
Contents

1 Direct memory access . 1
1.1 Introduction . 1
1.2 Programmed Input/Output . 1
1.3 Interrupt-driven I/O . 4
1.4 Direct Memory Access . 5
1.5 Real-world DMA Controllers . 10

1.5.1 Intel 8237A DMA controller . 10
1.5.2 STM32H7 series DMA controller . 12

1.6 Bus Mastering DMA . 20

vii

Chapter 1
Direct memory access

CHAPTER GOALS

Have you ever wondered how information travels between input-output de-
vices and main memory in a computer system? In this chapter, we provide
a detailed explanation of the Direct Memory access (DMA) I/O technique
used in modern computer systems, including those using the Intel and ARM
family of microprocessors. This chapter also aims to demystify the DMA
controller internals and its programming with various peripherals. Upon
completion of this chapter, you will be able to:

• Distinguish between programmed IO, interrupt-driven IO, and DMA
transfers.

• Explain the operation of the signals used in direct memory access con-
trollers.

• Explain the function of the Intel 8237 DMA controller when used for
DMA transfers.

• Explain the function of the DMA controller used in STM Cortex-M
based systems.

• Explain the function of bus-mastering (also referred to as first-party
DMA).

1.1 Introduction

1.2 Programmed Input/Output

The programmed I/O was the most straightforward type of I/O technique for the
exchanges of data between I/O devices and memory. This data transfer method re-
quires the least amount of hardware. With programmed I/O, data transfers between

1

2 1 Direct memory access

I/O devices and memory are accomplished by the central processing unit (CPU). In
the case of programmed I/O, the I/O device does not have direct access to the main

memory. The I/O devices have memory-mapped registers. This means that the CPU
accesses the I/O device’s registers using LOAD/STORE instructions.

A transfer from an I/O device to the main memory (or vice versa) requires the
execution of several instructions by the CPU. This includes a LOAD instruction to
transfer the data from the I/O device’s data register(s) to the CPU and STORE in-
struction to transfer the data from CPU to the main memory. Besides, the CPU must
continuously sense the I/O device’s status. When the CPU issues a command to the
I/O device, it must wait until the I/O operation is complete or new data is available.
For example, before reading the data from the I/O device with the LOAD instruc-
tion, the CPU must first read the status register (also with a LOAD instruction) of
the I/O device to check if the I/O device has new data. Similarly, before writing the
data to the I/O device, the CPU must first read the status register (also with a LOAD
instruction) of the I/O device to check if the I/O device is prepared to accept new
data. As the CPU is faster than the I/O module, the problem with programmed I/O
is that the CPU has to wait a long time for the I/O device to be ready for either
reception or transmission of data. The CPU stays in the program loop until the I/O
unit indicates that it is ready for data transfer. This process of waiting and check-
ing the status of the I/O device is known as polling or busy waiting. As a result,
polling severely degrades the level of the performance of the entire system. This
situation can be avoided by using an interrupt-driven I/O, which we discuss in the
next section.

CPU

MAIN
MEMORY

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
BU

S

AD
D

RE
SS

 B
U

S

CPU
REGISTERS

W
E#

DATA REGISTER

STATUS REGISTER

CONTROL REG.

Fig. 1.1: A simplified block diagram of a computer system with programmed I/O.

1.2 Programmed Input/Output 3

Let’s take a look at how programmed I/O would work if you were copying infor-
mation from an I/O device to the main memory. Figure 1.1 illustrates a simplified
block diagram of a computer system using programmed I/O. The I/O device shares
the data, address, and control bus with the main memory. Although modern com-
puter systems have more buses organized hierarchically, we can still simplify this
discussion by assuming that there is only one bus in the system. The I/O devices
in modern computer systems are memory-mapped, meaning that the CPU accesses
these devices through a well-defined I/O interface. The I/O interface of an I/O device
contains a set of registers, each of them having its unique address from the global
address space. The CPU reads and writes to these I/O registers in the same way as
it reads or writes to the main memory: using the LOAD and STORE instructions.

The I/O device in Figure 1.1 has three memory-mapped registers: a control reg-
ister, a status register, and a data register. The control register is used to program
the I/O device, e.g., set the data rate, parity check, etc. The status register reflects
the status of the I/O device, e.g., the I/O device is ready to accept new data, or the
I/O device has new data, etc. The data register is used to transfer data to/from the
I/O device. In programmed I/O mode, the CPU would constantly check the status
register to see if new data is available. Thus, the CPU would read the status register
with the LOAD instruction and check a particular bit, which flags that the I/O device
has new data. The CPU would perform the polling operation inside a program loop.
In the case new data is available, the CPU would first transfer data from the data
register into an internal register with the LOAD instruction. Then, the CPU would
transfer data from the internal register into the memory with a STORE instruction.
Listing 1.1 illustrates the programmed I/O transfer from the I/O device to the main
memory:

1

2 ; wait for new data
3 busy_wait: lw r1, status_reg;
4 beq r1, r0, busy_wait;
5

6 ; CPU transfers data
7 transfer: lw r2, data_reg
8 sw rw, mem_addr
9

10

Listing 1.1: Programmed I/O data transfer

While not in use anymore, programmed I/O mode transfers were used in older
hard drives back a few decades ago when so-called DMA transfers didn’t exist. For
example, programmed I/O was used by the Western Digital WD1003, the hard disk
controller used by the first PCs. Programmed I/O is still used now in some low-end
and embedded computer systems. Also, the Intel 80286, 80386, and 80486 micro-
processors used in personal computers were well suited to programmed I0 since they
can move blocks of data with a single String Move instruction. This data move in-
struction allowed programmed I/O transfers to reach speeds of about 2.5 Mbytes/s.
In an embedded system where the CPU has nothing else to do, busy waiting is rea-

4 1 Direct memory access

sonable. However, in a more sophisticated computer system where the CPU has to
do other things, polling is inefficient, and a better I/O transfer method is needed.

