6 # ---------------------------------------
7 .balign 4
8 .global enable_global_interrupts
9 .type enable_global_interrupts , @function

10 enable_global_interrupts:

56 1 Interrupts and interrupt handling

11 # prologue:
12 addi sp, sp, -16 # Allocate the routine
13 # stack frame
14 sw ra, 12(sp) # Save the return address
15 sw fp, 8(sp) # Save the frame pointer
16 sw s1, 4(sp)
17 sw s2, 0(sp)
18 addi fp, sp, 16 # Set the framepointer
19

20 li t0, MSTATUS_MIE_BIT_MASK
21 csrs mstatus , t0 # set the MIE bit in mstatus
22

23 # epilogue:
24 lw s2, 0(sp)
25 lw s1, 4(sp)
26 lw fp, 8(sp) # restore the frame pointer
27 lw ra, 12(sp) # restore the return address
28 addi sp, sp, 16 # de -allocate the routine
29 # stack frame
30 ret

Listing 1.28: Assembly function for enabling global interrupts in the mstatus
register.

6. Enable Particular Interrupt: Depending on what particular interrupt (soft-
ware, timer or external) we would like to enable, we should set an appropriate
bit in the mie register. Listing 1.29 presents the RISC-V assembly code to en-
able the machine timer interrupt:

1

2 .equ MIE_MTIE_BIT_MASK , 0x00000080 # bit 7
3

4 # ---------------------------------------
5 # Enable machine timer interrupt in mie
6 # ---------------------------------------
7

8 .balign 4
9 .global enable_mtimer_interrupt

10 .type enable_mtimer_interrupt , @function
11 enable_mtimer_interrupt:
12 # prologue:
13 addi sp, sp, -16 # Allocate the routine
14 # stack frame
15 sw ra, 12(sp) # Save the return address
16 sw fp, 8(sp) # Save the frame pointer
17 sw s1, 4(sp)
18 sw s2, 0(sp)
19 addi fp, sp, 16 # Set the framepointer
20

21 li t0, MIE_MTIE_BIT_MASK
22 csrs mie , t0 # set MTIE in mie
23

24 # epilogue :
25 lw s2, 0(sp)
26 lw s1, 4(sp)
27 lw fp, 8(sp) # restore the frame pointer
28 lw ra, 12(sp) # restore the return address
29 addi sp, sp, 16 # de -allocate the routine
30 # stack frame
31 ret

Listing 1.29: Assembly function for enabling the machine timer interrup in the mie
register.

1.4 RISC-V interrupts and exceptions 57

1.4.6 Case study: A simple task scheduler on RISC-V based FE310

Having delved into the intricacies of context switching on the ARM Cortex-M7
architecture, we now embark on a compelling journey to explore the analogous pro-
cess on the RISC-V architecture. Our exploration of context switching on ARM
Cortex-M7 processors has given us insights into the nuanced dance of saving and
restoring task states, managing interrupts, and orchestrating seamless transitions be-
tween tasks. Now, with the backdrop of ARM’s methodologies, we set our sights on
RISC-V—a modular and versatile architecture that captivates developers and re-
searchers alike with its openness and adaptability. In our previous foray into ARM
Cortex-M7, we uncovered the distinctive features of the ARM Cortex-M7 architec-
ture. We navigated the intricacies of saving and restoring register states, mitigating
interruptions, and steering the efficient flow of tasks. Armed with this knowledge,
we are ready to apply these principles to the RISC-V. By understanding the parallels
and distinctions between ARM Cortex-M7 and RISC-V, we are poised to master the
art of crafting efficient and tailored context-switching routines for diverse comput-
ing environments.

Recall that context switching, a pivotal aspect of modern computing, is a pro-
cess that allows a system to seamlessly transition between multiple tasks, ensuring
responsiveness and the efficient use of computational resources. Exploring context
switching in the RISC-V architecture unveils a journey through the intricacies of
multitasking and efficient resource utilization on RISC-V, characterized by its sim-
plicity, modularity, and open design philosophy, which provides a flexible canvas
for implementing context-switching mechanisms.

Contrasting RISC-V’s approach to context switching with the ARM Cortex-M7,
notable differences emerge. We have learned that the ARM Cortex-M7 employs
a specific set of registers (e.g. banked stack pointer) and a dedicated interrupt-
handling mechanism to facilitate context switching. Its unique stack frame format
and the presence of two different stack pointers, one for tasks (PSP) and one for in-
terrupt handlers (MSP), contribute to efficient task switching. Another key distinc-
tion lies in the register sets used during context switching. While both architectures
involve saving and restoring register values, the specific registers and their organi-
zation differ. Understanding the intricacies of register usage in each architecture is
crucial for crafting efficient context-switching routines.

This case study explores the intricacies of context switching in the RISC-V ar-
chitecture, delving into its underlying mechanisms and the challenges involved in
orchestrating efficient task transitions.

1.4.6.1 Background

A simple round-robin task scheduler (Figure 1.25) on RISC-V-based FE310 pro-
cessors effectively manages multiple tasks or threads in a cooperative multitasking
environment. In this scheduler, each task is given a fixed time slice (quantum) dur-
ing which it can execute. When its time slice expires, the scheduler switches to the

58 1 Interrupts and interrupt handling

Task0 Task1 Task2 Task3

Context
switch

Context
switch

Context
switch

Context
switch

Task0

Mode

Time

mtime handler

Time slice Time slice Time slice Time slice

mtime mtime mtime mtime mtime

Fig. 1.25: A simple task scheduler on RISC-V based FE310.

next task in the queue. The task scheduler relies on the interrupts and stacks to
achieve context switching. The machine timer (mtime) interrupts will be used for
context switching.

When switching contexts, the scheduler needs a way to keep track of which tasks
are doing what using a task table. Recall from the previous sections that the ARM
Cortex-M7 processor has two separate stack pointers, allowing stack separation be-
tween the kernel and tasks, which in turn simplifies the context switch procedure.
RISC-V-based FE-310 has only one stack pointer, which slightly complicates the
context switching and forces us to carefully manage the stack within the interrupt
handler. Besides, both tasks and kernel will run in machine mode.

Task1 Task2

Mode

Time
Time slice

mtime

PUSH Task1
registers

x1-x31, epc, mstatus

Save SP
into

Task1 TCB

Select
next
task

Load SP
from

Task2 TCB

POP Task2
registers

x1-x31, epc, mstatus

Machine Timer Handler

mtime

Interrupt handler

Tasks

Fig. 1.26: A simple task scheduler.

Figure 1.26 shows the scheduler operations during a context switch in more de-
tail. When a Machine Timer interrupt occurs, the execution switches to the machine
timer interrupt handler. Once in the machine timer interrupt handler, the scheduler
pushes the interrupted Task1 registers x1 (return address), x5-x31, epc, and mstatus
onto the task’s stack and saves its SP in the task’s TCB. Contrary to ARM-Cortex

1.4 RISC-V interrupts and exceptions 59

M7, RISC-V does not automatically save critical registers (i.e. it does not implement
hardware stacking). Upon interrupt entry, RISC-V only saves the return address into
epc and the status of the interrupted procedure into mstatus. Hence, the interrupt
handler is responsible for saving the complete context of the interrupted task: regis-
ters x1, x5-x31, return address contained in epc and the processor status before the
interrupt occurred (contained in mstatus).

Then, the scheduler selects the next task (Task2) in a round-robin fashion. Before
returning from the machine timer interrupt handler, the scheduler is responsible for
loading the Task2 SP and restoring the Task2 context (x1, x5-x31, epc, and mstatus)
from the Task2 stack. Finally, upon interrupt exit, mepc is copied to pc and the
execution returns to the new task, Task2.

As we have already learned, three routines are required to implement and run
the scheduler: create new tasks, initialize tasks, and perform the context switch.
Besides, several data structures are required to implement and manage the stack for
each task and represent each task’s state. The stack region used to implement the
tasks’ stacks, and the task control block are the same as in the Subsection 1.3.7. The
following subsections provide a step-by-step description of implementing a simple
round-robin scheduler on a RISC-V-based FE310 processor.

1.4.6.2 Task creation

The TaskCreate() function saves the address of the task’s stack and the address
of the task’s function into the task’s TCB.

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d6c

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x80000d6c

pTaskFunction= 0x200110be

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

Fig. 1.27: Memory layout and content after calling the TaskCreate() function.

60 1 Interrupts and interrupt handling

The following code presents the function used to create a new task:

1 void TaskCreate(TCB_Type* pTCB ,
unsigned int* pTaskStackBase ,

3 void (* TaskFunction)()){

5 pTCB ->sp = (unsigned int*) pTaskStackBase;
pTCB ->pTaskFunction = TaskFunction;

7 }

Listing 1.30: The function TaskCreate() that creates a new task.

The parameters of the above TaskCreate() function are:

• pTCB - a pointer to a task’s TCB,
• pStackBase - pointer task’s stack block,
• TaskFunction - address of a task’s function.

Figure 1.27 illustrates the memory layout and the contents of the task’s stack and
TCB after creating Task1 using the TaskCreate() function.

1.4.6.3 Task initialisation

The following code presents the function used to initialize a new task:

1 void TaskInit(TCB_Type* pTCB){
Context_TypeDef* pStackFrame;

3

// Make the room for the stack frame and
5 // set pointer to the top of stack frame:

pStackFrame = (Context_TypeDef *)((void*)pTCB ->sp -
7 sizeof(Context_TypeDef));

9 // populate Stack Frame
pStackFrame ->mepc = (unsigned int) (pTCB ->pTaskFunction);

11 pStackFrame ->x1 = 0xFFFFFFFF; // (ra: task never exits)
pStackFrame ->mstatus = (0x03 << 11) | (0x01 << 7); // value 0x1880

13

// Set task ’s stack pointer in the TCB to point at the top of the
15 // task ’s SW stack frame

pTCB ->sp = (unsigned int*) pStackFrame;
17 }

Listing 1.31: The function TaskInit() that creates a new task.

The only parameter of the above TaskInit() function is a pointer to a task’s TCB.
The TaskInit() function performs the following steps:

1. Initialise the pointer to the stack frame. The stack frame will hold the task’s
context. We need to prepare the stack frame for each new task so that when the
task switch occurs, the frame will be ready for de-stacking and, hence, entering
a new task. To make this task easier, we will abstract the stack frame with the
following C structure:

1.4 RISC-V interrupts and exceptions 61

1 /*
* The RISC -V context is saved in the following stack frame ,

3 * where the global(tp) and thread (tp) pointers
* are currently assumed to be constant so are not saved:

5 */
typedef struct{

7 unsigned int mepc; // (sp +0)
unsigned int x1; // (sp +1)

9 unsigned int t5; // (sp +2)
unsigned int x6; // (sp +3)

11 unsigned int x7; // (sp +4)
unsigned int x8; // (sp +5)

13 unsigned int x9; // (sp +6)
unsigned int x10; // (sp +7)

15 unsigned int x11; // (sp +8)
unsigned int x12; // (sp +9)

17 unsigned int x13; // (sp +10)
unsigned int x14; // (sp +11)

19 unsigned int x15; // (sp +12)
unsigned int x16; // (sp +13)

21 unsigned int x17; // (sp +14)
unsigned int x18; // (sp +15)

23 unsigned int x19; // (sp +16)
unsigned int x20; // (sp +17)

25 unsigned int x21; // (sp +18)
unsigned int x22; // (sp +19)

27 unsigned int x23; // (sp +20)
unsigned int x24; // (sp +21)

29 unsigned int x25; // (sp +22)
unsigned int x26; // (sp +23)

31 unsigned int x27; // (sp +24)
unsigned int x28; // (sp +25)

33 unsigned int x29; // (sp +26)
unsigned int x30; // (sp +27)

35 unsigned int x31; // (sp +28)
unsigned int mstatus; // (sp +29)

37 unsigned int unused1; // (sp +30)
unsigned int unused2; // (sp +31)

39 } Context_TypeDef;

Listing 1.32: A C structure used to abstract the task’s stack frame.

2. Now, as the pointer to the stack frame, pStackFrame, is set, we can populate
the frames with initial values. The stack frame is populated as follows:

• mstatus = 0x00001880. We set the task’s previous privilege level (field
MPP in mstatus) to ’11’ (machine mode), and the task’s previous interrupt
flag MPIE to ’1’.

• mepc = the address of the task,
• x1 (ra) = 0xFFFFFFFF - in our case, tasks never finish, so the return address

is set to 0xFFFFFFFF.

3. Finally, it saves the address of the top of the stack frame into the task’s SP entry
in the task’s TCB.

After these steps, a new task is ready to be executed for the first time when the
task switch occurs, and the task is selected for execution. Figure 1.28 illustrates the
memory layout and the contents of the task’s stack and TCB after creating Task1
using the TaskInit() function.

62 1 Interrupts and interrupt handling

mstatus = 0x00001880
x31
x30
x29
x28

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d6c

x8
x7
x6
x5

ra = 0xffffffff
epc = 0x200110be

0x80000cec

Task 1 stack (SRAM)

SRAM

Task 1 TCB (SRAM)

sp = 0x80000cec

pTaskFunction= 0x200110be

Task1 (FLASH)

void Task1(){
 while(1){
 . . .
 }
}

0x200110be

Fig. 1.28: Memory layout and content after calling the TaskInit() function.

1.4.6.4 Scheduler initialisation

The following code presents the function used to initialize all tasks:

1 void InitScheduler(unsigned int* pStackRegion , TCB_Type pTCB[],
void (* TaskFunctions [])()){

3 unsigned int* pTaskStackBase;

5 // 1. create all tasks:
for(int i=0; i<NTASKS; i++){

7 pTaskStackBase = pStackRegion +
(i+1)*TASK_STACK_SIZE;

9 TaskCreate (&pTCB[i], pTaskStackBase ,
TaskFunctions[i]);

11 }

13 // 2. initialize all tasks:
for(int i=0; i<NTASKS; i++){

15 TaskInit (&pTCB[i]);
}

17 }

Listing 1.33: The function InitScheduler() creates and initializes all tasks.

The function InitScheduler() performs the following steps:

1. Creates all tasks.
2. Initializes all tasks

After these steps, everything is set up for the first context switch. Figure 1.29 illus-

1.4 RISC-V interrupts and exceptions 63

mstatus=0x00001880
x31
x30
x29

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80000d60

x6
x5

ra = 0xffffffff
epc=0x20011052

0x80000ce0

D
ec

re
as

in
g

m
em

or
y

ad
re

ss
es

0x80001160

0x800010e0

Task 1 stack

Task 2 stack

0x20011012

0x20011052

void Task0(){
 while(1){
 ...
 }
}

void Task1(){
 while(1){
 ...
 }
}

FLASH

Task 0 stack

Task 1 stack

Task 3 stack

Task 2 stack

void Task2(){
 while(1){
 ...
 }
}

void Task3(){
 while(1){
 ...
 }
}

0x2001105e

0x200110a8

Task 3 TCB

SP=0x800014e0

Task 2 TCB

SP=0x800010e0

Task 1 TCB

SP=0x80000ce0

Task 0 TCB

SP=0x800008e0 StackRegion=
0x80000560

SRAM
TCBs

mstatus=0x00001880
x31
x30
x29

x6
x5

ra = 0xffffffff
epc=0x20011052

Fig. 1.29: Memory layout and content after initializing four tasks during the sched-
uler initialization.

trates the memory layout and the task’s stack after initializing the scheduler using
the InitScheduler() function.

1.4.6.5 Machine timer interrupt handler

Finally, we can implement the machine timer interrupt handler that will perform
the task switch. Contrary to ARM Cortex-M7, RISC-V does not have two separate
stack pointers for handlers and user programs. Hence, interrupt handlers on RISC-
V-based FE310 use the same stack pointer as interrupted tasks. If we implemented
the machine timer interrupt handler in C, the stack pointer would become corrupted
by the interrupt handler itself because the C compiler would generate the prologue
code according to the calling convention. On the other hand, assembly language
enables precise management of the stack pointer, allowing for the preservation of
the current task’s context and the restoration of the new task’s context. Therefore, an
interrupt handler used for context switching on a RISC-V-based processor should be
written in assembly language. Here is the machine interrupt handler used for context
switching:

1 /*---------------------------------------
2 Machine Timer Interrupt Handler
3 ---------------------------------------*/

64 1 Interrupts and interrupt handling

4 .balign 4, 0
5 .global _mtim_interrupt_handler
6 _mtim_interrupt_handler:
7 # Save context:
8 __macro_SAVE_CONTEXT
9

10 # Increment time slice (tick)
11 __macro_INCREMENT_TICK
12

13 # switch context
14 __macro_SWITCH_CONTEXT
15

16 2:
17 # Restore context
18 __macro_RESTORE_CONTEXT
19

20 mret

Listing 1.34: The machine timer interrupt handler used to perform task switch.