1.3 Interrupt-driven I/O

A disadvantage of polling is that the CPU must continuously sense the I/O device’s
status a loop. The waiting may significantly slow down the system capability of ex-
ecuting other instructions and processing other data. The so-called interrupt-driven
I/O could be more efficient. In interrupt-driven I/O, the I/O device, when ready for
a new transfer, initiates the data transfer by interrupting the CPU. The CPU then
executes the interrupt service program that transfers the data. Similarly, as in pro-
grammed I/O, the transfer from an I/O device to the main memory (or vice versa)
requires the execution of a LOAD instruction to transfer the data from the I/O de-
vice’s data register(s) to the CPU and STORE instruction to transfer the data from
CPU to the main memory. But now, there is no need to wait in a loop and read
the I/O device’s status. The interrupt-driven I/O technique requires more complex
hardware but makes far more efficient use of CPU time and capacities.

For the transfer from an I/O device to memory, the device interrupts the CPU
when new data has arrived and is ready to be retrieved by the system processor.
As most of the I/O devices have memory-mapped registers, the interrupt service
program will then read the device’s data register into a CPU register and store the
data from the CPU register to the memory location.

For the transfer from a memory location to an I/O device, the device delivers an
interrupt either when it is ready to accept new data or to acknowledge a successful
previous data transfer. The interrupt service program will then read the memory
location into a CPU register and store the data from the CPU register to the device’s
data register.

Hence, in the interrupt-driven I/O, the CPU continuously works on given tasks.
When the I/O device is ready for the data transfer, such as when someone types a
key on the keyboard or a serial communication interface is ready to transmit a new
byte, it interrupts the CPU from its work to take care of the data transfer. The CPU
can work continuously on a task without checking the input devices, allowing the
devices themselves to interrupt it as necessary.

The interrupt-driven I/O is adequate for simple computer systems, but there are
situations in modern computing that complicate the picture. For example, what if
the CPU is executing som critical task that should not be interrupted? What if the
CPU executes an interrupt service program corresponding to an interrupt with the
priority higher than the priority of the current interrupt request? In such a case, the
handling of the current interrupt request from an I/O device should be deferred.

1.4 Direct Memory Access 5

1.4 Direct Memory Access

We have seen two different methods used to transfer data between I/O devices and
the main memory: polling and interrupt-driven I/O. Both techniques work well with
low-bandwidth devices and some low-end computer systems, and both methods use
the CPU to move data. While moving data, the CPU can not perform any other
operations, making both methods inappropriate for modern, high-speed computer
systems.

An alternative mechanism is to offload the CPU and to have another device
transfer data directly to or from the main memory - without involving the CPU
at all. This mechanism is called direct memory access (DMA). DMA is a feature
that allows systems to access the main memory without any help from the processor.
The special device that performs the DMA transfer is a DMA controller. A DMA
controller offloads the CPU tremendously as it fulfills a memory transfer without
intervention from the processor. When the transfer is finished, it signals the CPU
with an interrupt.

The DMA controller transfers data between the main memory and an I/O device
independent of the CPU. The CPU only initializes the DMA controller. A DMA
transfer is fulfilled in the following steps:

1. The CPU initializes the DMA controller: it provides the source and destination
addresses of the data to be transferred, the number of bytes to be transferred,
and the type of transfer to perform (we will discuss these types later).

2. When data is available, the I/O device requests the DMA transfer from the
DMA controller. The DMA controller then requests the bus from the CPU and
becomes the master of the bus and starts the transfer. During the transfer, the
DMA controller supplies the memory addresses and the control signals needed
to complete the transfer. If the request form the I/O device requires more than
one transfer, the DMA controller will automatically generate the next memory
address(es) and will complete the entire DMA transfer of hundreds of thousands
of bytes without involving the CPU. The modern DMA controllers usually con-
tain FIFO buffers that help them deal with different timings and delays during
a transfer.

3. When the DMA transfer is complete, the DMA controller interrupts the CPU.
The CPU can then decide if more transfers are required and reinitialize the
DMA controller for new DMA transfers.

I’m sure you are now wondering how the CPU accesses the main memory dur-
ing a DMA transfer. Well, (usually) it does not. But wait, how does the CPU fetch
instructions and data from the main memory if the DMA controller occupies the
memory bus? Remember, that CPU never directly access the main memory - it al-
ways accesses the L1, L2, and L3 caches first, and only if there is a miss in the
L3 cache, the memory controller transfers the cache line to/from the main memory.
Thus, again we rely on the temporal and spatial data locality and assume that there
is a very high probability that instructions and operands, needed by the CPU, are
already in the cache(s). So, the DMA transfer usually does not prevent the CPU

6 1 Direct memory access

from fetching instructions and data. By using caches, the CPU leaves most of the
memory bandwidth free for use by a DMA controller. In the case of the cache miss,
the modern systems rely on multitasking: in that case, the OS would perform a task
switch another (ready) task.

Summary: Direct Memory Access

Direct memory access (DMA) is a mechanism that allows us to offload the
CPU and to have a DMA controller transfer data directly between a periph-
eral device and the main memory.

A DMA transfer starts with a peripheral device placing a DMA request to
the DMA controller. The DMA controller then requests the bus from the
CPU and starts the transfer. When the DMA transfer is complete, the DMA
controller interrupts the CPU.

Because of the use of cache and memory hierarchy in modern computer sys-
tems, a DMA transfer does not prevent the CPU from fetching instructions
and data.

Let’s take a look at how a DMA controller transfers data between the main mem-
ory and an I/O device. Figure 1.2 illustrates a simplified block diagram of a system
with a DMA controller. The DMA controller is connected to the data, address, and
control buses. It also has six control signals: DREQ, DACK, HOLD, HLDA, END,
and WE#. Two control signals, DREQ (DMA request) and DACK (DMA acknowl-
edge), namely, are used between the DMA controller and an I/O device to request
and acknowledge a DMA transfer. Another two control signals, HOLD (Hold re-
quest) and HLDA (Hold acknowledge), are used between the DMA controller and
the CPU to request and acknowledge a DMA transfer. The WE# signal selects be-
tween the memory read or memory write operations, and the END signals the CPE
that the DMA transfer is finished and data is ready for further processing. The DMA
controller has two registers: the address register and the count register. The ad-
dress register holds the address of the memory location from/to which the data is to
be transferred. The count register holds the number of data words to be transferred.
Both registers are memory-mapped, and the CPU is responsible for their initializa-
tion.

Before any data transfer takes place, the CPU should initialize the DMA con-
troller’s address and count registers. The CPU writes the address of the memory
location to/from which the data is to be transferred into the address register, and
the number of data words to be transferred into the count register. During the trans-
fer, the DMA controller will decrement the count register after each data word is
transferred. It will also increment or decrement the address register, depending on
the mode of operation, and automatically store/read the data to/from consecutive
memory locations. When the count register signals that there is no more data to be
transferred, the DMA controller will activate the END signal. This signal is usu-

1.4 Direct Memory Access 7

CPU

MAIN
MEMORY

DATA REGISTER

STATUS REGISTER

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
BU

S

AD
D

RE
SS

 B
U

S

CPU
REGISTERS

W
E#

HOLD

HLDA
D

RE
Q

D
AC

K

CONTROL REG.

DMA
CONTROLLER

COUNT REGISTER

ADDR. REGISTER

END

Fig. 1.2: A simplified block diagram of a computer system with a DMA controller.

ally connected to a CPU interrupt input and rises an interrupt when a transfer is
completed.

Let’s suppose the data transfer of one data word from the main memory to the
I/O device. Firstly, the CPU writes the address of the memory location that holds the
data into the address register, and the value of 1 into the count register, indicating
that only one data word is to be transferred. The following steps are then required
to accomplish the DMA transfer (Figure 1.3):

1. The I/O device is ready to receive data, so it asserts the DREQ signal.
2. The DMA controller requests the bus (requests the DMA transfer) from the

CPU by asserting the HOLD signal.
3. The CPU relinquishes the control of the main memory. It voluntarily places all

its bus signals at a high-impedance state and asserts the HLDA signal to indicate
the bus is granted.

4. The DMA controller places the memory address from the address register on
the address bus and puts the WE# signal into the high state to indicate the read
access.

5. The main memory places the requested data onto the data bus.

8 1 Direct memory access

6. The DMA controller asserts the DACK signal. This is to indicate that the I/O
device can fetch data from the data bus. The DMA controller also decrements
the count register.

7. The I/O device latches data from the data bus into its data register.
8. As the count register now indicates that there is no data left to transfer, the DMA

controller de-asserts the HOLD signal to return the control over the bus to the
CPU and activates the END signal to raise a CPU interrupt.

9. The CPU de-asserts the HLDA signal and eventually starts to service the inter-
rupt request.

CPU

MAIN
MEMORY

DATA REGISTER

STATUS REGISTER

I/O INTERFACE

I/O
 D

EV
IC

E

D
AT

A
BU

S

AD
D

RE
SS

 B
U

S

CPU
REGISTERS

W
E#

HOLD

HLDA

D
RE

Q

D
AC

K

DMA
CONTROLLER

CONTROL REG.

1

2

3

4

5

6

7

8

9

ADDR. REGISTER

COUNT REGISTER
END

8

Fig. 1.3: A DMA transfer.

There is usually only one DMA controller in the computer system that is used for
DMA transfers to/from several I/O devices. In that case, the DMA controller has
a separate pair of DREQ and DACK signals for each I/O device. This separate
pair (DREQ, DACK) is called DMA channel.

The DMA transfer described above is referred to as "Fly-by" DMA. This means
that the data, which is transferred between an I/O device and memory, does not pass

1.4 Direct Memory Access 9

through the DMA controller. "Fly-by" DMA refers to the DMA transfer between
an I/O device and memory in which the data flows into/out of the memory using
address lines for only one side of the transfer (the memory side). The other side (the
I/O device) is "addressed" by the DACK signal, i.e., the DACK signal selects the
I/O device involved in the DMA transfer, which should then latch data from the bus
or place data onto the bus.