The machine timer interrupt handler performs the following steps:

1. Saves the context of the interrupted task on the task’s stack using the
__macro_SAVE_CONTEXT macro, defined as:

1 .macro __macro_SAVE_CONTEXT
2 addi sp, sp, -CONTEXT_SIZE
3 sw x1, 1* WORD_SIZE(sp)
4 sw x5, 2* WORD_SIZE(sp)
5 sw x6, 3* WORD_SIZE(sp)
6 sw x7, 4* WORD_SIZE(sp)
7 sw x8, 5* WORD_SIZE(sp)
8 sw x9, 6* WORD_SIZE(sp)
9 sw x10, 7* WORD_SIZE(sp)

10 sw x11, 8* WORD_SIZE(sp)
11 sw x12, 9* WORD_SIZE(sp)
12 sw x13, 10* WORD_SIZE(sp)
13 sw x14, 11* WORD_SIZE(sp)
14 sw x15, 12* WORD_SIZE(sp)
15 sw x16, 13* WORD_SIZE(sp)
16 sw x17, 14* WORD_SIZE(sp)
17 sw x18, 15* WORD_SIZE(sp)
18 sw x19, 16* WORD_SIZE(sp)
19 sw x20, 17* WORD_SIZE(sp)
20 sw x21, 18* WORD_SIZE(sp)
21 sw x22, 19* WORD_SIZE(sp)
22 sw x23, 20* WORD_SIZE(sp)
23 sw x24, 21* WORD_SIZE(sp)
24 sw x25, 22* WORD_SIZE(sp)
25 sw x26, 23* WORD_SIZE(sp)
26 sw x27, 24* WORD_SIZE(sp)
27 sw x28, 25* WORD_SIZE(sp)
28 sw x29, 26* WORD_SIZE(sp)
29 sw x30, 27* WORD_SIZE(sp)
30 sw x31, 28* WORD_SIZE(sp)
31

32 csrr t0, mepc
33 sw t0, 0* WORD_SIZE(sp)
34 csrr t0, mstatus
35 sw t0, 29* WORD_SIZE(sp)
36 .endm

Listing 1.35: __macro_SAVE_CONTEXT macro.

1.4 RISC-V interrupts and exceptions 65

2. Increments the time slice using the __macro_INCREMENT_TICK macro:

1 .macro __macro_INCREMENT_TICK
2 # Increment timer compare by TIME_SLICE cycles
3 la t0, CLINT_MTIME # load the mtime address
4 lw t1, 0(t0) # load mtime (LO)
5 lw t2, 4(t0) # load mtime (HI)
6 li t3, TIME_SLICE
7 add t3, t1 , t3 # increment lower bits
8 # by TIME_SLICE cycles
9 sltu t1, t3, t1 # generate carry -out

10 add t2, t2 , t1 # add carry to upper bits
11 la t0, CLINT_MTIME_CMP
12 sw t3, 0(t0) # update mtimecmp (LO)
13 sw t2, 4(t0) # update mtimecmp (HI)
14 .endm

Listing 1.36: __macro_INCREMENT_TICK macro.

3. Switch context (swap stack pointers) using the __macro_SWITCH_CONTEXT:

1 .macro __macro_SWITCH_CONTEXT
2 la t0, current_task
3 lw t1, 0(t0) # t1 holds current_task
4 sll t4, t1 , 3 # t4 = t1 * 8
5 la t5, TCB # t5 <- &TCB [0]
6 add t5, t5 , t4 # t5 <- &TCB[current_task]
7 sw sp, 0(t5) # save sp of the current
8 # task
9

10 # select a new task in round -robin:
11 addi t1, t1, 1
12 li t2, NTASKS
13 bne t1, t2 , 1f
14 li t1, 0
15 1: sw t1, 0(t0)
16

17 sll t4, t1 , 3 # t4 = t1 * 8
18 la t5, TCB # t5 <- &TCB [0]
19 add t5, t5 , t4 # t5 <- &TCB[current_task]
20 lw sp, 0(t5) # load sp of the current -

task
21 .endm

Listing 1.37: __macro_SWITCH_CONTEXT macro.

4. Restores the context of the new task from its stack using the
__macro_RESTORE_CONTEXT macro:

1 .macro __macro_RESTORE_CONTEXT
2 lw t0, 0* WORD_SIZE(sp)
3 csrw mepc , t0
4 lw t0, 29* WORD_SIZE(sp)
5 csrw mstatus , t0
6

7 lw x1, 1* WORD_SIZE(sp)
8 lw x5, 2* WORD_SIZE(sp)
9 lw x6, 3* WORD_SIZE(sp)

10 lw x7, 4* WORD_SIZE(sp)
11 lw x8, 5* WORD_SIZE(sp)
12 lw x9, 6* WORD_SIZE(sp)

66 1 Interrupts and interrupt handling

13 lw x10, 7* WORD_SIZE(sp)
14 lw x11, 8* WORD_SIZE(sp)
15 lw x12, 9* WORD_SIZE(sp)
16 lw x13, 10* WORD_SIZE(sp)
17 lw x14, 11* WORD_SIZE(sp)
18 lw x15, 12* WORD_SIZE(sp)
19 lw x16, 13* WORD_SIZE(sp)
20 lw x17, 14* WORD_SIZE(sp)
21 lw x18, 15* WORD_SIZE(sp)
22 lw x19, 16* WORD_SIZE(sp)
23 lw x20, 17* WORD_SIZE(sp)
24 lw x21, 18* WORD_SIZE(sp)
25 lw x22, 19* WORD_SIZE(sp)
26 lw x23, 20* WORD_SIZE(sp)
27 lw x24, 21* WORD_SIZE(sp)
28 lw x25, 22* WORD_SIZE(sp)
29 lw x26, 23* WORD_SIZE(sp)
30 lw x27, 24* WORD_SIZE(sp)
31 lw x28, 25* WORD_SIZE(sp)
32 lw x29, 26* WORD_SIZE(sp)
33 lw x30, 27* WORD_SIZE(sp)
34 lw x31, 28* WORD_SIZE(sp)
35 addi sp, sp, CONTEXT_SIZE
36 .endm

Listing 1.38: __macro_RESTORE_CONTEXT macro.

1.4.6.6 Using the environment call (ecall) exception to start the scheduler

We have already learned that instead of directly calling the first task (Task0) from
the main function, the scheduler should rely on the exception return to start the first
task. For this purpose, we can use the environment call exception. In the RISC-
V architecture, environment calls, often abbreviated as "ecalls," are a mechanism
by which a user-level program can request services or system functions from the
kernel. The ecall instruction initiates an environment call. This instruction triggers
an exception, which is trapped at the exception handler on the address stored in the
BASE field of the mtvec register. Figure 1.30 shows the process of starting and

main() Task0

Priority

Time

SWI mtimemtime

ECALL Handler:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

mtime Handler:

Task1

current_task=0
sp <- TCB[0].sp
restore context

save context
TCB[current_task].sp <- sp
current_task ++
sp <- TCB[current_task].sp
restore context

(8)

mtime Handler:

Task2

save context
TCB[current_task].sp <- sp
current_task ++
sp <- TCB[current_task].sp
restore context

(9)

(10)

Fig. 1.30: Starting the scheduler with the SVC exception.

1.4 RISC-V interrupts and exceptions 67

running the scheduler using the environment call exception.
The environment call handler simply sets the SP to point to the top of Task0’s

stack, initializes the first tick, enables the machine timer interrupt and restores the
context of the first task:

1 .balign 4, 0
2 .global _exception_handler
3 _exception_handler:
4 # Decode exception cause:
5 csrr t0, mcause # read exception cause
6 bltz t0, 2f # exit if not an exception
7

8 # Check if ECALL:
9 1: li t1, 0xB # ecall from M-mode

10 bne t1, t0 , 2f
11

12 /*
13 ECALL:
14 1. load the SP of the first task (SP <- TCB[0].sp)
15 2. increment tick to set the first timer interrupt
16 3. enable MTIME interrupt
17 4. restore context of the first task
18 5. Upon return , the first task is executed and
19 the scheduler is running
20 */
21 /* 1. Load SP of the first task: */
22 la t1, TCB // load the address of TCB[0]
23 lw sp, 0(t1) // load sp from TCB[0].sp
24

25 # 2. Increment time slice (tick)
26 __macro_INCREMENT_TICK
27

28 /* 3. Enable MTIME interrupt */
29 li t0, 0x00000080
30 csrs mie , t0
31

32 # 4. Restore the context of Task0
33 __macro_RESTORE_CONTEXT
34 2:
35 mret

Listing 1.39: The environemt call exception handler.

Finally, here is the main function which initializes and starts the scheduler:

1 int main() {

3 // Set the task functions:
TaskFunctions [0] = Task0;

5 TaskFunctions [1] = Task1;
TaskFunctions [2] = Task2;

7 TaskFunctions [3] = Task3;

9 // Init scheduler :
InitScheduler(stackRegion , TCB , TaskFunctions);

11 current_task = 0;

13 // Set up vectored interrupts and enable CPU ’s interrupts
_register_handler(_vector_table , INT_MODE_VECTORED);

15 _enable_global_interrupts ();

17 // Environment call - start the scheduler:

68 1 Interrupts and interrupt handling

__asm__ volatile("ecall");
19

// We should never return here ...
21 while (1){}

return 0;
23 }

Listing 1.40: Initializing and starting the the scheduler.

1.5 ARM 9 exceptions and interrupts 69

1.5 ARM 9 exceptions and interrupts

The ARM9 supports the following six types of interrupts and exceptions:

• Fast interrupt Request,
• Interrupt Request,
• Data and Prefetched abort exceptions,
• Undefined instruction exception, and
• Software interrupt, and
• Reset.

The interrupt instruction SWI raises the software interrupts. The software interrupts
allow a program running in the user mode to request privileged operations such
as OS functions. The Prefetch abort exception occurs when the CPU fetches an
instruction from an illegal address. The Data abort exception occurs when a data
transfer instruction attempts to load or store data at an illegal address. The Unde-
fined instruction exception occurs when the processor cannot recognize the currently
fetched instruction. The Interrupt request occurs when the processor’s external in-
terrupt request pin (IRQ) is asserted (LOW), and the interrupt mask bit (I) in the
current program status register (CPSR) is cleared (interrupts enabled). The Fast in-
terrupt request occurs when the processor’s external fast interrupt request pin (FIQ)
is asserted (LOW), and the interrupt mask bit (F) in the current program status reg-
ister (CPSR) is cleared (fast interrupts enabled). The Reset interrupt occurs when
the processor’s reset pin is asserted.

1.5.1 Vector table and interrupt priorities

Table 1.6: ARM9 vector table.

Interrupt/Exception Vector Table
Address

Priority
(1-High, 6-Low)

Reset 0x00000000 1
Undefined Instruction 0x00000004 6
Software Interrupt 0x00000008 6
Prefetch Abort 0x0000000C 5
Data Abort 0x00000010 2
Interrupt Request 0x00000018 4
Fast Interrupt Request 0x0000001C 3

ARM9 processors use the vectored interrupt handling method. Each interrupt/ex-
ception has its own entry in the vector table. Each entry in the vector table has only

70 1 Interrupts and interrupt handling

32 bits, which is not enough to contain the full code for a handler; hence, each entry
commonly contains a branch instruction or load pc instruction to the actual handler.
Table 1.6 shows the interrupt/exception, its address in the vector table, and its prior-
ity. As interrupts/exceptions can coincide, the CPU has to use a priority mechanism
to handle the most important interrupt/exception. For example, the Reset interrupt
has the highest priority, and it takes precedence over all other interrupts/exceptions.
All interrupts/exceptions disable further interrupts/exceptions by setting the I bit in
the CPSR register. The Reset and Fast Interrupt Request also set the F bit in the
CPSR register and thus mask the Fast interrupt request. Listing 1.41 shows a typical
method of implementing a vector table for ARM9 processors.

1 .org 0x00000000
2 Vector_Table:
3 b Reset_Handler
4 b Undefined_Handler
5 b SWI_Handler
6 b Prefetch_Handler
7 b Abort_Handler
8 nop // never used
9 b IRQ_Handler

10 b FIQ_HAndler
11

12

13 Reset_Handler:
14 <handler instructions >
15 Undefined_Handler:
16 <handler instructions >
17 SWI_Handler:
18 <handler instructions >
19 Prefetch_Handler:
20 <handler instructions >
21 Abort_Handler:
22 <handler instructions >
23 IRQ_Handler:
24 <handler instructions >
25 FIQ_Handler:
26 <handler instructions >

Listing 1.41: ARM vector table and interrupt handlers.

Listing 1.41 shows a typical method of implementing a vector table for ARM9 pro-
cessors. The vector table starts at the address 0x00000000. Each entry in the vector
table is 32 bits long and contains a branch instruction (B) to the interrupt handler.
When, for example, a Data Abort exception occurs, the CPU stops the execution
of the current running program, saves the program context, and moves the vector
0x00000010 into the program counter. This way, the b Abort_Handler instruc-
tion is fetched, and the CPU jumps to Abort_Handler.

As we already said, the Reset interrupt is the highest priority interrupt and is al-
ways taken whenever the Reset pin is asserted. The reset handler is responsible for
initializing the system and other interrupt sources, and to set the stack pointer. So the
Reset interrupt masks automatically all other interrupts before their sources are ini-
tialized. Only then the reset handler enables other interrupts. Hence, during the first
few instructions of the reset handler, we should avoid SWI, undefined instructions,
and memory accesses that can cause the Data and Prefetch aborts.

1.5 ARM 9 exceptions and interrupts 71

The Fast Interrupt Request (FIQ) occurs when a peripheral asserts the proces-
sor’s FIQ pin. The peripheral device mus hold the FIQ input low until the processor
acknowledges the interrupt request. As a response to FIQ, the CPU disables both In-
terrupt and Fast Interrupt requests. Hence, no external device can interrupt the CPU
unless the IRQ and FIQ interrupts are re-enabled by software. The Fast Interrupt
Request reduces the execution time of the exception handler relative to a normal
interrupt by removing the requirement for register saving (minimizing the overhead
of context switching).

The Interrupt Request (IRQ) is a normal interrupt that occurs when a peripheral
device asserts the IRQ pin. The peripheral device mus hold the IRQ input pin low
until the processor acknowledges the interrupt request. An IRQ has a lower prior-
ity than the FIQ and Data Abort and is masked on entry to an FIQ or Data Abort
sequence. On entry to the IRQ handler, the further IRQ interrupts are disabled and
should remain disabled until the current interrupt source has been acknowledged,
and the IRQ pin has been de-asserted.

We can notice from Table 1.6 that both Software Interrupt and Undefined Instruc-
tion have the same level of a priority since they cannot occur at the same time.

1.5.2 ARM9 interrupt handling

ARM9 processors are 5-stage pipelined machines with Instruction Fetch (IF), In-
struction Decode (ID), Execution (EX), Memory (MEM) and Write-Back (WB)
stages. In a pipelined machine, an instruction is executed step by step and is not
completed for several clock cycles. An external interrupt can occur at any time dur-
ing the execution of an instruction. Also, other instructions in the pipeline can raise
exceptions that may force the machine to abort the instructions in the pipeline be-
fore they have been completed. One of the problems with interrupts in the pipelined
CPUs is when to halt instruction in the pipeline. In the case of external interrupts,
one possible solution would be to execute all fetched instructions before handling
the interrupt request. But the problem with this approach would be a long interrupt
latency. The other solution would be to halt the execution of all fetched instructions
and fetch them again upon returning from the interrupt handler. This way, we would
have minimal interrupt latency. Obviously, this is not a good idea because some
instructions, such as STORE instructions, can modify the content in memory and
should not be stoped and executed again. Also, arithmetic instructions might have
already changed the content of the status register (usually in the Execution stage),
and should not be dismissed. The most common solution to the problem is to ex-
ecute all instructions that have been issued into the execution stage. In the case of
an external interrupt in ARM9, the CPU executes all instructions in the stages EX,
MEM nad WB, while dismissing two instructions in the stages IF and ID.

To resume, in the case of an external interrupt, the CPU has to let all instructions
that were issued for execution complete and flush all succeeding instructions from
the pipeline. In the case of an exception caused by an instruction, the CPU should

72 1 Interrupts and interrupt handling

stop executing the offending instruction, let all preceding instructions complete and
flush all succeeding instructions from the pipeline. Only then can CPU start saving
the context and fetching the instruction pointed by the interrupt vector (the first
instruction in the interrupt handler).

Let us now look at how ARM9 handles the IRQ interrupts. When an IRQ in-
terrupt occurs, the ARM 9 processor executes the three instructions that are issued
for execution and will flush the last two fetched instructions. The last two fetched
instructions are from the addresses PC (the instruction currently in the IF stage) and
PC-4 (the instruction currently in the ID stage). The instruction in the EX stage is
from the address PC-8. This is very important to notice because the last executed
instruction before entering the interrupt handler was from the address PC-8, but the
program counter contains the address PC. The first instruction to execute upon re-
turning from the interrupt handler is one that was in the ID stage when the interrupt
request occurs. Hence, the address of the instruction that should be fetched upon
returning from the interrupt handler is PC-4.