The way that the DMA function is implemented varies between computer ar-
chitectures, and there is also another type of DMA transfer referred to as "Fly-
through" DMA. In "Fly-through" DMA, both source and destination address need
to be specified. The data flows through the DMA controller, which now has a FIFO
buffer to store the data temporarily. The "Fly-through" DMA controller first places
the source address onto the address bus, reads the data from the source into its in-
ternal FIFO, then places the destination address onto the address bus and writes the
data from its FIFO into the destination.

"Fly-by" DMA is much faster because "Fly-through" DMA results in two bus
transfers: one from the source to the internal FIFO and the other from the internal
FIFO to the destination. But on the other hand, "Fly-through" DMA enables the
memory-to-memory DMA transfers, which are not possible with "Fly-by" DMA
controllers.

Summary: DMA controllers

Each DMA transfer is driven by at least the DMA controller’s internal two
registers: the address register and the count register.

A DMA channel is a pair of two control signals between a peripheral device
and the DMA controller: DMA request (DREQ) and DMA acknowledge
(DACK).

In "Fly-by" DMA transfers, the data, which is transferred between an I/O
device and memory, does not pass through the DMA controller. Only the
memory address needs to be specified, while the peripheral device is se-
lected by the DACK signal. Only one memory transaction is needed to ac-
complish a DMA transfer.

In "Fly-through" DMA, both source and destination address need to be spec-
ified. The data flows through the DMA controller, which has a FIFO buffer
to store the data temporarily. The "Fly-through" DMA controller first places
the source address onto the address bus, reads the data from the source into
its internal FIFO, then places the destination address onto the address bus
and writes the data from its FIFO into the destination. Two memory trans-
actions are required to accomplish one DMA transfer.

10 1 Direct memory access

1.5 Real-world DMA Controllers

So far, we have learned that a DMA controller is a special device used to trans-
fer data between an I/O device and the main memory without involving the CPU.
Modern DMA controllers also support memory-to-memory DMA transfers, thus al-
lowing efficient data transfers between two memory regions. For example, on most
modern computer systems, the C library function memcpy() is implemented using
the DMA transfer. In this section, we are going to describe two real-world DMA
controllers and their functionality: the Intel 8237A DMA "fly-by" controller used
in the older Intel PCs, and the "fly-through" DMA controller used in modern ARM
Cortex-M based systems.

1.5.1 Intel 8237A DMA controller

DRQ0

DACK0

DRQ1

DACK1

DRQ2

DACK2

DRQ3

DACK3

HRQ

HLDA

MEMR#

MEMW#

EOP#

A[7:0]

INTEL
8237A

} Channel 0

} Channel 1

} Channel 2

} Channel 3

Fig. 1.4: Intel 8237A DMA controller. The signals used to initialize the DMA con-
troller are not shown.

The Intel PC DMA subsystem is based on the Intel 8237A DMA controller. The
Intel 8237A contains four DMA channels that can be programmed independently,
and any of the channels may be active at any moment. These channels are numbered
as 0, 1, 2, and 3. The Intel 8237A DMA controller moves one byte in each transfer
and is very similar to the DMA controller described in Figure 1.2.

The Intel 8237A is depicted in Figure 1.4. It has two electrical signals for each
channel, named DRQ (DMA request) and DACK (DMA acknowledge). There are
additional signals with the names HRQ (Hold Request), HLDA (Hold Acknowl-
edge), EOP# (End of Process), and the bus control signals MEMR# (Memory Read),
and MEMW# (Memory Write). Table 1.1 provides full 8237A signals description.

1.5 Real-world DMA Controllers 11

Table 1.1: Intel 8237A signals description.

Signal name Signal description

HRQ Hold request is an output used to request the bus.

HLDA Hold acknowladge is an input that signals that the CPU has granted the bus.

DREQ[3:0] DMA request inputs are used to request a DMA transfer for
each of the four DMA channels.

DACK[3:0] DMA acknowledge outputs acknowledge the a channel DMA request and
select the I/O device during the DMA transfer.

A[7:0] These pins are outputs and are used to provide the DMA transfer
memory address.

EOP# End-of-process is a bidirectional active-low signal used used as an input to
terminate a DMA transfer or as an output to signal the end of a DMA transfer.

MEMR# Memory read is an active-low output used to read data from the selected
memory location during a DMA transfer

MEMW# Memory write is an active-low output used to write data to the selected
memory location during a DMA transfer

The Intel 8237A DMA controller is a "fly-by” DMA controller. Subsequently, the
DMA can only transfer data between an I/O device and a memory, but not between
two I/O devices or two memory locations. Actually, the Intel 8237A controller does
allow two channels to be connected to allow memory-to-memory DMA operations,
but nobody in the PC industry used this DMA controller this way since it is faster
to move data between memory locations using the CPU. Each DMA channel is ac-
tivated only when an I/O device connected to that DMA channel requests a transfer
by asserting the DRQ line.

Each channel in The 8237A DMA controller has two internal registers that con-
trol the transfer: the count register and the address register. Both registers are
programmable by the CPU. The count register holds the number of bytes to be trans-
ferred, while the address register holds the (initial) memory address. When a byte
of data is transferred, the address register is decremented or incremented, depend-
ing on how it is programmed. The count register is decremented after each transfer.
When the value in the count register goes from zero to 0xFFFF, the EOP# output
signal is activated.

The 8237A is designed to operate in two major cycles. These are called Idle and
Active cycles. When no channel is requesting DMA transfer, the 8237A controller
enters the Idle cycle. In this cycle, the 8237A samples the DREQ lines every clock
cycle to determine if any channel is requesting a DMA transfer. When a channel
requests a DMA service by asserting its DREQ signal, the 8237A asserts the HRQ
signal to the microprocessor requesting the bus and enters the Active cycle. It is in
the Active cycle that the DMA transfer will take place.

There are three modes of operation: single-mode, block mode, and demand
mode. In single-mode, the device is programmed to make one transfer only. Single-

12 1 Direct memory access

mode transfer releases the HOLD signal after each byte is transferred. In this mode,
DRQ must be held active until DACK becomes active. If the DRQ is held active, the
8237A again requests the bus with the HOLD signal. Upon receipt of a new HLDA,
another single transfer will be performed.

Block mode automatically transfers the number of bytes indicated by the count
register. The count register will be decremented, and the address register decre-
mented or incremented following each transfer. In block mode, the DMA controller
is activated by DREQ to continue making transfers until the count register goes from
0 to FFFFH, or an external EOP# is activated. DREQ need only be held active until
DACK becomes active.

In demand mode, the DMA controller transfers data until an external EOP# is
asserted or until DREQ goes inactive. This mode is used when there is a block
of data to be transferred, but the I/O device has not a high data capacity, and the
transfer should be paused until the I/O device is ready again. During the time when
the transfer is paused, the CPU is allowed to use the bus, and the intermediate values
of address and word count are preserved. When the I/O is ready to continue the
transfer, the DMA transfer is re-established by activation of the DREQ signal.

Intel 8237A was also used for a DRAM refresh. To refresh one row in DRAM,
the 8237A DMA controller reads data from memory onto the data bus. During this
dummy read, sense amplifiers in the memory chips are enabled. This automatically
leads to the refresh of one memory cell row. But the data is not fetched by an I/O
device, as no device has issued a DRQ, and the DMA controller does not assert a
DACK.

Summary: Intel 8237A DMA Controller

The Intel 8237A controller is a "fly-by" DMA controller. Subsequently, the
DMA can only transfer data between an I/O device and a memory. Each
DMA transfer requires only one memory transaction. It was used in Intel-
based PC systems.

It contains four DMA channels, and any of the channels may be active at
any moment. Each channel in The 8237A DMA controller has two internal
registers that control the transfer: the count register and the address register.
Both registers are programmable by the CPU.

1.5.2 STM32H7 series DMA controller

This subsection describes the direct memory access (DMA) controller available
in the STM32H7 Arm Cortex-M7 core-based series of systems-on-chips. The
STM32H7 series DMA controller allows data transfers to take place in the back-
ground without the intervention of the Cortex-M7 processor. During this operation,

1.5 Real-world DMA Controllers 13

the processor can execute other tasks, and it is only interrupted when a whole data
block is transferred and available for processing. The STM32H7 series DMA con-
troller is a fly-through DMA controller and supports the transfer of large amounts of
data with no significant impact on system performance. The DMA controller can do
automated memory-to-memory, peripheral-to-memory and peripheral-to-peripheral
transfers.

REQ_STREAM0

REQ_STREAM1

REQ_STREAM7

ARBITER

FI
FO

 0

FI
FO

 1

FI
FO

 2

FI
FO

 3

FI
FO

 4

FI
FO

 5

FI
FO

 6

FI
FO

 7

DMA Controller
Control Logic and

Programming
Interface

MEMORY PORT

PERIPHERAL PORT

PROGRAMMING
PORT

ST
RE

AM
_S

EL
ST

RE
AM

_S
EL

ST
RE

AM
 0

ST
RE

AM
 1

ST
RE

AM
 2

ST
RE

AM
 3

ST
RE

AM
 4

ST
RE

AM
 5

ST
RE

AM
 6

ST
RE

AM
 7

ST
RE

AM
 0

ST
RE

AM
 1

ST
RE

AM
 2

ST
RE

AM
 3

ST
RE

AM
 4

ST
RE

AM
 5

ST
RE

AM
 6

ST
RE

AM
 7

Memory Address Registers: S0MAR..S7MAR
Peripheral Address Registers : S0PAR..S7PAR
Number of Data Registers: S0NDR..S7NDR
Configuration registers: S0CR..S7CR
Status registers

DMA

Fig. 1.5: Simplified block diagram of a STM32H7 series DMA controller.

Figure 1.5 illustrates the simplified block diagram of the STM32H7 series DMA
controller. The STM32H7 series DMA controller features three ports: a program-
ming port for DMA programming and two ports (peripheral and memory ports) that
allow the DMA to initiate data transfers between different I/O devices and memory.
A port is a connection to the data, address, and control bus. Thus, one port com-
prises data lines, address lines, and control signals, which are not depicted in Figure
1.5 due to simplicity.

Each STM32H7 series DMA controller supports up to eight streams. A stream
is an active DMA transfer between a peripheral device and memory, two peripheral
devices, or between two memory blocks. Each stream has eight selectable channels
(requests). This selection is software-configurable and allows several peripherals to
initiate DMA requests. Each channel is associated with a peripheral device that can
trigger a data transfer request when ready. Thus, the DMA controller can be used

14 1 Direct memory access

by up to 64 I/O devices (64 channels) and can manage up to eight interleaved DMA
transfers (streams). More than one enabled DMA stream must not serve the same
peripheral request.