When an IRQ interrupt occurs, the ARM9 processor executes the instructions
that are issued for execution. Then, the following hardware procedure is executed:

• the CPU saves the Current Program Status (CPSR) register into the Saved Pro-
gram Status (SPSR) register; hence the processor automatically saves the status
of the interrupted program. The CPSR register is a special purpose register in
ARM9 processors that contains arithmetic flags and interrupt masks,

• the CPU automatically disables interrupts by setting the I bit in the CPSR reg-
ister,

• the CPU saves the current program counter (PC) into the link register (LR).
This way, the LR register holds the return address. It is important to note that the
CPU saves the address of the last fetched instruction and does not automatically
correct this value to point to the instruction that was in the ID stage when the
interrupt occurs. Hence, it is the programmer’s responsibility to adjust the value
in PC upon returning from the interrupt handler, and

• the CPU fetches the instruction from the interrupt vector 0x00000018.

Now, the interrupt handler starts. The above procedure is hard-wired in the CPU
and does not involve any instruction fetch and execution. When an interrupt handler
has completed, it must move both the return value in the LR register minus 4 to the
PC and the SPSR to the CPSR. This action restores both the PC and the CPSR and
returns to the interrupted program. Listing 1.42 shows a typical method of returning
from an IRQ interrupt handler.

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc, lr, #4 // pc <- lr -4

Listing 1.42: A typical IRQ interrupt handler

1.5 ARM 9 exceptions and interrupts 73

Many instructions in ARM9 can have an "s" suffix. The "s" suffix ensures that when
the program counter is the destination register, the CPSR register is automatically
restored from the SPSR register. The same holds for the subs instruction in Listing
1.42. Hence, the instruction subs pc,lr,#4 firstly saves the LR-4 into the program
counter (remember that the programmer is responsible to correctly restore the return
address into the program counter upon returning from the handler) and then restores
CPSR from SPSR.

It is important to stress that not all interrupt/exception handlers use the same
instruction to return. For example, the Data abort exception occurs in the MEM
stage. Hence, only the instruction in WB stage is executed, while the instructions
from IF, ID, and EX stages are flushed. When the Data abort exception occurs, the
instruction in the EX stage is from the address PC-8. Thus, the Data abort handler
uses subs pc,lr,#8 to return:

1 IRQ_Handler:
2 <handler instructions >
3 ...
4 ...
5 subs pc, lr, #8 // pc <- lr -8 !!!!

Listing 1.43: A typical Data abort exception handler

1.5.3 Interrupt handlers in C

Interrupt handlers can be written in assembler or in a high-level language like C.
Usually, we want to avoid the assembly language as much as possible and to pro-
gram in our favorite high-level language. Remember that an interrupt handler is
called directly by the CPU, and the protocol for calling an interrupt handler differs
from calling a C function. Most importantly, an ISR has to end with some "interrupt
return" opcode, whereas usual C functions end with ordinary "return" opcode. We
have seen previously that the ARM interrupt handlers should return with SUBS op-
code, which is used to restores the PC from LR-4 and CPSR from SPSR. In the case
of an ordinary subroutine, the return opcode for ARM would be MOV PC, LR (re-
stores PC from LR). A programmer could be tempted to write an interrupt handler
like this:

1 /* How NOT to write an interrupt handler */
void my_interrupt_handler(void)

3 {
/* do something */

5 }

Listing 1.44: How not to write an interrupt handler.

This simply cannot work. The compiler doesn’t understand that this is to be an
interrupt handler and that the SUBS PC,LR,#4 instruction should be the last instruc-

74 1 Interrupts and interrupt handling

tion used to return. The compiler will simply use the MOV PC, LR instruction to
return.

Some compilers, such as GCC, Clang, and ARMCC, to name a few, have direc-
tives like #pragma or special function attributes, allowing you to declare a routine
interrupt. For example, the interrupt function attribute in GCC indicates that the
specified function is an interrupt handler. The compiler then generates function en-
try and exit sequences suitable for use in an interrupt handler when this attribute is
present.

The correct (GCC) way of implementing an interrupt handler in C is:

1 /* GCC style interrupt handler */
__attribute__ ((interrupt)) void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 1.45: GCC style interrupt handler.

The ARMCC compiler offers the __irq function declaration keyword to write C
interrupt handlers. The __irq keyword preserves all registers used by the interrupt
handler and exits the handler by setting the PC to (LR–4) and restoring the CPSR to
its original value from SPSR. Also, if the kernel calls a subroutine, __irq preserves
the link register (LR), which is corrupted by the subroutine call.

1 /* ARMCC style interrupt handler */
__irq void my_interrupt_handler ()

3 {
/* do something */

5 }

Listing 1.46: ARMCC style interrupt handler.

But it is not only the directive or function qualifier that designates the inter-
rupt handlers. Often, compilers require that the handler declaration contains a spe-
cial function argument, which specifies the kind of interrupt (for example, IRQ or
Abort). The compiler uses this special argument to restore the PC from LR cor-
rectly (for example, LR-4 for IRQ or LR-8 for Data abort). All these attributes and
arguments defined and used by a particular compiler prevent the handler code from
being portable.

1.6 Intel interrupts 75

1.6 Intel interrupts

Intel processors have two external pins for external interrupts:

• INTR pin - it is used to signal for normal (maskable) interrupts.
• NMI pin - it is used to signal nonmaskable interrupts

Besides interrupts, Intel processors can detect exceptions from two sources:

• Processor exception - triggered form processor as a result of some exceptional
conditions within the processor (e.g., divide by zero). These exceptions are fur-
ther classified as faults, traps, and aborts.

• Software interrupts - triggered with the processor instruction INT.

Exceptions are classified as:

• Faults are either detected before the instruction begins to execute or during the
execution of the instruction. A fault is an exception that can generally be cor-
rected, and that, once corrected, allows the program to be restarted with no loss
of continuity. The return address for the fault handler points to the faulting in-
struction, rather than to the instruction following the faulting instruction.

• A trap is an exception that is reported immediately following the execution
of the instruction INT. Traps allow the execution of a program or task to be
continued without loss of program continuity. The return address for the trap
handler points to the instruction to be executed after the trapping instruction.

• An abort is an exception that does not allow a restart of the program or task that
caused the exception. Aborts are used to report severe errors.

The Intel processor services interrupts and exceptions only between the end of
one instruction and the beginning of the next. This is referred to as the instruction
boundary. Certain conditions and flag settings cause the processor to inhibit certain
interrupts and exceptions at instruction boundaries. The IF (interrupt-enable flag)
bit in the FLAGS register (this is the status register in Intel x86 microprocessors
that contains the current state of the processor.) controls the acceptance of exter-
nal interrupts signaled via the INTR pin. When IF=0, INTR interrupts are masked;
when IF=1, INTR interrupts are enabled. The Intel processor instructions CLI (Clear
Interrupt-Enable Flag) and STI (Set Interrupt-Enable Flag) are used to clear/set the
IF flag.

If more than one interrupt or exception is pending at an instruction boundary,
the processor services one of them at a time according to their priority. In general,
aborts have the highest priority, followed by traps, NMI, and INTR. The faults have
the lowest priority.

Each architecturally defined exception and interrupt in Intel processors is as-
signed a unique identification number, called a vector number. The processor uses
the vector number assigned to an interrupt as an index into the interrupt vector table.
The allowable range for vector numbers is 0 to 255. The Intel architecture reserves
vector numbers in the range 0 through 31 for architecture-defined exceptions and

76 1 Interrupts and interrupt handling

interrupts. Vector numbers in the range 32 to 255 are designated as user-defined in-
terrupts and are assigned to external I/O devices to enable those devices to send in-
terrupts. One characteristic of Intel processors, which distinguish them from ARM
processors, is that the peripheral device that caused an interrupt must provide the
vector number to the CPU. Table 1.7 shows vector number assignments and excep-
tion types for architecturally defined exceptions and interrupts.

Table 1.7: Intel Exceptions and Interrupts. Only a few exceptions and interrupts are
shown.

Vector Number Description Type

0 Division by zero Fault
1 Debug Fault
2 NMI Interrupt
3 Breakpoint Trap
...

... ...
14 Page Fault Fault
...
32-255 External interrupts on INTR Interrupt

In the older Intel processors (before 80386), the interrupt table is called IVT
(interrupt vector table). The IVT is an array of 32-bit interrupt vectors stored con-
secutively in memory and indexed by an interrupt vector. The IVT always resides at
the same location in memory, ranging from 0x0000 to 0x03ff, and consists of 256
four-byte interrupt vectors (i.e. pointers to the interrupt/exception handles). When
responding to an exception or interrupt, the processor multiplies the vector number
by four to form the address of the entry in the IVT.

In modern Intel processors, the interrupt table is called IDT (interrupt descriptor
table). The IDT is an array of 8-byte descriptors stored consecutively in memory and
indexed by an interrupt vector. Each descriptor holds the information that describes
how to access the interrupt/exception handler. The IDT may reside anywhere in
physical memory. The processor has a special register (IDTR) to store both the
physical base address and the length in bytes of the IDT. When an interrupt occurs,
the processor multiplies the interrupt vector by eight and adds the result to the IDT
base address. With the help of the IDT length, the resulting memory address is
then verified to be within the table; if it is too large, an exception is generated. If
everything is okay, the 8-byte descriptor stored at the calculated memory location
is loaded, and actions are taken according to the descriptor’s contents. As said, the
interrupt descriptor table (IDT) associates each vector number with a descriptor for
the instructions that service the associated event. Because there are only 256 vector
numbers, the IDT contains up to 256 descriptors. It can contain fewer than 256
entries; entries are required only for vector numbers that are actually used.

The interrupt handling procedure in the Intel processor is rather complicated.
Here, we omit all the details and give only the basic concepts. When responding to

1.7 Interrupt controllers 77

an exception or interrupt, the processor first saves the current state of the interrupted
program or task (the status FLAGS register and the program counter) on the stack.
Each entry in the IDT (or IVT) holds the start address of the interrupt handler.
The processor thus reads the start address of the handler from the IDT (or IVT)
into the program counter and starts the execution of the handler. To return from
an exception- or interrupt-handler handler, the handler uses the IRET instruction.
The IRET instruction is similar to the RET instruction used to return from normal
procedures except that it restores the saved status register FLAGS.

1.7 Interrupt controllers

We have seen that the interrupt line from a peripheral device should be connected
to the CPU’s interrupt input signal. In such a way, a peripheral device can interrupt
the CPU and require its attention. The CPU will sense this interrupt input signal at
every instruction fetch and know that the peripheral device needs attention. But what
should we do if there is more than one peripheral device that would like to interrupt
the CPU? What if there are tens of external peripheral devices, which is often the
case in real computer systems? Should we add an interrupt input pin to the CPU
for every external peripheral device? A large number of interrupt input pins on the
CPU for every external device would make the CPU interfacing very complicated
and increase the error probability.

One possible solution to solve this problem would be to have one level-sensitive
interrupt input pin (IRQ) on the CPU shared by all external peripheral devices. This
solution is illustrated in Figure 1.31. Whenever an interrupt is asserted, the CPU
branches to the interrupt handler associated with the IRQ pin. This interrupt handler
would poll each and every I/O peripheral device to determine which device asserted
the interrupt line. So, the CPU will handle the interrupt request on the IRQ pin as
vectored interrupts, but will also, within the interrupt handler, use the polled inter-
rupts method to check the interrupt’s cause. Every modern I/O peripheral device
has an addressable (memory-mapped) status register. There is usually one bit in this
status register, referred to as an interrupt-pending bit, which is set internally by the
interrupting device when the device asserts the interrupt line. This interrupt-pending
bit in the status register can be read by the CPU to determine the interrupting device.
If the interrupt-pending bit is set, the processor branches to a specific device-service
routine. Within this device-specific routine, the interrupt handling bit is cleared and
the interrupt request is serviced. Listing 1.47 shows pseudocode for the IRQ inter-
rupt handler that uses polling to determine which device has requested the interrupt.
The downside to this technique is that it is time-consuming.

1 /*
* Polling Handler

3 */
__attribute__ ((interrupt)) void polling_IRQ_handler () {

5

78 1 Interrupts and interrupt handling

CPU

IRQ#

I/O
Device 1

INT

Vdd

R

I/O
Device 2

INT

I/O
Device N

INT

Fig. 1.31: Example system with several I/O devices sharing one interrupt input sig-
nal.

/* Check the interrupt pending bit in the I/O device 1 */
7 if (IO1_status_reg & (1<<INT_PEND_BIT)) {

/* I/O Device 1 Code */
9 IO1_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

11 /* Do something */

13 }

15 /* Check the interrupt pending bit in the I/O device 2 */
if (IO2_status_reg & (1<<INT_PEND_BIT)) {

17 /* I/O Device 2 Code */
IO2_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

19

/* Do something */
21

}
23

...
25

/* Check the interrupt pending bit in the I/O device N */
27 if (ION_status_reg & (1<<INT_PEND_BIT)) {

/* I/O Device N Code */
29 ION_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

31 /* Do something */

1.7 Interrupt controllers 79

33 }
}

Listing 1.47: IRQ interrupt handler with polling.

A better solution to this problem would be to use a special chip — an interrupt
controller. The interrupt controller is a special device, which:

• combine all external interrupt requests onto one CPU IRQ line,
• prioritizes them (decides which interrupt request will be routed to the CPU

when more than one I/O device has requested the interrupt),
• routes the selected interrupt request to the CPU’s IRQ input signal, and
• most importantly, it provides the CPU with the information which device has re-

quested the interrupt. Commonly, it provides the CPU with the interrupt vector;
thus, the CPU does not have to poll I/O peripheral devices.

Figure 1.32 illustrates the structure of a system that uses an interrupt controller.
All potential external interrupt sources are routed through the interrupt controller.
In the case of one or more interrupt requests, the interrupt controller prioritizes the
interrupt inputs, it transfers the interrupt request with the highest priority to the CPU,
along with interrupt vector. This sequence is performed by hardware in the interrupt
controller and not by software in the CPU, hence the interrupt controller provides a
much faster response to an interrupt request.

CPU

IRQ#

INTERRUPT
CONTROLER

IRQ 0

Vdd

R

I/O
Device 1

INT

I/O
Device 2

INT

I/O
Device N

INT

IRQ 1

IRQ N
4.

Interrupt controller
provides the interrupt vector

associated with IRQ1

SYSTEM BUS

1.
I/O devices 1 and 2 request

interrupt by asserting
IRQ0 and IRQ1 simultaneously

3.
Interrupt controller

asserts the IRQ#
processor’s pin

2.
I/O prioritezes the interrupt requests

and selects the request from I/O device

Fig. 1.32: A system with an interrupt controller.

80 1 Interrupts and interrupt handling

In summary, interrupt controllers are essential in modern computer systems as
they facilitate the handling of diverse interrupt requests generated by various hard-
ware components. By allowing the CPU to respond to events as they occur (in
contrast to continuous polling of hardware), interrupt controllers optimize CPU re-
sources, ensuring that the processor only performs work when necessary. In systems
where multiple interrupts can occur simultaneously, interrupt controllers manage the
nesting of interrupts. They ensure that an interrupt can be interrupted by a higher-
priority one while maintaining the correct order of execution. They also manage
interrupt priorities, ensure timely response to critical events, and optimize system
resources by allowing the CPU to handle events as they occur, all of which are fun-
damental for efficient and responsive system operation.

Although the operations in an interrupt controller are performed by hardware,
interrupt controllers are programmable. It means that they typically have a common
set of addressable (memory-mapped) registers, which enable the system program-
mer to set the priorities and interrupt vectors for each interrupt source before the
interrupt controller is being used. In the following sections, we will cover a few
real-world interrupt controllers used with ARM and Intel processors.

1.7 Interrupt controllers 81

1.7.1 ARM Advanced Interrupt Controller

The Advanced Interrupt Controller (AIC) is an 8-level priority vectored interrupt
controller, providing handling of up to thirty-two interrupt sources. It is used with
ARM9 processors. Figure 1.33 illustrates the block diagram of an ARM9 based
system with AIC. The AIC drives the FIQ# (fast interrupt request) and the IRQ#
(standard interrupt request) inputs of an ARM9 processor. Inputs of the AIC are
external interrupts coming from the peripheral I/O devices.

The Interrupt Source 0 (IS 0) is always connected to the FIQ processor’s input.
The interrupt sources 1 to 31 (IS 1 to IS 31) can be connected to the interrupt out-
puts of peripheral devices. An 8-level priority controller drives the IRQ line of the
processor. Each interrupt source has a programmable priority level of 7 (the highest
priority) to 0 (the lowest priority).

As soon as an interrupt request occurs on an interrupt source, the IRQ# line is
asserted. If several interrupt sources have asserted the interrupt request, the priority
controller determines the interrupt source with the highest priority, which will be
serviced. If several interrupt sources of equal priority are pending, the interrupt with
the lowest interrupt source number is serviced first. If an interrupt request happens
during the interrupt service in progress, it is delayed until the software indicates to
the AIC the end of the current service. Figure 1.33 illustrates the simplified internal
structure of AIC. AIC employs an interrupt vectoring scheme. The interrupt handler

IV
R

SVR 0

SVR 1

SVR 2

SVR 3

SVR 31

PRIORITY
CONTROLLER

EO
IC

R

IS 0
IS 1

IS 31

AIC
IRQ#
FIQ#

Fig. 1.33: Simplified internal structure of AIC.

addresses (interrupt vectors) corresponding to each interrupt source can be stored

82 1 Interrupts and interrupt handling

in the AIC’s registers SVR1 to SVR31 (Source Vector Register 1 to 31). When
one or more interrupt requests occur, the content of the SVR corresponding to the
interrupt source with the highest priority is automatically transferred to the Interrupt
Vector Register (IVR). To obtain the start address of the interrupt handler, the CPU
must read the IVR register. In the ARM9 based systems, the IVR register is always
mapped at the absolute address 0xFFFFF100. Remember that the interrupt vector for
IRQ interrupt is 0x00000018. Hence, the IVR accessible from the ARM interrupt
vector at address 0x00000018 through the following instruction:

ldr pc,[pc,#-0XF20]

When the processor executes this instruction, it loads the value in IVR into its pro-
gram counter, thus branching the execution on the correct interrupt handler. Besides,
reading the IVR also de-asserts the IRQ# line on the processor. But from where the
value -0xF20 comes in the above instruction? Recall that the instructions are exe-
cuted in the EX stage. By the time the above instruction is issued into the EX stage,
the PC has already been increased by 8 and is equal to 0x00000020. This is because
the CPU has fetched two more instructions. Hence, we have to subtract 0x2F0 from
0x00000020 to obtain 0xFFFF F100.

Before returning, the interrupt handler must indicate to the AIC the end of the
current service by dummy writing to the EOICR register (End Of Interrupt Com-
mand Register). This will re-enable the further interrupts in AIC. The return from the
interrupt handler is, as we have already learned, performed by the subs pc,lr,#4
instruction. This has the effect of returning from the interrupt to whatever was being
executed before, and of restoring the CPSR from the SPSR.

IV
R

SVR 0

SVR 1

SVR 2

SVR 3

SVR 31

PRIORITY
CONTROLLER

EO
IC

R

IS 0
IS 1

IS 31

AIC
IRQ#
FIQ#

1 1

2 3

4

Fig. 1.34: Simplified internal operation of AIC.

1.7 Interrupt controllers 83

An example of the procedure of obtaining the interrupt vector is in Figure 1.34.
Let us assume that a peripheral device asserts the interrupt request at the IS 1 line
of AIC (step 1). Assuming that no other IS line has been asserted and that the CPU
services no interrupt, the priority controller in AIC immediately asserts the CPU’s
IRQ# signal (step 1). Then, the priority controller selects the SVR1 register, and
its content is transferred into the IVR register (step 2). The CPU detects that IRQ#
has been asserted, stops the instruction execution, and saves the context of the in-
terrupted program. It then fetches the instruction ldr pc,[pc,#-0XF20] from the
IRQ interrupt vector (0x00000018). This instruction moves the content of the IVR
register into the program counter (step 3) and CPU branches on the IRQ handler.
Before returning from the IRQ handler, the CPU dummy writes into the EOICR
(step 4).

As we have seen, when AIC is used to route external interrupt requests from
peripheral devices to the CPU, the instruction at the interrupt vector 0x00000018 is
not a branch instruction (B) to the interrupt handler, but the instruction that loads
the IVR into PC (which also acts as a branch). The same holds for the FIQ vector.
Hence, we should change the interrupt vector table from Listing 1.41, accordingly.
Also, the interrupt handlers for interrupt sources IS1 to IS31 should dummy write to
EOICR before returning. Listing 1.48 shows the updated interrupt vector table and
pseudocode for an ISx interrupt handler.

1 .org 0x00000000
2 Vector_Table:
3 b Reset_Handler
4 b Undefined_Handler
5 b SWI_Handler
6 b Prefetch_Handler
7 b Abort_Handler
8 nop
9 lr pc, [pc, #-0xF20] // load IVR into PC

10 lr pc, [pc, #-0xF20] // load IVR into PC
11

12

13 ISx_Handler:
14 <handler instructions >
15 ...
16 <write to EOICR >
17 subs pc,lr ,#4

Listing 1.48: ARM vector table and ISx handler when AIC is present in the system.

84 1 Interrupts and interrupt handling

1.7.2 RISC-V Platform-Level Interrupt Controller in FE310

In Subsection 1.4.3, we learned that SiFive FE310 SoC contains two interrupt con-
trollers: The Core Local Interruptor (CLINT) and the Platform Level Interrupt Con-
troller. The Core Local Interruptor (CLINT) is a mandatory component in RISC-
V-based systems, which provides two local interrupts (software and timer) to the
RISC-V core. The PLIC is another interrupt controller in the SiFive FE310s. It is
responsible for managing global interrupts from various IO devices in the system
and distributing them to the RISC-V through the Machine External Interrupt line.

The FE310 SoC has multiple peripherals (timers, GPIO pins, UARTs, etc.)
that can generate interrupts. These peripheral devices generate (drive) 52 interrupt
sources. The PLIC aggregates these interrupt sources and generates the interrupt re-
quest over the Machine External Interrupt line. Table 1.8 lists peripheral devices and
associated interrupt sources. For example, each GPIO pin can generate one interrupt

Table 1.8: Peripheral devices and their associated interrupt sources in FE310 PLIC.

Device Interrupt source IDs
WDT 1
RTC 2
UART0 3
UART1 4
QSPI0 5
SPI1 6
SPI2 7
GPIO 8-39
PWM0 40-43
PWM1 44-47
PWM2 48-51
I2C 52

source; hence, the GPIO interface generates 32 interrupt sources.
The PLIC supports multiple priority levels for interrupts, allowing us to priori-

tize critical events over less critical ones. Priority levels are configurable. If two or
more interrupt sources generate interrupt requests, the PLIC will select the source
with the highest priority level. Each PLIC interrupt source can be assigned a prior-
ity by writing to its 32-bit memory-mapped priority register priority. The memory
addresses of 52 priority registers are 0x0C000000 + 4 x SourceID. For exam-
ple, the address of the UART0’s priority register is 0x0C00000C. The FE310-G003
supports seven (7) levels of priority. A priority value of 0 means "never interrupt"
and disables the interrupt for the source. Priority 1 is the lowest active priority, and
priority 7 is the highest. Besides, global interrupts with the lowest source ID have
the highest priority. In such a way, if two or more global interrupts with the same
priority level are triggered, the PLIC will service first the one with the lowest source
ID. The priority register is depicted in Figure 1.35. The three least significant bits
in the priority encode the priority level.

1.7 Interrupt controllers 85

2 031

Reserved Priority

Fig. 1.35: The priority register.

Besides priority levels, PLIC enables Per-Source Interrupt Control. Each global
interrupt source connected to the PLIC can be individually enabled or disabled by
setting the corresponding bit in two registers: enable1 and enable2. This feature
allows fine-grained control over which sources can generate interrupts. The enable1
and enable2 are memory-mapped and can be accessed as a contiguous array of two
memory words at addresses 0x0C002000 (enable1) and 0x0C002004 (enable2).
The enable bit for interrupt source ID is stored in the bit (ID mod 32) of the word
(ID/32). For example, the enable bit of the interrupt source 3 (UART0) is stored
in the bit (3 mod 32)=3 of the word (3/32)=0, which is accessible as the register
enable1. Similarly, the enable bit of the interrupt source 39 (GPIO pin 31) is stored
in the bit (39 mod 32)=7 of the word (39/32)=1, which is accessible as the register
enable2. Bit 0 of enable1 represents the non-existent interrupt source ID 0 and is
hardwired to 0.

When one or more interrupt sources trigger the interrupt request to PLIC, PLIC
will select the interrupt source with the highest priority and trigger the interrupt on
the Machine External Interrupt line of the RISC-V CPU. At the same time, PLIC
will write the ID of the highest priority interrupt source into its 32-bit claim register,
memory-mapped at 0x0C200004. The RISC-V will execute the Machine Internal
Interrupt handler. This handler should then read the claim register. This read will
return the ID of the highest-priority pending interrupt or zero if there is no pending
interrupt. In such a way, the CPU will recognize which interrupt source has triggered
the interrupt request. This step informs the PLIC that we’re handling the interrupt
and prevents it from reasserting the same interrupt while we’re servicing it. After
appropriately servicing the interrupt source, the Machine Internal Interrupt handler
should write the interrupt ID it received from the claim register back to the claim
register.

1.7.2.1 Implementing PLIC Vector Table and Handlers

Here, we will try to provide a complete code example for using the Platform-Level
Interrupt Controller (PLIC) in the SiFive FE310 microcontroller. The code snippets
in this subsection will hopefully demonstrate to you how to set up the vector table
for PLIC interrupt sources, initialize the PLIC, handle a specific interrupt source,
and acknowledge (complete) the interrupt.

Implementing a vector table, interrupt handlers and basic routines for the
Platform-Level Interrupt Controller (PLIC) in the SiFive FE310 microcontroller in
assembly and C language involves defining the vector table, writing assembly code

86 1 Interrupts and interrupt handling

for each interrupt handler, and writing other routines for PLIC in C. Below, we pro-
vide a step-by-step guide to implement this:

1. Define the Vector Table. In assembly, we define the interrupt vector table for
PLIC as a table (an array) of jump instructions to interrupt handlers. Each jump
instruction in the vector table corresponds to a specific interrupt source. We can
place the vector table at an arbitrary memory location, providing it is correctly
aligned:

1 # --
2 #
3 # P L I C V E C T O R T A B L E
4 #
5 # --
6 .balign 4
7 .global _plic_ext_vector_table
8 _plic_ext_vector_table:
9 j _panic_handler # PLIC src 0

10 j _aon_wdt_handler # PLIC src 1
11 j _aon_rtc_handler # PLIC src 2
12 j _uart0_handler # PLIC src 3
13 j _uart1_handler # PLIC src 4
14 j _qspi0_handler # PLIC src 5
15 j _spi1_handler # PLIC src 6
16 j _spi2_handler # PLIC src 7
17 j _gpio0_handler # PLIC src 8
18 j _gpio1_handler # PLIC src 9
19 j _gpio2_handler # PLIC src 10
20 j _gpio3_handler # PLIC src 11
21 j _gpio4_handler # PLIC src 12
22 j _gpio5_handler # PLIC src 13
23 j _gpio6_handler # PLIC src 14
24 j _gpio7_handler # PLIC src 15
25 j _gpio8_handler # PLIC src 16
26 j _gpio9_handler # PLIC src 17
27 j _gpio10_handler # PLIC src 18
28 j _gpio11_handler # PLIC src 19
29 j _gpio12_handler # PLIC src 20
30 j _gpio13_handler # PLIC src 21
31 j _gpio14_handler # PLIC src 22
32 j _gpio15_handler # PLIC src 23
33 j _gpio16_handler # PLIC src 24
34 j _gpio17_handler # PLIC src 25
35 j _gpio18_handler # PLIC src 26
36 j _gpio19_handler # PLIC src 27
37 j _gpio20_handler # PLIC src 28
38 j _gpio21_handler # PLIC src 29
39 j _gpio22_handler # PLIC src 30
40 j _gpio23_handler # PLIC src 31
41 j _gpio24_handler # PLIC src 32
42 j _gpio25_handler # PLIC src 33
43 j _gpio26_handler # PLIC src 34
44 j _gpio27_handler # PLIC src 35
45 j _gpio28_handler # PLIC src 36
46 j _gpio29_handler # PLIC src 37
47 j _gpio30_handler # PLIC src 38
48 j _gpio31_handler # PLIC src 39
49 j _pwm0_handler # PLIC src 40
50 j _pwm0_handler # PLIC src 41
51 j _pwm0_handler # PLIC src 42
52 j _pwm0_handler # PLIC src 43
53 j _pwm1_handler # PLIC src 44
54 j _pwm1_handler # PLIC src 45

1.7 Interrupt controllers 87

55 j _pwm1_handler # PLIC src 46
56 j _pwm1_handler # PLIC src 47
57 j _pwm2_handler # PLIC src 48
58 j _pwm2_handler # PLIC src 49
59 j _pwm2_handler # PLIC src 50
60 j _pwm2_handler # PLIC src 51
61 j _i2c_handler # PLIC src 52

Listing 1.49: The PLIC interrupt vector table.

2. Define Interrupt Handler Routines. Write the assembly code for each inter-
rupt handler. These routines should handle the specific interrupt and include
any necessary operations. Here, we provide only the the basic code for GPIO13
interrupt handler:

1 .balign 4
2 .weak _gpio13_handler
3 _gpio13_handler:
4 # Your code goes here:
5 ...
6 ret

Listing 1.50: Assembly code for the GPIO13 (PLIC source 21) interrupt handler.

3. textbfWrite the Machine External Interrupt handler. This handler is invoked
when the external interrupt is asserted:

1 /*---------------------------------------
2 Machine External Interrupt Handler
3 ---------------------------------------*/
4 .balign 4
5 .global _mext_interrupt_handler
6 .type _mext_interrupt_handler , @function
7 _mext_interrupt_handler:
8 # Prologue : save 16 ABI caller registers
9 ...

10

11 # Decode interrupt cause:
12 csrr t0, mcause # read exception cause
13 bgez t0, 1f # exit if not an interrupt
14

15 # Claim the interrupt - read CLAIM
16 # A non -zero read contains the ID of
17 # the highest pending interrupt.
18 la t0, PLIC_CLAIM # load the address of CLAIM reg
19 lw t1, 0(t0) # read CLAIM
20 slli t2, t1, 2 # id*4 to obtain the offset
21

22 # load the address of the PLIC
23 # external interrupt vector table
24 la t3, _plic_ext_vector_table
25 add t3, t3 , t2 # ext_vector_table + 4*id
26 jalr t3 # call interrupt handler
27

28 1:
29 # epilogue: restore ABI caller regs
30 ...
31

32 mret

Listing 1.51: Assembly code for the machine external interrupt handler.

88 1 Interrupts and interrupt handling

The machine external interrupt handler:

a. decodes the interrupt cause (same as in the machine time handler),
b. reads the interrupt source ID from the claim register in PLIC,
c. calculates the address of the interrupt handler by adding 4xID to the base

address of the PLIC vector table, and
d. calls the interrupt handler.

4. Set PLIC priorities. Write the C function to set the interrupt priorities if
needed:

#define PLIC_INT_PRIORITY_BASE 0x0C000000
2

/* Set interrupt priority
4 *

* Interrupt source id: 1-52
6 * Interrupt priority levels 7

* Bits 2:0
8 * 0 - never interrupt/disables interrupt

* 1 - lowest active priority
10 * 7 - highest priority */

12 void plic_set_priority(unsigned int source , unsigned int priority){

14 *((unsigned int *) PLIC_INT_PRIORITY_BASE + source) = priority;
}

Listing 1.52: C function for setting PLIC interrupt priority for a given source.

5. Enable PLIC source. Write the C function to enable the specific interrupt
source:

1 #define PLIC_INT_ENABLE1 0x0C002000

3 /*
* Enable interrupt source in enable registers

5 */
void plic_enable_source(unsigned int source){

7 unsigned int bit_position = source | 32;
unsigned int enable_reg = source / 32;

9

*((unsigned int *) PLIC_INT_ENABLE1 + enable_reg) |= (1 << -
bit_position);

11 }

Listing 1.53: C function for enabling a PLIC interrupt source.

1.7 Interrupt controllers 89

1.7.3 ARM Cortex-M Nested Vectored Interrupt Controller

The Nested Vectored Interrupt Controller (NVIC) is a crucial component of ARM
Cortex-M microcontrollers, including the Cortex-M7. It serves as the central hub
for managing and controlling interrupts and exceptions in these processors. Figure
1.36 shows the relation between the NVIC unit, the Processor Core and peripherals.
The NVIC supports up to 240 interrupts (IRQ1 to IRQ240), each with up to 256
priority levels (0-255), with a higher level corresponding to a lower priority. The in-
terrupts/exceptions can originate from various sources, such as external peripherals,
internal hardware, or system events. The NVIC manages the prioritization of inter-
rupts, allowing the system to handle multiple interrupt requests simultaneously and
determine the order in which these interrupts are serviced based on their assigned
priority levels.

NMI

IRQ1

SysTick Timer

CPU CORE

HardFaultNVIC

IRQ2

IRQ240
...

MemManage
BusFault
UsageFault
SVCall
PendSV

ADDRESS

DATA

EXCEPTION
NUMBER

MEMORY-MAPPED
REGISTERS

ARM Cortex-M7 Core

Fig. 1.36: The NVIC controller in the Cortex-M7 core.

One of the unique features of the NVIC is its ability to handle nested interrupts.
It allows higher-priority interrupts to preempt the processing of lower-priority inter-
rupts, maintaining the integrity of the system’s operation. Moreover, it provides con-
trol over enabling and disabling interrupts, allowing the software to manage which
interrupt sources are active or inactive. This capability is crucial for managing criti-
cal sections of code and ensuring the system’s responsiveness.

The NVIC manages the routing of interrupts, determining which interrupt han-
dler (function) should be executed when a specific interrupt occurs. The processor
knows where exception handlers are located in memory thanks to exception vectors
(i.e. addresses in memory of exception handlers) inside the vector table. The NVIC
is responsible for sending exception numbers, which are used as indices of the ex-

90 1 Interrupts and interrupt handling

ception vectors in the vector table. It enables the CPU to find the interrupt vector
and immediately jump to the associated interrupt handler rather than polling inter-
rupt sources to determine which one requested the interrupt. By allowing the CPU
to respond to events as they occur (rather than continuous polling of hardware), the
NVIC optimizes CPU resources and reduces power consumption.