The DMA controller contains an arbiter for handling the priority between DMA
streams. Stream priority is software-configurable (four levels: very high, high,
medium, low). The arbiter selects the stream with the highest priority. If two or more
DMA streams have the same software priority level, the lowest stream number gets
priority.

The programmable 8-channel DMAMUX multiplexer block (Figure 1.6) enables
routing DMA request lines between the peripherals and the DMA controller. Each
channel contains one 128-to-1 multiplexer and selects a unique DMA request line
from peripherals. Each DMA stream is driven by one DMAMUX output channel
(request). Any DMAMUX output request can be individually programmed to select
the DMA request source signal from up to 128 available request input signals. The
assignment of DMAMUX request multiplexer inputs to the DMA request lines from
peripherals are detailed in the product reference manual.

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req0
peripheral_req1

peripheral_req127

MUX
Channel0

MUX
Channel1

MUX
Channel2

MUX
Channel7

REQ_STREAM7

REQ_STREAM0

ARBITER

FI
FO

 0

FI
FO

 1

FI
FO

 2

FI
FO

 3

FI
FO

 4

FI
FO

 5

FI
FO

 6

FI
FO

 7

DMA Controller
Control Logic and

Programming
Interface

MEMORY PORT

PERIPHERAL PORT

PROGRAMMING
PORT

ST
RE

AM
_S

EL
ST

RE
AM

_S
EL

ST
RE

AM
 0

ST
RE

AM
 1

ST
RE

AM
 2

ST
RE

AM
 3

ST
RE

AM
 4

ST
RE

AM
 5

ST
RE

AM
 6

ST
RE

AM
 7

ST
RE

AM
 0

ST
RE

AM
 1

ST
RE

AM
 2

ST
RE

AM
 3

ST
RE

AM
 4

ST
RE

AM
 5

ST
RE

AM
 6

ST
RE

AM
 7

Memory Address Registers: S0MAR..S7MAR
Peripheral Address Registers : S0PAR..S7PAR
Number of Data Registers: S0NDR..S7NDR
Configuration registers: S0CR..S7CR
Status registers

REQ_STREAM2

REQ_STREAM1

DMAREQ_ID[6:0]

DMADMAMUX

Fig. 1.6: Simplified block diagram of DMAMUX block and STM32H7 DMA con-
troller.

When a peripheral is ready, it sends a DMA request to the DMAMUX, which
routes the request to a selected DMA stream request input of the DMA controller.
Depending on the stream priority, the DMA controller will then serve the DMA
request. As this is a "fly-through" DMA controller, the data flows through the DMA
controller, which has a FIFO buffer associated with each stream. The FIFO buffer
is used to store the data temporarily and to amortize the difference in transmission
speeds of two peripheral devices. Standard block transfer is accomplished by the
DMA controller performing a sequence of memory transfers. Each transfer involves

1.5 Real-world DMA Controllers 15

a load operation from a source address into the FIFO, followed by a store operation
from the FIFO to a destination address.

The DMA controller’s control logic and programming interface are accessed
through the programming port. The programming interface comprises a set of
memory-mapped registers per stream. Each stream is characterized by four regis-
ters: Memory Address Register (SxMAR), Peripheral Address Register (SxPAR),
Number of Data Register (SxNDR), and Configuration Register (SxCR). All these
registers are memory-mapped and will be discussed in the following subsections.

STM32H7 devices embed two DMA controllers, offering up to 16 streams in
total (eight per controller), each dedicated to managing memory access requests
from one or more peripherals.

Summary: STM32H7 series DMA controller

The STM32H7 series DMA controller is a "fly-through" DMA controller
used in the STM32H7 Arm Cortex-M based systems.

The STM32H7 series DMA controller features three ports: a programming
port for DMA programming and initialization, and two ports (peripheral
and memory ports) that allow the DMA to initiate data transfers between
different I/O devices and memory.

Each STM32H7 series DMA controller supports up to eight streams. A
stream is an active DMA transfer between a peripheral device and mem-
ory, two peripheral devices, or between two memory blocks.

Each DMA stream is driven by one DMAMUX output channel (request).

As this is a "fly-through" DMA controller, the data flows through the DMA
controller, which has a FIFO buffer associated with each stream.

STM32H7 devices embed two DMA controllers.

1.5.2.1 Peripheral and memory addresses

Each DMA transfer is defined by a source address and a destination address. Both
addresses should be aligned to transfer size. The transfer size value defines the vol-
ume of data to be transferred from source to destination. Each stream has a pair
of registers to store these addresses: Peripheral Address Register (SxPAR - Stream

x Peripheral Address Register) and Memory Address Register (SxMAR - Stream x

Memory Address Register). Before each transfer, the CPU should initialize both reg-
isters with the valid addresses. It is possible to configure the DMA to automatically
increment the source and/or destination address after each data transfer.

16 1 Direct memory access

1.5.2.2 Transfer size, type and mode

Each DMA transfer is defined by the transfer size and the transfer mode. The trans-
fer size is a value that defines the volume of data to be transferred from source to
destination. This value is stored in the so-called Number of Data Register (NDR).
Each stream has its Number of Data Register, labeled as SxNDTR. Each SxNDTR
is a 16-bit register, and the number of data items to be transferred is software pro-
grammable from 1 to 65535. After each transfer, the value in SxNDTR is decreased
by the amount of the transferred data; thus, SxNDTR contains the number of data
transfers still to be performed.