The processor core interacts with the NVIC through a set of memory-mapped
registers, which provide control over enabling and disabling interrupts, allowing the
software to manage which interrupt sources are active or inactive.

Developers interact with the NVIC through the CMSIS (Cortex Microcontroller
Software Interface Standard). CMSIS is a software interface, which allows program-
mers to configure interrupts and manage interrupt handling in an efficient and stan-
dardized manner. For instance, using the CMSIS software interface, developers can
easily assign different priorities to interrupts, enable or disable interrupts, and con-
figure interrupt vectors.

Table 1.9: NVIC registers.

Address Name Description
0xE000E100-0xE000E11C NVIC_ISER0 - NVIC_ISER7 Interrupt Set-Enable Registers
0xE000E180-0xE000E19C NVIC_ICER0 - NVIC_ICER7 Interrupt Clear-Enable Registers
0xE000E200-0xE000E21C NVIC_ISPR0 - NVIC_ISPR7 Interrupt Set-Pending Registers
0xE000E280-0xE000E29C NVIC_ICPR0 - NVIC_ICPR7 Interrupt Clear-Pending Registers
0xE000E300-0xE000E31C NVIC_IABR0 - NVIC_IABR7 Interrupt Active Bit Register
0xE000E400-0xE000E4EC NVIC_IPR0 - NVIC_IPR59 Interrupt Priority Register

As mentioned, NVIC comprises several registers that facilitate interrupt configu-
ration, prioritization, and handling. Below are some key registers commonly found
in the NVIC of ARM Cortex-M microcontrollers:

1. Eight Interrupt Set Enable Registers (NVIC_ISER0 - NVIC_ISER7), which
enable interrupts and show which interrupts are enabled. Each bit in these reg-
isters corresponds to a specific interrupt source, allowing individual interrupt
control. If a pending interrupt is enabled, the NVIC activates the interrupt based
on its priority. If an interrupt is not enabled, asserting its interrupt signal changes
the interrupt state to pending, but the NVIC never activates the interrupt, regard-
less of its priority.

2. Eight Interrupt Clear Enable Registers (NVIC_ICER0 - NVIC_ICER7)
registers disable interrupts and show which interrupts are disabled. Each bit
in these registers corresponds to a specific interrupt source, allowing individual
interrupt control.

3. Eight Interrupt Set Pending Registers (NVIC_ISPR0 - NVIC_ISPR7) reg-
isters force interrupts into the pending state and show which interrupts are pend-
ing. They control whether an interrupt is marked as pending or not. Each bit in
these registers corresponds to a specific interrupt source, allowing individual
interrupt control.

1.7 Interrupt controllers 91

4. Eight Interrupt Clear Pending Registers (NVIC_ICPR0 - NCVIC_ICPR7)
registers remove the pending status of an interrupt. Each bit in these registers
corresponds to a specific interrupt source, allowing individual interrupt control.

5. Eight Interrupt Active Bit Registers (NVIC_IABR0 - NVIC_IABR7) regis-
ters indicate which interrupts are active. A bit is read as one if the status of the
corresponding interrupt is active or active and pending.

6. 60 Interrupt Priority Registers (NVIC_IPR0 - NVIC_IPR59) registers pro-
vide an 8-bit priority field for each interrupt. These registers are byte-accessible,
and there is a total of 240 8-bit priority fields in 60 IPRs.

Table 1.9 lists the memory-mapped NVIC registers and their addresses. The
availability and configuration of these registers may vary slightly across different
Cortex-M microcontroller variants, so the specific functionalities and register names
may differ in certain models.

1.7.3.1 Interrupt Priority Levels

3 0

Priority bits

47

Unused

Fig. 1.37: The 8-bit priority field in an Interrupt Priority Register.

In Cortex-M7/ cores, the priority of each interrupt is defined through the corre-
sponding 8-bit Priority field in the IPR register. This 8-bit field allows up to 255 dif-
ferent priority levels. However, in practice, only the four upper bits of this field are
used in order to decrease the complexity of NVIC and to lower the power consump-
tion. Figure 1.37 shows how the content of IPR is interpreted. This means that we
have only sixteen maximum priority levels. The lower this number is, the higher the
priority is. The four priority bits can be further logically subdivided into two parts:
a series of bits defining the preemption priority and a series of bits defining the
sub-priority. The preemption priority level rules the preemption priorities between
exceptions. If an exception has a priority higher than another one, it will preempt
the execution of the lower-priority exception in case it fires. The sub-priority deter-
mines which exception handler will be executed first in case of multiple pending
exceptions with the same preempt priority, and it will not act on preemption. The
way the 4-bit priority field is logically subdivided is called a priority grouping and
is defined in the ARM Cortex-M7 System Control Block. Once defined, a priority
grouping is common to all interrupts used in the system.

Figure 1.38 shows five possible priority groupings in ARM Cortex-M7 proces-
sors. In each priority grouping scheme, the most significant bits within the overall
priority level represent the preemption priority, which determines the priority be-
tween different exceptions and their ability to preempt each other. The least signifi-

92 1 Interrupts and interrupt handling

3 0

Subpriority

47

Unused

3 0

Subpriority

47

Unused

3 0

Subpriority

47

Unused

3

Sub-
priority

47

Unused

0

347

Unused

0

Preempt Priority

Preempt Priority

Preempt
Priority

Preempt
priority

Priority Grouping 0:

Priority Grouping 1:

Priority Grouping 2:

Priority Grouping 3:

Priority Grouping 4:

6

56

5

Fig. 1.38: Priority grouping in ARM Cortex-M7.

cant bits within the priority level represent the sub-priority. They manage the order
of handling interrupts with the same preemption priority, allowing fine-grained con-
trol over which interrupt is serviced first among those with the same preempt bits.
The choice of grouping determines the balance between high-priority preemption
and the finer-grained management of interrupts with the same high-priority level.
For instance, a system configured with three preemption priority bits and one sub-
priority bit (Priority Grouping 3) allows for eight levels of preemption and two sub-
priority levels within each preemption level. The priority grouping concept provides
a means to tailor the interrupt handling scheme to the specific requirements of an
application, allowing for more precise control over the order in which interrupts are
processed and handled within the Cortex-M7 architecture.

1.7.4 Case study: External Interrupts in STM32H7xx

Microcontrollers

Figure 1.39 shows the block diagram of the interrupt circuitry block connected to the
processor core in an STM32H7xx microcontroller. The interrupt circuitry consists
of

1. The NVIC unit tightly coupled to the processor core within the ARM-Cortex
M7. The internal peripherals within STM32H7xx (e.g. UARTs, timers, etc.) are
connected to IRQ lines of the NVIC.

2. An additional dedicated interrupt controller, named Extended Interrupt and
Event Controller (EXTI), responsible for the interconnection between the ex-
ternal I/O interrupt signals and the NVIC controller, as we will see next.

The Clock Security System (CSS) in STM32H7xx microcontrollers is a feature de-
signed to enhance the reliability and robustness of clock sources used within the mi-
crocontroller. It provides a safeguard against potential failures in the clock system to

1.7 Interrupt controllers 93

NMI

IRQ1-IRQ6

SysTick Timer

CPU CORE

HardFaultNVIC
IRQ25-IRQ40

MemManage
BusFault
UsageFault
SVCall
PendSV

ADDRESS

DATA

EXCEPTION
NUMBER

MEMORY-MAPPED
REGISTERS

ARM Cortex-M7 Core

Peripherals

Clock Security
System

IRQ7-IRQ11

STM32H7xx Microcontroller

IRQ12-IRQ23

IRQ42-IRQ150

IRQ24 IRQ41

EXTI0
EXTI1
EXTI2
EXTI3
EXTI4
EXTI9-5
EXTI15-10

EXTI

GPIOA

GPIOK

GPIOA_PIN0

GPIOA_PIN15

GPIOK_PIN0

GPIOK_PIN15

...

...

...

...

...

SY
SC

FG

Fig. 1.39: The NVIC and EXTI controllers in the STM32H7xx Microcontrollers.

ensure the proper functioning of the microcontroller in various operating conditions.
The CSS is connected to the NMI input of the NVIC controller. The STM32H7xx
microcontroller contains 11 16-bit GPIOs named GPIOA through GPIOK. In to-
tal, there are 176 GPIO pins which can be used to generate external interrupt re-
quests. In STM32X7xx microcontrollers, the EXTI is used to generate interrupts
from GPIO pins. The EXTI is a peripheral that enables interrupt requests based on
specific GPIO pin events, such as a rising or falling edge, allowing external events
to trigger interrupt requests.

1.7.4.1 Extended Interrupt and Event Controller (EXTI)

Edge
detection

circuit

EXTI_RTSREXTI_FTSR EXTI_IMR

EXTI_PRInput Line
To NVIC

Fig. 1.40: EXTI block diagram.

Figure 1.40 shows the block diagram of the EXTI controller. The main features
of the EXTI controller are an independent trigger and mask on each interrupt/event

94 1 Interrupts and interrupt handling

line and a dedicated pending (status) bit for each interrupt line. The EXTI controller
manages 25 input interrupt lines in total. The EXTI includes memory-mapped regis-
ters that allow the programmer to set interrupt trigger conditions (rising edge, falling
edge or both), and enable interrupts on specific EXTI lines. Some of the EXTI reg-
isters, which we are interested in in this subsection, are:

1. Interrupt mask register (EXTI_IMR) manages the interrupt mask status for
each EXTI line. Setting a bit in this register enables the interrupt from that line.

2. Rising trigger selection register (EXTI_RTSR) enables/disables the rising
trigger for each EXTI input line. When enabled, the EXTI generates an interrupt
request when a rising edge is detected on an input line.

3. Falling trigger selection register (EXTI_FTSR) enables/disables falling trig-
ger for each EXTI input line. When enabled, the EXTI generates an interrupt
request when a falling edge is detected on an input line.

4. Pending register (EXTI_PR) indicates the pending status of the interrupt for
each EXTI line. Reading a bit in this register shows if an interrupt request is
pending on that line. We should write ’1’ to the bit in the interrupt handler to
clear the pending state of the corresponding interrupt.

The EXTI controller has internal interrupt control logic that monitors the GPIO
pins’ status, and triggers interrupt requests when the configured events occur. To
generate the interrupt, the interrupt line should be configured and enabled. This
is done by programming the two trigger registers (EXTI_RTSR and EXTI_FTSR)
with the desired edge detection and by enabling the interrupt request by writing a
’1’ to the corresponding bit in the interrupt mask register (EXTI_IMR). When the
selected edge occurs on the external interrupt line, and the interrupt on that line is
enabled in the interrupt mask register (EXTI_IMR), the pending bit corresponding
to the interrupt line is set in the pending register (EXTI_PR). Also, EXTI generates
an interrupt request to the NVIC. Once the interrupt handler is executed, this request
must be reset by writing a ’1’ in the pending register (EXTI_PR) from the interrupt
handler. EXTI interrupts can be individually prioritized using the NVIC, allowing
different external events to have different levels of priority. To configure a line as an
interrupt source, we use the following procedure:

1. Set the corresponding mask bit (EXTI_IMR)
2. Configure the trigger selection bits of the interrupt lines (in the EXTI_RTSR

and EXTI_FTSR registers)
3. Configure the enable and mask bits that control the NVIC IRQ channel mapped

to the external interrupt controller (EXTI) so that an interrupt coming from one
of the 25 lines can be correctly acknowledged.

1.7.4.2 System configuration controller (SYSCFG)

As we already said, there are 176 GPIO pins in STM32H7xx microcontrollers,
which can generate external interrupt requests. All these pins are routed to 16
input lines in the EXTI controller using the System Configuration controller. In

1.7 Interrupt controllers 95

31 016 15

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]SYSCFG_EXTICR1
0x58000408

31 016 15

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI5[3:0]SYSCFG_EXTICR2
0x5800040C

31 016 15

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]SYSCFG_EXTICR4
0x58000410

31 016 15

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]SYSCFG_EXTICR4
0x58000414

Fig. 1.41: The SYSCFG external interrupt configuration registers and their ad-
dresses.

STM32 microcontrollers, including the STM32F7 series, the System Configura-
tion (SYSCFG) controller is crucial in routing GPIO pins to the External Inter-
rupt (EXTI) lines. This routing process involves four memory-mapped specific reg-
isters within the SYSCFG (SYSCFG_EXTICR1 to SYSCFG_EXTICR4) and 16
multiplexors in the SYSCFG. Figure 1.41 shows the EXTI configuration registers
available in the SYSCFG module. Four SYSCFG registers, SYSCFG_EXTICR1 to
SYSCFG_EXTICR4, contain 16 groups of four select bits for 16 multiplexers, al-
lowing the configuration of which of 16 GPIO pins is connected to a specific EXTI
line. The EXTI line multiplexing functionality provided by SYSCFG enables the
routing of GPIO pins to EXTI lines, as presented in Figure 1.42.

PA0
PB0
PC0
PD0
PE0
PF0
PG0
PH0
PI0
PJ0
PK0

PA1
PB1
PC1
PD1
PE1
PF1
PG1
PH1
PI1
PJ1
PK1

PA2
PB2
PC2
PD2
PE2
PF2
PG2
PH2
PI2
PJ2
PK2

PA3
PB3
PC3
PD3
PE3
PF3
PG3
PH3
PI3
PJ3
PK3

PA4
PB4
PC4
PD4
PE4
PF4
PG4
PH4
PI4
PJ4
PK4

SYSCFG_EXTICR2
EXTI4[3:0]

SYSCFG_EXTICR1
EXTI3[3:0]

SYSCFG_EXTICR1
EXTI2[3:0]

SYSCFG_EXTICR1
EXTI1[3:0]

SYSCFG_EXTICR1
EXTI0[3:0]

SYSCFG_EXTICR4
EXTI15[3:0]

PA15
PB15
PC15
PD15
PE15
PF15
PG15
PH15
PI15
PJ15
PK15

EXTI15

EXTI4
EXT3
EXTI2
EXTI1
EXTI0

Fig. 1.42: The mapping of GPIO pins to EXTI lines in the System Configuration
(SYSCFG) module in an STM32H7 MCU.

The 16 EXTI controller lines, EXTI0 to EXTI15, are connected to the NVIC
controller using only 7 IRQ inputs. The EXTI0, EXTI1, EXTI2, EXTI3 and EXTI4
lines are connected to their dedicated NVIC IRQ inputs IRQ7 to IRQ11 (see Fig-
ure 1.39). The EXTI lines, EXTI5 to EXTI9, share the NVIC IRQ24 input, and the

96 1 Interrupts and interrupt handling

EXTI lines EXTI10 to EXTI5 share the NVIC IRQ41 input (see Figure 1.39). Fig-
ure 1.43 illustrates how EXTI lines, EXTI0 to EXTI15, are mapped to exception
handlers in ARM Cortex-M7 cores.

PA0
PB0
PC0
PD0
PE0
PF0
PG0
PH0
PI0
PJ0
PK0

PA1
PB1
PC1
PD1
PE1
PF1
PG1
PH1
PI1
PJ1
PK1

PA2
PB2
PC2
PD2
PE2
PF2
PG2
PH2
PI2
PJ2
PK2

PA3
PB3
PC3
PD3
PE3
PF3
PG3
PH3
PI3
PJ3
PK3

PA4
PB4
PC4
PD4
PE4
PF4
PG4
PH4
PI4
PJ4
PK4

PA5
PB5
PC5
PD5
PE5
PF5
PG5
PH5
PI5
PJ5
PK5

PA9
PB9
PC9
PD9
PE9
PF9
PG9
PH9
PI9
PJ9
PK9

PA10
PB10
PC10
PD10
PE10
PF10
PG10
PH10
PI10
PJ10
PK10

PA15
PB15
PC15
PD15
PE15
PF15
PG15
PH15
PI15
PJ15
PK15

EXTI0_IRQ
EXTI1_IRQ
EXTI2_IRQ
EXTI3_IRQ
EXTI4_IRQ

EXTI9_5_IRQ
EXTI15_10_IRQ

.

SYSCFG_EXTICR2
EXTI4[3:0]

SYSCFG_EXTICR1
EXTI3[3:0]

SYSCFG_EXTICR1
EXTI2[3:0]

SYSCFG_EXTICR1
EXTI1[3:0]

SYSCFG_EXTICR1
EXTI0[3:0]

SYSCFG_EXTICR2
EXTI5[3:0]

SYSCFG_EXTICR3
EXTI9[3:0]

SYSCFG_EXTICR4
EXTI10[3:0]

SYSCFG_EXTICR4
EXTI15[3:0]

Fig. 1.43: The mapping of the EXTI lines to exception numbers (handlers).

1.7.4.3 Triggering interrupts on the GPIO pins

Suppose we want to trigger interrupts when the rising edge is detected on GPIOC
Pin 13. The process of setting up the STM32H7xx system involves the following
steps:

1. GPIO Pin Configuration: Configure GPIOC Pin13 as input.
2. SYSCFG Configuration: After configuring the GPIOC Pin13, we need to map

the pin 13 to the EXTI13 line. This involves configuring the associated mul-
tiplexor in the SYSCFG controller. To configure the multiplexor which maps
GPIOC Pin13 to EXTI13, we need to write ’0010’ to the 4-bit field EXTI13[3:0]
in the SYSCFG_EXTICR4 register.

3. EXTI Configuration: Set the triggering conditions for the EXTI line 13 asso-
ciated with GPIOC Pin13. As we want the interrupt to be triggered by a rising
edge, we should set the bit associated with EXTI13 in the Rising trigger selec-
tion register (EXTI_RTSR). We should also enable the interrupt associated with

1.7 Interrupt controllers 97

EXTI13 by setting the appropriate bit in the interrupt mask register (EXTI_IMR
).

4. NVIC Configuration: Configure the NVIC controller. This involves enabling
the IRQ41 in the Interrupt Set Enable Register NVIC_ISER1 and setting the
priority level for IRQ41 in the priority register NVIC_IPR11.

5. Exception Handler Implementation: Implement the exception handler
EXTI15_10_IRQHandler() for the NVIC IRQ line associated with EXTI13.
When the configured event occurs on the GPIOC Pin13, the EXTI generates
an interrupt request on NVIC IRQ41, and the corresponding handler is called.
Within the ISR, perform the necessary actions in response to the external event.
The mandatory part of the handler is to clear the peripheral pending bit (in
the EXTI_PR register). The peripheral pending bit will be held high until it is
cleared by the application code. If the peripheral pending bit is not cleared, the
interrupt will be fired again, and the handler will run again.

Figure 1.44 illustrates how the interrupt request on the GPIOC Pin13 is routed
through SYSFIG, EXTI and NVIC to the CPU core after performing the above-
listed configuration steps.

Edge
detection

circuit

EXTI_RTSREXTI_FTSR EXTI_IMR

EXTI_PREXTI13
EXTI15_10

PA13
PB13
PC13
PD13
PE13
PF13
PG13
PH13
PI13
PJ13
PK13

SYSCFG_EXTICR3
EXTI13[3:0]

PC13 NVIC_ISPR1

NVIC_ISER1

Exception
number
encoder

IRQ

Exception
Number

CPU CORE

SYSCFG EXTI NVIC

=0010

EXTI_FTSR[13] = 0 EXTI_FTSR[13] = 1 EXTI_IMR[13] = 1

EXTI_PR[13] = 1 NVIC_ISPR1[9] = 1

= 41

NVIC_ISER1[9] = 1

GPIOC
PIN 13

Fig. 1.44: Routing the interrupt request on the GPIOC Pin13 through SYSFIG,
EXTI and NVIC to the CPU core.

To enable an external interrupt on GPIOC Pin13 in the STM32H7xx microcon-
troller, we typically use the STM32Cube HAL (Hardware Abstraction Layer) library
provided by STMicroelectronics, which simplifies configuring and using the micro-
controller’s peripherals. Below are the general steps to enable an external interrupt
on GPIOC Pin13:

1. Configure GPIOC Pin13, SYSCFG and EXTI using HAL_GPIO_Init() func-
tion:

1 GPIO_InitTypeDef GPIO_InitStruct = {0};

3 __HAL_RCC_GPIOC_CLK_ENABLE ();

5 GPIO_InitStruct.Pin = GPIO_PIN_13;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;

98 1 Interrupts and interrupt handling

7 GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOC , &GPIO_InitStruct);

Listing 1.54: GPIO, SYSCFG and EXTI configuration.

The HAL_GPIO_Init() function sets the GPIO Pin13 as input, configures the
SYSCFG controller to route GPIOC Pin13 to the EXTI13 line, and config-
ures the EXTI controller to fire an interrupt when the rising edge occurs on
the EXTI13 line.

2. Configure NVIC controller:

HAL_NVIC_SetPriority(EXTI15_10_IRQn , 0, 0);
2 HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

Listing 1.55: HAL functions used to configure NVIC.

3. Implement the EXTI15_10_IRQHandler() handler:

void EXTI15_10_IRQHandler(void)
2 {

// Check if GPIO_PIN_13 triggered the interrupt :
4 if (__HAL_GPIO_EXTI_GET_IT(GPIO_PIN_13) != 0x00U)

{
6 // Your code to handle the GPIO_PIN_13 interrupt goes here

8 // Clear the EXTI13 pending bit in EXTI pending register
__HAL_GPIO_EXTI_CLEAR_IT(GPIO_PIN_13);

10 }
}

Listing 1.56: EXTI15_10_IRQ Handler.

1.7 Interrupt controllers 99

1.7.5 Intel 8259A Programmable Interrupt Controler

Intel processors also have only a single interrupt input. As a personal computer has
several peripheral devices that can raise interrupts, the Intel Programmable Interrupt
Controller (PIC) 8259A is used to manage them. The 8259A PIC is a special inter-
rupt controller designed particularly for Intel processors. It is connected between
the interrupt requesting peripheral device and the Intel processor. This means that
the interrupt requests from peripheral devices are first transferred to the PIC, which
in turn asserts the processor’s interrupt input. Figure 1.45 illustrates the system with
the 8259A PIC.

INTEL
CPU

INTA#

8259A
PIC

IR 0

SYSTEM BUS

INTR

Vdd

R

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

Fig. 1.45: A system with the 8259A PIC.

The 8259A was introduced in the early 1980s and was used in personal comput-
ers until the 1990s. It is still used in some Intel-based embedded systems. While
not anymore a separate chip, the 8259A interface is still provided by the chipset on
modern x86 motherboards. Although someone could say it is obsolete, its function-
ing will help us to understand the evolution of interrupt controllers in the Intel-based
computer systems.

The Intel 8259A Programmable Interrupt Controller handles up to eight vectored
priority interrupts for the CPU. It is cascadable for up to 64 vectored priority inter-
rupts without additional circuitry. The interrupt inputs have fixed priority based on

100 1 Interrupts and interrupt handling

its number, and the interrupts on its inputs may be either edge-triggered or level-
triggered.

The 8592A PIC has the following set of registers: Interrupt Request Register
(IRR), In-Service Register (ISR), and Interrupt Mask Register (IMR). The IRR reg-
ister specifies which interrupts are pending. The ISR register specifies which inter-
rupts have been acknowledged, and the IMR specifies which interrupts are to be
ignored and not acknowledged. Figure 1.46 illustrates the simplified internal struc-
ture of the 8259A PIC.

CONTROL LOGIC

IS
R

IR
R

PR
IO

RI
TY

CO
N

TR
O

LL
ER

IMR

IR 0
IR 1
IR 2
IR 3
IR 4
IR 5
IR 6
IR 7

INTINTA#

8
X

3
PR

IO
RI

TY
EN

CO
D

ER
IO BUFFERS

D[7:0]

OFFSET

Fig. 1.46: Simplified internal structure of the 8259A PIC.

The peripheral device that wishes to issue an interrupt request asserts one of
the pins IR0 to IR7. If the interrupt is not masked in the IMR register, the 8259A
PIC will set the corresponding bit in the interrupt request register (IRR). The IRR
register remembers all the pending interrupt requests. As more peripheral devices
can issue the interrupt request simultaneously, several bits may be set in the IRR
register at the same time. At the same time, the 8259A sends an INT to the CPU.
When the 8259A PIC asserts the interrupt request on the processor’s INTR input,
the processor recognizes this request on the next instruction fetch. It then stops the
instruction fetch and automatically saves the program context onto the stack. The
CPU then starts the so-called interrupt-acknowledge cycle.

Interrupt-acknowledge cycles are special bus cycles that enable the PIC to output
an interrupt vector onto the data bus. This vector is fetched by the CPU and trans-
ferred into the program counter during the interrupt-acknowledge cycle. The value
read during the interrupt-acknowledge cycle is then multiplied by 4 and used to load
an interrupt vector from this address in memory. The Intel processors perform two
back-to-back interrupt-acknowledge cycles in response to an active INTR input:

1. Firstly, the CPU responds by asserting the first INTA pulse. Upon receiving
an INTA from the CPU, the priority controller in the 8259 passes the highest
priority bit from IRR to the In-Service Register (ISR), and the corresponding

1.7 Interrupt controllers 101

IRR bit is reset. The set bit in the ISR indicates which interrupt request is being
serviced.

2. Secondly, the processor asserts the second INTA pulse to instruct the 8259A
to release an 8-bit interrupt number onto the Data Bus (D0-D7). This ends the
interrupt-acknowledge sequence.

The CPU now reads the 8-bit interrupt number (n) and multiplies it by 4. This
value represents the address of the memory location that holds the start address of
the interrupt handler. Hence, the CPU executes in hardware the following operation:

PC <- Mem[n x 4]

The structure of the 8-bit vector number returned from the 8259A PIC is shown
in Figure 1.47. The lower three bits are the binary-coded number of the bit that was
set in the ISR. The higher five bits are the offset that can be programmed during
the 8259A PIC initialization. Recall, that the Intel stores its IVT table at the address
0x0000 and that the interrupt numbers 32 through 255 are reserved for external
interrupts signaled on the INTR pin. If we want to map the IRQ interrupts from
8259A PIC at the address 0x0080 (=32x4) in the IVT, the offset returned in the 8-bit
vector number should be 00100. In the case of the IR0 interrupt, the returned vector
number is 0x20, which maps to 0x0080; in the case of the IR1 interrupt, the returned
vector number is 0x21, which maps to 0x0084, etc.

0 2
IR numOffset

 3 7

Fig. 1.47: The 8-bit vector number returned by the 8259A PIC. The lower three bits
are the binary-coded number of the bit that was set in the ISR. The higher five bits
are the offset that can be programmed during the 8259A PIC initialization.

To reset the bit in the ISR register, the interrupt handler should issue an End-
Of-Interrupt (EOI) command to the 8259A PIC. The set bit is therefore deleted
manually. The 8259A is now ready to process the next pending hardware interrupt
request in IRR. The priority controller passes the highest priority bit form IRR to
ISR, and the above sequence is repeated. Figure 1.48 illustrates the operation of
the 8259A PIC when IR2 and IR4 are issued simultaneously, and IR2 has a higher
priority than IR4.

102 1 Interrupts and interrupt handling

CONTROL LOGIC

IS
R

IR
R

PR
IO

RI
TY

CO
N

TR
O

LL
ER

IMR

IR 0
IR 1
IR 2
IR 3
IR 4
IR 5
IR 6
IR 7

INTINTA#

IO BUFFERS

D[7:0]

00
01

01
00

00
00

01
00

00100010

1
2

23

4

5

6

00
01

00
00

4

8
X

3
PR

IO
RI

TY
EN

CO
D

ER

00100
010OFFSET

Fig. 1.48: the operation of the 8259A PIC when IR2 and IR4 are issued simultane-
ously, and IR2 has a higher priority than IR4. (1) Two peripheral devices assert the
pins IR2 and IR4. (2) Assuming the interrupts are not masked in the IMR register,
the 8259A PIC will set the corresponding bits in the interrupt request register (IRR).
At the same time, the 8259A sends an INT to the CPU. (3) The CPU responds by
asserting the first INTA pulse. (4) Upon receiving an INTA from the CPU, the pri-
ority controller in the 8259 passes the highest priority bit from IRR to ISR, and the
corresponding IRR bit is reset. (5) The processor asserts the second INTA pulse. (6)
The 8259A controller releases an 8-bit interrupt number onto the data bus (D0-D7).

Summary: AIC vs. 8259A

Besides being designed for different processors, the main difference be-
tween the ARM AIC and Intel 8259A PIC is how the interrupt vector is
obtained. In ARM AIC, the CPU reads the interrupt vector from an AIC’s
memory-mapped register using a LOAD instruction, while in 8259A PIC,
the CPU reads the vector from the data bus, without executing any instruc-
tion.

The former is considered faster (recall that instructions in ARM9 are exe-
cuted in 5 clock cycles) but requires additional signaling between interrupt
controller and CPU (INTA) and a special interrupt-acknowledge cycle.

1.7.6 8259A PIC Cascading

With one 8259A PIC, eight interrupt sources could be managed. But soon, eight
interrupt lines weren’t enough. The 8259A PIC has the capability for two-level cas-
cading. The first level is made up of one master PIC, and the second level is formed

1.7 Interrupt controllers 103

from up to eight slave PICs. Such a configuration can manage up to 64 peripheral
interrupt requests. But in practice, only two PCs are used: one is the master, and
the other is the slave. The PCs included two 8259A PICs chained together, and this
setup became de facto standard for the x86 platform. This scheme is referred to as
the dual-PIC system. Figure 1.49 illustrates the dual-PIC system.

INTEL
CPU

INTA#

8259A
MASTER

IR 0

SYSTEM BUS

INTR

Vdd

R

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

8259A
SLAVE

IR 0

IR 1

IR 2

IR 3

IR 4

IR 5

IR 7

IR 6

D[7:0]

INTA#

INTA#

INT

INT

IRQ 0

IRQ 1

IRQ 2

IRQ 3

IRQ 4

IRQ 5

IRQ 7

IRQ 6

IRQ 8

IRQ 9

IRQ 10

IRQ 11

IRQ 12

IRQ 13

IRQ 15

IRQ 14

Fig. 1.49: A dual-PIC system.

In the dual-PIC system, the slave’s INT output is connected to the master’s
IR2 input. PC documentation established the following naming convention: IRQs
0 through IRQ7 are processed with the first Intel 8259 PIC (master), and IRQs from
8 to 15 are processed with the second Intel 8259 PIC (slave). Therefore, the slave’s
INT output is connected to the master’s IRQ2 input. Only the master’s INT output
is connected to the CPU’s INTR input and can signal about the incoming interrupts.
INTA and D0 through D7 signals of both PICs are connected to the CPU and data
bus as in the single-PIC configuration. Note that IRQ 2 is not available for device
interrupts, and there are only fifteen interrupt inputs available for peripheral device
interrupts.

The way in which an interrupt request is processed depends on whether the re-
quest is asserted on slave’s or master’s IRQ inputs. If the request is asserted on IRQs
form 0 to 7 (master), it is processed in the same way as in the single-PIC configura-
tion. Otherwise, the following steps are required: when an interrupt request is placed
on lines IRQ 8 through 15, the corresponding bit is set in the slave’s IRR register.
The slave asserts its INT output and signals the IRQ interrupt to the master PIC,

104 1 Interrupts and interrupt handling

when master PIC receives the interrupt request on IRQ2, it sets the bit 2 in its IRR
and asserts its INT output to signal the INTR request to the processor, the CPE starts
the interrupt-acknowledge sequence and sends the first INTA pulse. Upon receipt of
the first INTA pulse, the highest priority bits in the master’s and slave’s IRRs are
cleared, and the corresponding bits in both ISRs are set, the CPE outputs the second
INTA pulse and causes the slave PIC to output its 8-bit vector number. The interrupt
handler must send two EOI commands to clear both ISR bits.

But wait! How can we set two different vector numbers for interrupts signaled at
the master’s IR3 (IRQ3) input and at the slave’s IR3 input (IRQ11)? Recall, that the
8-bit vector number returned from the 8259A PIC contains a programmable offset
in its higher five bits. Hence, the master and slave PICs should be initialized with
different offsets. For example, we can set the master’s offset to 00100 and the slave’s
offset to 00110. In this case, the interrupts from the master PIC will be mapped to
the IVT addresses 0x0080-x009F, and the slave’s interrupts will be mapped to the
IVT addresses 0x00C0-0x00DF.

The original PCs used the ISA bus for its I/O devices. The interrupts on the
ISA bus are edge-triggered. An I/O device asserts an interrupt by raising the signal
from low to high. Edge-triggered interrupts inhibit the sharing of ISA interrupts
by multiple devices, so each ISA device requires a dedicated interrupt input on the
8259As. A typical interrupt configuration at that time is presented in Table 1.10.

Table 1.10: ISA Interrupt Assignments.

IRQ Assignment

0 System timer
1 Keyboard controller
2 interrupt from slave controller
3 Serial ports COM 2 / COM 4
4 Serial ports COM 1 / COM 3
5 Sound card
6 Floppy disk controller
7 Parallel port 1 (Printer)
8 Real-time clock
9 ACPI
12 PS/2 mouse controller
13 Math (floating point) co-processor
14 ATA channel 1 (Primary IDE)
15 ATA channel 1 (Secondary IDE)

The Intel 8259 PIC has several limitations to interrupt servicing in modern com-
puter systems:

1. a limited number of interrupt lines necessitates the sharing of interrupts. Shared
interrupts require the OS to poll multiple IO devices to determine who actually
generated the interrupt,

2. interrupt priority is fixed based on IR number,

1.7 Interrupt controllers 105

3. PIC does not support multiple CPUs.

At the time when the main bus for external devices was the ISA bus, this 8929A
based architecture was sufficient. It was only necessary that different peripheral de-
vices did not connect to the same IRQ inputs since ISA uses the edge-triggered
interrupts, which are not shareable. But the PCI bus later replaced the ISA bus, and
interrupts in the PCI bus can be shared. Also, the PCI bus has been replaced by the
serial message-based PCI Express (PCIe) bus, and more CPU cores are added to the
computer system. The following sections will cover the evolution of the interrupt
controller used in the Intel-based computer systems, and we will learn how to han-
dle the interrupts on the PCI bus where the number of peripheral devices exceeds
the number 15, how to share the interrupt lines on the PCI bus, and finally how to
handle interrupts in the modern multi-core PCIe-based systems.