The STM32H7 series DMA controller can perform two transfer types: normal
type and circular type. In normal type, once the SxNDTR register reaches zero (the
transfer has completed), the stream is disabled. This means that the CPU should
reinitialize the DMA controller in order to activate the stream again. In circular
type, the DMA controller can handle circular buffers and continuous data flow. In
this type, the SxNDTR register is reloaded automatically with the previously pro-
grammed value when a transfer has completed.

Each STM32H7 series DMA controller is capable of performing three different
transfer modes:

1. peripheral to memory,
2. memory to peripheral,
3. memory to memory (only the second DMA controller is able to do such transfer;

in this mode, the circular type is not allowed).

1.5.2.3 FIFOs and burst transfers

Each stream has a 4x32 bits FIFO that is used to temporarily store data coming
from the source before transmitting them to the destination. The DMA FIFOs help
to reduce memory access and to do burst transactions which optimize the trans-
fer bandwidth. They also allow independent source and destination transfer width
(byte, half-word, word): when the data widths of the source and destination are not
equal, the DMA automatically packs/unpacks the necessary transfers to optimize
the bandwidth. For example, the data from the source can be transferred into FIFO
as bytes or 16-bit half-words and then transferred to the destination from FIFO as
bytes, 16-bit half-words, or 32-bit words.

Because of the internal FIFOs, the DMA controller is capable of burst transfers
of length 4x, 8x, or 16x data units. A data unit can be a byte, a 16-bit half-word, or a
32-bit word. The burst size on the DMA peripheral port must be set according to the
peripheral needs/capabilities. The size of the burst is software-configurable, usually
equal to half the FIFO size of the peripheral.

1.5 Real-world DMA Controllers 17

1.5.2.4 DMA Transactions

A DMA transaction consists of a sequence of a given number of data transfers. The
number of data items to be transferred and their width (8-bit, 16-bit or 32-bit) are
software-programmable. Each DMA transfer consists of three operations:

1. loading from the peripheral data register or a location in memory, addressed
through the DMA_SxPAR or DMA_SxM0AR register

2. storage of the data loaded to the peripheral data register or a location in memory
addressed through the DMA_SxPAR or DMA_SxM0AR register

3. post-decrement of the DMA_SxNDTR register containing the number of trans-
actions that still have to be performed

The peripheral sends a request signal to the DMA controller through the DMA-
MUX block. The DMA controller serves the request depending on the channel prior-
ities. As soon as the DMA controller accesses the peripheral, an acknowledgement
signal is sent to the peripheral by the DMA controller, which in turn releases its
request. Once the peripheral de-asserts the request, the DMA controller releases the
acknowledge signal.

Memory
port

Peripheral
port

SxMAR

SxPAR

FIFO

Memory

I/O
Device

Memory
Bus

Peripheral
Bus

DMA Controller

Peripheral DMA Request

2

3

1

Fig. 1.7: A peripheral-to-memory DMA transaction.

18 1 Direct memory access

Figure 1.7 illustrates a peripheral-to-memory DMA transaction. Each time a pe-
ripheral request occurs, the stream initiates a transfer from the source (address is in
SxPAR) to fill the FIFO. Then, the contents of the FIFO are drained and stored in the
destination (address is in the SxMAR). The transfer stops once the SxNDTR regis-
ter reaches zero, or when the enable bit in the SxCR register is cleared by software
(stream disabled).

Memory
port

Peripheral
port

SxMAR

SxPAR

FIFO

Memory

I/O
Device

Memory
Bus

Peripheral
Bus

DMA Controller

Peripheral DMA Request

4

2

3

1

Fig. 1.8: A memory-to-peripheral DMA transaction. In this mode, the stream imme-
diately initiates transfers from the memory to entirely fill the FIFO. When a periph-
eral request occurs, the contents of the FIFO are stored in the peripheral device.

Figure 1.8 illustrates a memory-to-peripheral DMA transaction. In this mode, the
stream immediately initiates transfers from the source (address is in SxMAR) to en-
tirely fill the FIFO, and the SxMAR register is incremented/decremented. The DMA
controller does not wait for DMA request from a peripheral device to read from
memory. When a peripheral request occurs, the contents of the FIFO are drained and
stored in the destination (address is in the SxPAR). The DMA controller then reloads
the empty internal FIFO again with the next data to be transferred from memory (ad-
dress is in SxMAR). The transfer stops once the SxNDTR register reaches zero, or
when the enable bit in the SxCR register is cleared by software (stream disabled).

1.5 Real-world DMA Controllers 19

1.5.2.5 Programming and using the STM32H7 series DMA controller

Programming and using the STM32H7 series DMA controller is relatively easy.
Each stream is controlled using four memory-mapped registers: memory address
register (SxMAR), peripheral address register (SxPAR), number of data register
(SxNDTR), and configuration register (SxCR). Once set, the DMA controller han-
dles data transfers and increments memory addresses without disturbing the CPU.
To configure the DMA controller and a DMA stream, the following procedure
should be applied:

1. If the stream is enabled, disable it by resetting the stream enable bit in the SxCR
register, then read this bit to confirm that there is no ongoing stream operation.
When the EN bit is 0, the stream is ready to be configured.