106 1 Interrupts and interrupt handling

1.7.7 Intel Advanced Programmable Interrupt Controler

By nature, the 8259A PIC can only send interrupts to one CPU, and in a multiproces-
sor system, it is desired to load CPUs in a balanced way. The solution to this problem
was the new APIC (Advanced PIC) architecture. This architecture addressed many
of the limitations of the older PIC-based architecture. The most apparent is the sup-
port for multiple CPUs.

CPU 1

Local APIC

CPU 1

Local APIC

CPU 1

Local APIC

CPU 1

Local APIC

I/O APIC

IN
T 24

IN
T 23

IN
T 4

IN
T 3

IN
T 2

IN
T 0

IN
T 1

External Interrupts

APIC BUS

Fig. 1.50: An APIC based computer system.

At the system level, APIC consists of two parts (Figure 1.50). One part resides in
the I/O subsystem and is called the I/O APIC. It is responsible for routing interrupts
from external devices to the other part, the Local APIC (LAPIC), which resides in
each CPU. The local APIC and the I/O APIC communicate over a dedicated 3-wire
serial APIC bus. The IOAPIC bus interface consists of two bi-directional data sig-
nals (APICD[1:0]) and a clock input (APICCLK). The modern systems may use a
standard system bus instead of a separate APIC bus for this task. It is worth noting
that it is possible to have several I/O APIC controllers in the system. For example,
one for 24 interrupts in a southbridge, and the other one for 32 interrupts in a north-
bridge. The CPU’s Local APIC contains the necessary intelligence to determine
whether or not its processor should accept interrupts broadcast on the APIC bus.
The Local APIC also provides local pending of interrupts and handles all interac-
tions with its local processor (e.g., the interrupt acknowledge sequence). Addition-
ally, each I/O APIC has 24 interrupt lines and allows the priority of each interrupt
to be set independently. The I/O APIC sends an interrupt vector to the local APIC,

1.7 Interrupt controllers 107

and, as a result, the OS does not have to interact with the I/O APIC until it sends the
end of interrupt notification.

Summary: APIC

In the APIC-based systems, each CPU includes a local APIC which re-
ceives interrupt messages and uses them to assert interrupts on the CPU.
The chipset includes one or more I/O APICs which are responsible for con-
verting device interrupt signals into messages that are delivered to one or
more local APICs.

1.7.7.1 Local APIC

The Local Advanced Programmable Interrupt Controller (LAPIC) was introduced
into the Pentium processor and is included in more recent Intel processor families.
The local APIC performs two primary functions for the processor: it receives inter-
rupts from the processor’s interrupt pins and an external I/O APIC. It sends these to
the processor core for handling. In multiple-processor systems, it sends and receives
interprocessor interrupt (IPI) messages to and from other processors on the system
bus. IPI messages are used to distribute interrupts among the processors in the sys-
tem. When a local APIC sends an interrupt to its processor core (by asserting the
processor’s INTR line) for handling, the processor uses the interrupt and exception
handling mechanism described in Section 1.6.

The LAPIC receives interrupts from several sources:

• Locally connected I/O devices: these interrupts are asserted by an I/O device
connected directly to the processor’s local interrupt pins (LINT0 and LINT1).

• Inter-processor interrupts (IPIs): an Intel processor can use the IPI messages to
interrupt another processor or group of processors on the system bus.

• Externally connected I/O devices: these interrupts are asserted by an I/O device
connected to the interrupt input pins of an I/O APIC. Interrupts are sent as IPI
messages from the I/O APIC to one or more LAPICs in the system.

Figure 1.51 illustrates a simplified internal structure of a Local APIC. The heart
of the LAPIC is very similar to the 8259A: it contains the IRR and ISR registers
and a priority controller. Besides, it contains two registers that form the local vector
table LVT and the interrupt command register (ICR). In fact, the LAPI is a rather
complicated device containing a large set of addressable registers, timers, and other
control logic. Figure 1.51 shows only its vital parts that are necessary to under-
stand its interrupt handling. The Protocol Transition Logic block receives the IRI
messages from the APIC bus. If the LAPIC is the destination, the Protocol Transi-
tion Logic block forwards the destination mode and the vector number from the IRI
message to the Acceptance Logic block, which decodes the 8-bit vector number and
forwards the bit from the decoded 256-bit word into the IRR register. The rest of the
internal logic is described for each interrupt source in the text below.

108 1 Interrupts and interrupt handling

CO
N

TRO
L LO

G
IC

256-bit ISR

256-bit IRR

PRIORITY
CONTROLLER

INTR

INTA#

ACCEPTANCE LOGIC

PROTOCOL TRANSLATION LOGIC

ICR

LIN0
LIN1

Dest. MODE & Vector No.

LINT0 Register

LINT1 Register

LVT

DATA/ADDR
BUS

DATA/ADDR
BUS

APIC BUS

Decoded Vector No.

256

256

256

Fig. 1.51: Simplified internal structure of a Local APIC.

Interrupts from locally connected I/O devices. Upon receiving a signal from the
processor’s LINT0 and LINT1 pins, the local APIC delivers the interrupt to the
processor core using a group of APIC registers called the local vector table. A
separate entry (i.e., a separate register) is provided in the local vector table for each
local interrupt pin (LINT0 and LINT1). For example, if the LINT1 pin is going to
be used as an NMI pin, the LINT1 entry in the local vector table can be set up
to deliver an interrupt with vector number 2 (NMI interrupt in Table 1.7) to the
processor core. The LVT consists of two 32-bit registers: LINT0 Register (specifies
the interrupt number when an interrupt is signaled at the LINT0 pin) and LINT1
Register (specifies interrupt number when an interrupt is signaled at the LINT0 pin).
An interrupt number is an 8-bit number stored in the bits 0 through 7 in each LIN
register.

Inter-processor interrupts (IPIs). A processor generates IPIs by writing to a spe-
cial LAPIC register called the interrupt command register (ICR) in its local APIC.
The act of writing to the ICR causes an IPI message to be generated and issued on
the system bus or the APIC bus. An IPI message includes the processor destination
number, the vector number, and trigger mode (edge or level). When the target pro-

1.7 Interrupt controllers 109

cessor receives an IPI message, its local APIC handles the interrupt request automat-
ically using information included in the message such as vector number and trigger
mode. The IPI mechanism is used in multi-processor systems to send or forward
interrupts for a specific vector number. For example, a local APIC can use an IPI to
forward an interrupt to another processor for servicing. Also, the IPI mechanism is
used by I/O APIC to send an interrupt for a specific vector number that originates
from an I/O device connected to I/O APIC. The interrupt command register (ICR) is

63 56
Destination

55 32

31
Vector num.

0715 11

Destination mode
0: Physical
1: Logical

Trigger mode
0: Edge
1: Level

Fig. 1.52: The LAPIC ICR register.

a 64-bit local APIC register that allows software running on the processor to specify
and send interprocessor interrupts (IPIs) to other processors in the system. The act
of writing to the low 32 bits of the ICR causes the IPI message to be sent. Figure
1.52 illustrates the ICR register (only the bits that are important for understanding
are specified/show). The 8-bit Destination field specifies the target processor. The
Destination Mode bit further specifies if the destination is either physical (0) or log-
ical (1) processor. The Trigger Mode bit selects the trigger mode: edge (0) or level
(1).

Externally connected I/O devices. The local APIC can also receive interrupts from
externally connected devices through the I/O APIC (see Figure 1.50). The I/O APIC
is responsible for receiving interrupts generated by system hardware and I/O devices
and forwarding them to the local APIC as IPI messages. Each individual pin on the
I/O APIC can be programmed to generate a specific interrupt vector when asserted.
This vector is then sent to LAPIC as a part of an IPI message.

The local APIC handles the interrupts as follows:

1. if it receives a message on the APIC bus, it determines if it is the specified
destination. If it is the specified destination, it accepts the message; otherwise,
it discards the message,

110 1 Interrupts and interrupt handling

2. if the local APIC determines that it is the designated destination for the inter-
rupt, the local APIC sets the appropriate bit in the IRR,

3. when interrupts are pending in the IRR register, the local APIC sends them to
the processor one at a time, based on their priority, similarly as in the 8259A.
The processor responds with the interrupt acknowledge sequence. During the
first INTA pulse, the LAPIC moves the highest priority bit form the IRR to ISR.
During the second INTA pulse, the LAPIC puts the interrupt vector on the data
bus. If the interrupt request comes from a locally connected I/O device (at the
LINT0 or LINT1 pins), the interrupt number is stored in the corresponding LVT
entry in the LAPIC. If the interrupt request comes from a message, the interrupt
number is contained in the the message.

Completing the handler routine is indicated by instruction in the instruction handler
code that writes to the end-of-interrupt (EOI) register in the local APIC. The act of
writing to the EOI register causes the local APIC to delete the interrupt from its ISR.

1.7.7.2 I/O APIC

The I/O Advanced Programmable Interrupt Controller (IOAPIC) provides multi-
processor interrupt management and incorporates interrupt distribution across all
processors. In systems with multiple I/O subsystems, each subsystem can have its
own set of interrupts. Each interrupt pin is individually programmable as either edge
or level triggered. The interrupt vector can be specified per interrupt input.

CPU 1

Local APIC

CPU 1

Local APIC

I/O APIC

INT 23

INT 22

INT 4

INT 3

INT 2

INT 0

INT 1

ISA External
Interrupts

3-bit APIC BUS

LINT0
LINT1

LINT0
LINT1

INT 17

INT 16

INT 15

Message unit

24 x 64 bit
Interrupt

Redirection
Table

PCI External
Interrupts

Fig. 1.53: The LAPIC ICR register.

1.7 Interrupt controllers 111

The I/O APIC (Figure 1.53) consists of 24 interrupt input lines, a 24-entry In-
terrupt Redirection Table (IRT) with 64-bit entries, programmable registers, and a
message unit for sending and receiving messages over the APIC bus. I/O devices
signals interrupt requests by asserting one of the interrupt lines to the I/O APIC.
The I/O APIC selects the corresponding entry in the IRT and uses the information
in that entry to format an interrupt request message. Each entry in the IRT contains:

• a bit that indicates edge/level sensitive interrupt,
• the interrupt vector and priority, and
• the destination processor.

The information in the IRT entry is used to form and transmit an IRI message to
other LAPICs via the APIC bus.

When an external interrupt request is signaled on the I/O APIC interrupt input,
the I/O APIC controller will send an interrupt message to the LAPIC of one of
the system CPUs. In this way, the I/O APIC controller helps balance interrupt load
between processors.

APIC messages come in several formats and different lengths. Here we present
only two types of APIC messages: EOI Message and the so-called Short Message.
Local APICs use EOI messages to send an end-of-interrupt (EOI) occurring for a
level-triggered interrupt to an I/O APIC. This message is needed, so the I/O APIC
knows when an interrupt has been serviced. In this way, the I/O APIC can differen-
tiate between a new interrupt on the interrupt line versus the same interrupt on the
interrupt line. I/O APICs use Short Messages for the delivery of external interrupts
to local APICS.

14 13 10 7 1 2 5 6 8 9
 APICD0

 APICD1

 0

 0

 1

 1

 V6

 V7

 V4

 V5

 V2

 V3

 V0

 V1

 cycle 1 designates
the EOI message

cycles 6-9 contain
 the vector number

 idle cycle: end of
message

 cycles used for
arbitration

 checksum and
status cycles

Fig. 1.54: The format of the EOI message.

The format of the EOI message is presented in Figure 1.54. All EOI messages are
14 bits long and take 14 cycles on the APIC bus to transmit. Local APICs send 14-
cycle EOI messages to the I/O APIC to indicate that a level triggered interrupt has
been accepted by the processor. This message is a result of software writing into the
EOI register of the local APIC. The first cycle is used to designate an EOI message.
The vector number is sent in cycles 9 through 12. The local APIC gives the target
of the EOI message by transmitting the interrupt vector number (V7 through V0).
When this message is received, the I/O APIC resets the IRR bit for that interrupt. If

112 1 Interrupts and interrupt handling

the interrupt signal is still active after the IRR bit is reset, the I/O APIC treats it as
a new interrupt. The last cycle in which both data lines are set high is used to signal
end-of-message.

14 13 10 7 1 2 5 6 8 9
 APICD0

 APICD1

 0

 1

 1

 1

 V6

 V7

 V4

 V5

 V2

 V3

 V0

 V1

 cycle 1 designates
the SHORT message

cycles 9-12 contain
 the vector number

 idle cycle: end of
message

 cycles used for
arbitration

 checksum and
status cycles

 DM

 11 12 16 15
 D6

 D7

 D4

 D5

 D2

 D3

 D0

 D1

cycles 13-16 contain
 destination

cycle 6 of APICD1:
 destination mode

21

Fig. 1.55: The format of the SHORT message.

The format of a SHORT message is presented in Figure 1.55. All SHORT mes-
sages are 21 bits long and take 21 cycles on the APIC bus to transmit. Short mes-
sages are used by I/O APICS for sending external interrupts to local APICs. The first
cycle is used to designate a SHORT message. The vector number is sent in cycles
9 through 12. If Destination Mode (DM) is 0, then cycles 15 and 16 are the local
APIC ID, and cycles 13 and 14 are sent as 1. In this case, the message is sent to a
physical processor. If DM is 1, then cycles 13 through 16 are the 8-bit Destination
field that selects the logical processor. The last cycle in which both data lines are set
high is used to signal end-of-message.

The I/O APIC with 24 input interrupt lines was used in the systems with the
PCI bus. The APIC architecture could support up to 16 CPUs. The I/O APIC pro-
vided backward compatibility with the older 8259A PIC-based systems. Interrupts
0-15 were used for old ISA interrupts for compatibility with older systems, and
interrupts 16-23 were meant for all the PCI devices. With this delimitation, all con-
flicts between ISA edge-triggered and PCI level-triggered interrupts could be easily
avoided. This assignment of interrupts 0-15 provided only eight additional inter-
rupts, which forced the sharing of PCI interrupts - two ore more devices on the PCI
bus were forced to share the same I/O APIC’s input interrupt line. We will cover the
PCI interrupts sharing and routine in the following sections.

One of the biggest differences between the 8259A PICs and I/O APICs is that
the pins on I/O APICs are completely independent. With the 8259A PICs, the eight
input pins are mapped to eight consecutive vectors in IDT (or IVT), and all of the
interrupts are sent to the same CPU. In I/O APICs, on the other hand, each pin is
programmed independently. Each pin is assigned its own vector by the operating
system and can be mapped to one or more CPUs.

1.8 PCI interrupts 113

1.8 PCI interrupts

The PCI bus was added to the PCs in the mid-1990s. In the first years, both buses,
PCI and ISA, coexisted in the systems. In PCI, the term device refers to a piece of
hardware that is plugged-in into the PCI slot and contains from one to eight func-
tions. A multi-function PCI device is a physical PCI expansion board that embodies
between two and eight PCI functions. For example, a single PCI device may include
several USB controllers as functions. Another example would be a PCI card with a
high-speed communications port and a parallel port. Hence, a PCI expansion card
inserted in the PCI expansion slot is a PCI device, and a single expansion card may
contain up to eight functions. However, from the operating system’s perspective,
each function on a PCI device is a logical operating device.

PCI allows devices to assert interrupts in two different ways:

1. The first way uses dedicated interrupt signals (lines) and is known as Legacy
INTx interrupts.

2. The second way uses special memory writes that are sent over the data bus, just
like APIC messages, and is known as Message Signaled Interrupts (MSI).
First, we will cover Legacy INTx interrupts. Later, we are going to cover the
MSI interrupts.

1.8.1 PCI Legacy interrupts

A PCI card in a slot may have up to eight functions on it, but there are only 4 PCI
interrupt pins: INTA#, INTB#, INTC#, and INTD#. PCI legacy interrupts are level-
triggered; hence, they may be shared by multiple functions. Each function within the
device is only permitted to use one of these interrupt pins to generate requests. If a
device contains only one function that uses only one interrupt pin, it must be called
INTA#. If a device contains more than one function, all functions within a device
may be bonded to the same pin, INTA#, or each may be bonded to a dedicated pin
(this would be true for a device with up to four functions embodied within it). Also,
a group of functions within the package may share the same interrupt pin. In the
most simple (and most common) case, a PCI device has only one function with its
interrupt going to the lane INTA#.

Figure 1.56 illustrates a simple interrupt model with two peripheral devices on
the PCI bus; hence, both are required to INTA# . Each peripheral device embodies
only one function that generates PCI interrupts. The first device is an ethernet card
in the PCI slot 0 that generates interrupts on INT#A line, while the second device is
a sound card in the PCI slot 3 that also generates interrupts on the INT#A line. Both
devices share the same interrupt request signal trace on the system board, which
is routed to the IRQ5 input on the Intel 8259A programmable interrupt controller
(PIC). Indeed, the PCI standard does not limit the interrupt controller used to route

114 1 Interrupts and interrupt handling

Status register
1

INTA#

PCI 10/100 Mbps Ethernet Card

Status register
1

INTA#

PCI Sound Card
IRQ5 INT INTR

i8259
PIC

Intel
CPU

Interrupt pending bit

Interrupt pending bit

INTA INTA

D[7:0]

Fig. 1.56: Example system for shared interrupts on the PCI bus.

PCI interrupts to the CPU as long it supports level-triggered interrupts; hence, in
this example, we assume that the 8259A PIC is used for this purpose.

Let us assume that both devices assert the interrupt request and that the sound
card asserted the interrupt first. The interrupts are asserted by driving the interrupt
line LOW. In addition to asserting the interrupt request, both devices set an interrupt
pending bit in their memory-mapped status registers so that interrupt handlers can
access both status registers. Let us also assume that no other device in the system
had asserted an interrupt request before the sound card and ethernet card.

When the Intel 8259A PIC detects the interrupt request on its IRQ5 input, it
asserts the interrupt request on the processor’s INTR input. The processor will rec-
ognize this request on the next instruction fetch. It then stops the instruction fetch
and automatically saves the program context onto the stack. The CPU then starts
the interrupt acknowledge sequence: the CPU responds by asserting the first INTA
pulse, the 8259 PIC prioritizes the pending interrupt requests by setting the bit 5 in
its ISR register and clearing the bit 5 in its IRR register, the CPU outputs the second
INTA pulse to instruct the 8259A PIC to release the 8-bit pointer onto the data bus
(D0 to D7) where it is read by the CPU. Now the processor has received the interrupt
vector number associated with IRQ5. Let assume that the interrupt vector number
is 0x07. The processor multiplies this value by 4, which yields the address of the
interrupt vector entry, 0x00000001C. The processor now reads the content of the
memory location 0x00000001C to obtain the start address of the interrupt handler.

As both devices, the ethernet card and the sound card, share the same interrupt
line IRQ5, the interrupt handler should contain the code to handle the interrupt re-
quests from both devices. Let us assume that the interrupt handler contains both
codes, the "ethernet" handler, and the "sound card" handler. The simplified struc-
ture of the IRQ5 interrupt handler is presented in Listing 1.57. The interrupt handler
first checks which device has asserted the interrupt request by checking the interrupt
pending bit in the corresponding status register.

1.8 PCI interrupts 115

1 /*
* IRQ5 Handler

3 */
__attribute__ ((interrupt)) void irq5handler () {

5

/* Check the interrupt pending bit in the Ethernet status reg */
7 if (eth_status_reg & (1<<INT_PEND_BIT)) {

/* Ethernet Handler Code */
9 eth_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

...
11 ...

...
13 }

15 /* Check the interrupt pending bit in the Sound card status reg */
if (snd_status_reg & (1<<INT_PEND_BIT)) {

17 /* Sound Card Handler Code */
snd_status_reg &= ~(1<< INT_PEND_BIT); // clear int pending bit

19 ...
...

21 ...
}

23

/* return from interrupt */
25 }

Listing 1.57: IRQ5 interrupt handler

Listing 1.57 shows that the interrupt handler checks the pending bit in the ethernet
card’s status register first. As this bit is asserted, the ethernet handler is executed
first. The ethernet handler clears the pending bit in the status register and processes
the interrupt request. Then the IRQ5 handler proceeds with the sound card handler.
This handler checks the sound card’s interrupt pending bit to determine if it requires
servicing. Since the pending bit is set, the main body of the sound card handler is
executed. It clears the interrupt pending bit and services the interrupt request. As
both devices have their pending bit clear, the interrupt line is de-asserted.

Hence, the system in Figure 1.56 relies on the vectored interrupt handling to
determine which interrupt request input in the PIC 8259A has been asserted, but
use the interrupt polling to determine which PCI device has asserted the interrupt
request. The sequence of polling determines the interrupt priority. This is why the
ethernet card is serviced first, although the sound card had asserted the interrupt
request a few moments before the ethernet card.

1.8.2 PCI interrupts routing

Each PCI device (function) that needs an interrupt comes with a fixed PCI interrupt
that can’t be changed. But this PCI legacy interrupts signal (lane) can be mapped
(routed or redirected) to any APIC interrupt input. Thus, at one end, we have a PCI
legacy interrupt lines (INTA# through INTD#) being signaled by a PCI function that
needs attention. At the other end, we have a CPU receiving an IDT vector. In the
middle is an interrupt controller (most commonly, this would be an APIC pair: I/O
APIC and LAPIC). Whenever any of the PCI legacy interrupt pins is asserted, the

116 1 Interrupts and interrupt handling

I/O APIC module supplies the vector associated with that input to the processor’s
embedded local APIC module. We have already learned that IR16-IR23 input I/O
APIC pins are devoted to PCI. The upper four (IR20-IR23) are devoted to PCI
functions embedded in the chipset, while the lower four are devoted to PCI legacy
interrupt pins. The I/O APIC inputs IR20 through IR23 are called PIRQA through
PIRQH when used for PCI interrupts. The acronym PIRQ stands for PCI interrupt
request. We have also learned that several PCI devices or functions can use the same
PCI legacy interrupt signal to assert interrupts. So, the question is, how the PCI
legacy interrupt signals INTA# through INTD# are routed to the I/O APIC inputs
PIRQA through PIRQD? The best scenario is pictured in Figure 1.57 where each
of the individual PCI interrupt lines is routed to an interrupt controller as a separate
input. But such a solution is possible only if there are only up to four PCI devices
because the I/O APIC has only four available interrupt inputs.

INTA#

APIC

APIC BUS

INTB#

INTA#

INTA#

INTB#

INTC#

INTD#

INTA#

INTB#

INTC#

Fig. 1.57: Ideal routing of PCI interrupt lanes.

PCI interrupt signals can be routed to I/O APIC interrupt pins (PIRQs) in sev-
eral different ways. One simple method of connecting (hardwiring) these lines from
PCI devices to the PIRQs would be to connect all INTA# interrupts to PIRQA, all
INTB# interrupts to PIRQB, all INTC# interrupts to PIRQC, and all INTD# inter-
rupts to PIRQD. Figure 1.58 illustrates this method of PCI interrupts routing. As
we’ve already said above, the most common case is when a PCI device has only

1.8 PCI interrupts 117

INTA#

APIC

APIC BUS

INTB#

INTA#

INTA#

INTB#

INTC#

INTD#

INTA#

INTB#

INTC#

PIRQA

PIRQB

PIRQC

PIRQD

I16

I17

I18

I19

Fig. 1.58: Unbalanced routing of PCI interrupt lanes.

one function, and its interrupt must be connected to the INTA# pin. Therefore if we
decided to route all PCI interrupt lanes as we’ve written, almost all of the devices
in a system would share interrupt input PIRQA. As you can see in Figure 1.58 the
PIRQA request line is heavily-weighted (four PCI devices). Suppose this lane is
connected to the IRQ16 of the APIC. This way, every time a processor has a signal
that there is an interrupt on the IRQ16 input, it has to poll all of the device drivers
of the PCI devices connected to that IRQ16 line (PIRQA) if they have asserted an
interrupt. If there are many of those devices, it will surely decrease system response
to the interrupt. And in this case, lanes PIRQB-PIRQD would stand idle most of the
time.

The optimal way of PCI interrupts routing should take into account that each
PIRQ should have fairly the same number of PCI functions connected to it. We
should also consider that some functions trigger interrupts very rarely and some
almost constantly (e.g., Ethernet controller). Hence, we may connect the PIRQs in a
more random way so that each of them will share about the same number of actual
PCI legacy interrupts.

One method of doing this is illustrated in Figure 1.59. This illustration shows
how legacy interrupt traces are physically routed across the PCI slots. Although the
physical interrupt lines wire each PIRQ to every slot, each PIRQ connects differently
to the pins in each slot. Here, wire PIRQA share interrupts INTA# in the PCI slot

118 1 Interrupts and interrupt handling

SL
O

T
1

INTA#

INTB#

INTC#

INTD#

SL
O

T
2

INTA#

INTB#

INTC#

INTD#

SL
O

T
3

INTA#

INTB#

INTC#

INTD#

SL
O

T
4

INTA#

INTB#

INTC#

INTD#

PIRQD

PIRQC

PIRQB

PIRQA

to I/O APIC

Fig. 1.59: Round-robin routing of PCI legacy interrupt traces (lanes).

1, INTB# in the PCI slot 2, INTC# in the PCI slot 3, and INTD# in the PCI slot 4.
Likewise, wire PIRQB share interrupts INTB# in the PCI slot 1, INTC# in the PCI
slot 2, INTD# in the PCI slot 3, and INTA# in the PCI slot 4, etc.

Figure 1.60 shows a 4-slot PCI system with the following cards installed:

1. Card 1 installed in Slot 1. This card includes two PCI functions of which one
generates interrupts on IRQA#, and the other generates interrupts on IRQD#.
The IRQA# pin of this card connects to PIRQA.

2. Card 2 installed in Slot 2. This card includes four PCI functions, thus generating
interrupts on IRQA# through IRQD#. The IRQA# pin of this card connects to
PIRQB.

3. Card 3 installed in Slot 3. This card includes three PCI functions, which gener-
ate interrupts on IRQA# through IRQC#. The IRQA# pin of this card connects
to PIRQC.

4. Card 4 installed in Slot 4This card includes four PCI functions, thus generating
interrupts on IRQA# through IRQD#. The IRQA# pin of this card connects to
PIRQD.

A practical use for this is that one may change the interrupt routing of a PCI card
by inserting it in a different slot. In the above example, INTA# of a PCI card will
be connected to wire PIRQA if the card is inserted into slot 1, but INTA# will be
connected to wire PIRQB when inserted into slot 4.

1.8.3 Message Signaled Interrupts

As we described in the previous section, a PCI device can use up to four dedicated
interrupt pins to signal an interrupt request to the I/O APIC. This method is referred
to as Legacy INTx interrupts. Each PCI device can have up to four PCI legacy inter-
rupts. After the I/O APIC has received an interrupt request, it forwards it to LAPICs
by the mean of the APIC messages. But why not implement this "interrupt mes-
sage" functionality into a PCI device itself? This way, we could eliminate the need
for interrupt traces and interrupt sharing. This method is referred to as Message
Signaled Interrupts (MSI) and is described in this section. Message Signaled In-

1.8 PCI interrupts 119

INTA#

APIC

APIC BUS
INTA#

INTA#

INTB#

INTA#

INTB#

INTC#

PIRQA

PIRQB

PIRQC

PIRQD

I16

I17

I18

I19

INTD#

INTB#

INTC#

INTD#

INTD#

INTC#

PCI SLOT 1

PCI SLOT 2

PCI SLOT 3

PCI SLOT 4

Fig. 1.60: Common round-robin routing of PCI interrupt lanes.

terrupts are special memory writes that are sent over the system bus. In essence, the
MSI interrupts do not differ from ordinary PCI memory write transactions. But they
are recognized by LAPICs from the address they write to. The data sent in these
transactions contain an interrupt vector.

Using a separate signal for PCI INTx interrupts raises several issues. First, on
many x86 systems, this requires separate physical traces on the motherboard to
connect the signals to interrupt controller input pins. Second, the interrupt signals
should be routed in a clever way, so that interrupt requests are evenly distributed
across the PIRQ lines. But the largest issue can arise when a device writes data to
memory and raises a pin-based interrupt to signal the CPU that the data has been
written. It is possible that the interrupt arrives before all the data has arrived in mem-
ory. In order to ensure that all the data has arrived in memory, the interrupt handler
must read a special register on the PCI device, which raised the interrupt. This read
will not be completed until any pending transactions in-between the CPU and the
PCI device complete. PCI transaction ordering rules require that all the data arrive
in memory before the value may be returned from this special register. Thus, this
dummy read guarantees that all the effects of the event that triggered the interrupt
will be visible to the CPU. But this dummy read adds extra latency and work to the
interrupt handler. Using message signaled interrupts avoids this problem as the in-
terrupt message is a memory write transaction. Hence, it cannot pass the data writes,

120 1 Interrupts and interrupt handling

so when the interrupt is raised, the interrupt handler knows that all the data has been
successfully written into memory.

To summarize, the advantages of MSI interrupts versus the legacy interrupts are:

• the MSI interrupts eliminate the need for interrupt traces between PCI devices
and the I/O APIC,

• the MSI interrupts eliminate multiple PCI functions sharing the same PIRQ,
• the MSI interrupts eliminate the need for device polling in the interrupt han-

dlers,
• the MSI interrupts eliminate the need to perform a read from a device’s register

o force all posted memory writes to be flushed to memory.

When a PCI function supports MSI, it generates an interrupt request to the pro-
cessor’s LAPIC by writing a predefined data item to a predefined memory address in
the LAPIC. This PCI write transaction that contains a predefined data and a prede-
fined address is referred to as an interrupt message. MSI was introduced in revision
2.2 of the PCI spec in 1999 as an optional component. However, with the introduc-
tion of the PCIe specification in 2004, implementation of MSI became mandatory
from a hardware standpoint. It is worthwhile to notice that MSI interrupts can’t work
without LAPIC, but MSI eliminates the devices’ need to use the IO-APIC, allowing
every device to write directly to the CPU’s LAPIC.

Each PCI function that generates MSI must contain two addressable registers
(Message Data register and Message Address register) where BIOS or OS stores this
predefined data and addresses during the initialization. When a PCI function asserts
an interrupt using MSI, it performs a PCI write operation that writes the content of
the Message Data register to the address specified in the Message Address register.

The following is the sequence for MSI delivery and servicing:

1. A device needing servicing from the CPU generates an MSI, writing the inter-
rupt vector number directly into the Local-APIC of the CPU servicing it.

2. The interrupted CPU begins running the handler associated with the interrupt
vector number it received. The device is serviced without any need to check and
clear an IRQ pending bit

 x

Redirection
Hint

 Destination ID
 0 1

 x
 2 3 4 11 19 12 20 31

 0xFEE

Destination
Mode

Fig. 1.61: Layout of the MSI Memory Address register.

1.8 PCI interrupts 121

The format of the Message Address register is presented in Figure 1.61. Fields in
the Message Address Register are as follows:

• Bits 31-20 contain a fixed value for interrupt messages (0xFEE). This value
locates interrupts at the 1-MByte area with a base address of 0xFEE00000. All
accesses to this region are directed as interrupt messages.

• Destination ID — This field contains an 8-bit destination ID. It identifies the
target LAPIC.

• Redirection hint (RH) — When this bit is set, the message is directed to the
processor with the lowest interrupt priority among processors that can receive
the interrupt. When this bit is reset, the interrupt is directed to the processor
listed in the Destination ID field.

• Destination mode (DM) — This bit indicates whether the Destination ID field
should be interpreted as logical or physical LAPIC for delivery of the lowest
priority interrupt. If RH is 0, then the DM bit is ignored. If RH is 1 and DM is 0,
only the processor listed in the Destination ID field is considered for delivery of
that interrupt (this means no redirection). If RH is 1 and DM is 1, the redirection
is limited to only those processors that are part of the logical group of processors
based on the Destination ID field in the message.

Trigger
Mode
0 - Level
1 - Edge

 Vector No.
 0 7 31

Trigger
Level
0 - Deassert
1 - Assert

 14 15

Fig. 1.62: Layout of the MSI Memory Data register.

Figure 1.62 illustrates the format of the Message Data register. The fields in the
Message Data Register are:

• Vector number. This 8-bit field contains the interrupt vector number associated
with the message. Values range from 0x10 to 0xFE. The software must guar-
antee that the field is not programmed with vector 0x00 to 0x0F as this are
reserved for non-external interrupts and exceptions.

• Trigger Mode. If this bit is 0, the interrupt is edge-triggered. If this bit is 1, the
interrupt is level-triggered.

• Level. For edge-triggered interrupts this field is ignored. For level-triggered in-
terrupts, this bit reflects the active state of the interrupt input.

	Interrupts and interrupt handling
	Introduction
	Interrupts
	Types of interrupts
	Handling interrupts

	ARM Cortex-M7 exceptions and interrupts
	ARM Cortex-M7 programmer's model
	System Control Block
	Exceptions
	Exception numbers and priorities
	Vector table and Exception handlers
	Exception entry and exit
	Case Study: A simple task scheduler on ARM Cortex-M7

	RISC-V interrupts and exceptions
	RISC-V Privileged Modes
	RISC-V Machine Modes Exceptions
	FE-310 Interrupts
	Interrupt Entry and Exit
	Implementing Vector Table and Handlers
	Case study: A simple task scheduler on RISC-V based FE310

	ARM 9 exceptions and interrupts
	Vector table and interrupt priorities
	ARM9 interrupt handling
	Interrupt handlers in C

	Intel interrupts
	Interrupt controllers
	ARM Advanced Interrupt Controller
	RISC-V Platform-Level Interrupt Controller in FE310
	ARM Cortex-M Nested Vectored Interrupt Controller
	Case study: External Interrupts in STM32H7xx Microcontrollers
	Intel 8259A Programmable Interrupt Controler
	8259A PIC Cascading
	Intel Advanced Programmable Interrupt Controler

	PCI interrupts
	PCI Legacy interrupts
	PCI interrupts routing
	Message Signaled Interrupts