2. Set the peripheral port register address in the SxPAR register. After the pe-
ripheral DMA request, the data will be moved from/to this address to/from the
peripheral port.

3. Set the memory address in the SxMAR register. After the peripheral DMA re-
quest, the data will be written to or read from this memory address.

4. Configure the total number of data items to be transferred in the SxNDTR reg-
ister. After each (burst) transfer, this value is decremented accordingly.

5. Use DMAMUX to route a peripheral DMA request line to the DMA stream
request signal.

6. Configure the stream priority, the data transfer direction, single or burst trans-
actions, peripheral and memory data widths, circular/normal transfer type, and
interrupts in the SxCR register.

7. Activate the stream by setting the stream enable bit in the SxCR register.

As soon as the stream is enabled, it can serve any DMA request from the peripheral
connected to the stream and DMA transactions using the stream can be performed.

20 1 Direct memory access

Summary: STM32H7 series DMA transfers

Each DMA transfer is defined by a source address and a destination address,
and each stream has a pair of registers to store these addresses: Peripheral
Address Register (SxPAR -Streamx Peripheral Address Register) and Mem-
ory Address Register (SxMAR -Stream x Memory Address Register)

Each DMA transfer is defined by the transfer size and the transfer mode.
Each stream has its Number of Data Register (SxNDR), which stores the
transfer size.

The STM32H7 series DMA controller can perform two transfer types: nor-
mal type and circular type.

FIFOs allow independent source and destination transfer width and burst
transfers.

Each DMA transfer consists of two transactions on the bus: loading from
the peripheral data register or a location in memory, and storage of the data
to the peripheral data register or a location in memory.

1.6 Bus Mastering DMA

So far, we have learned that we can use a special piece of hardware, a DMA con-
troller, namely, to transfer large amounts of data between a peripheral device and
memory. This approach is sometimes referred to as third-party DMA. Third-party
DMA requires an independent DMA controller, which is built into motherboard
chipsets, to move data between a peripheral device (referred to as the first party) and
system RAM (referred to as the second party). Here, the DMA controller is shared
by multiple peripheral devices, which is why it is viewed as the third party DMA.
As we have learned previously, each "fly-through" DMA transfer (fly-through is the
type of the DMA used in the majority of today’s computer systems) requires two
memory transactions: one to load the data from the source, and one to store the data
to the destination.

The better approach to DMA transfers would be to have only one memory trans-
action per DMA transfer, but still avoiding third-party "fly-by" DMA controllers.
This is possible with the latest I/O devices built in the modern computer systems,
where each I/O device can act as a bus master, i.e., each device can directly ac-
cess any other I/O device or memory on the bus. Indeed, each modern I/O device
now contains its own, integrated, DMA controller, which is not shared by other I/O
devices. This highest performing DMA type is called first-party DMA or Bus Mas-
tering DMA. Peripheral devices, which support the Bus Mastering technology, have
the ability to move data to and from system memory without the intervention of the
CPU or a third party DMA controller.

1.6 Bus Mastering DMA 21

Bus Mastering allows data to be transferred much faster than third party DMA.
This is because half as many bus cycles are needed. The third-party DMA requires
the DMA controller to alternately read a segment of data from one device (this can
be a peripheral device or system memory) and write it to the other device. Each data
segment requires at least one bus cycle to be read and one bus cycle to be written.
Bus mastering devices only require bus cycles when accessing system memory, so
half as many bus cycles are needed. Because of this, devices that support Bus Mas-
tering can move data many times faster than third party DMA. While bus mastering
theoretically allows one peripheral device to directly communicate with another, in
practice almost all peripherals master the bus exclusively to perform peripheral-to-
memory and memory-to-peripheral transfers.

PCIe endpoint
(e.g. a GPU card)

Intel Core i7

Memory Controler
Hub

PCIe Root Complex

MAIN MEMORY

DMA Controller

Bus Mastering
DMA

Fig. 1.9: Bus Maserting in an Intel based system. Bus Mastering is the feature in-
tegrated into PCIe endpoint devices. A DMA transfer either transfers data from an
endpoint device into system memory or from system memory into the endpoint de-
vice on the PCI Express bus. The DMA request is always initiated by the integrated
DMA controller in the endpoint device after being initialized from the application
driver (i.e., receiving parameters that define DMA transaction and memory buffer
address).

Bus Mastering is used in the computer systems with a PCI Express (PCIe) bus.
A Bus Mastering DMA implementation is by far the most common type of DMA
found in systems based on PCI Express and resides within the peripheral device,
which is called Bus Master because it initiates the movement of data to and from
system memory. Figure 1.9 shows a typical Intel system architecture. The system in-

22 1 Direct memory access

cludes the CPU core(s) and a memory controller hub—these two form the so-called
PCIe root complex. The system in Figure 1.9 also contains the main memory and
one PCIe peripheral device (e.g. a GPU card). The peripheral device is connected to
the PCIe bus. PCIe peripheral devices are called PCI endpoint devices. The mem-
ory controller hub also acts as a bridge between the PCIe bus, the CPU bus, and
the main memory bus. A DMA transfer either transfers data from an endpoint de-
vice into system memory or from system memory into the endpoint device on the
PCI Express bus. The DMA request is always initiated by the integrated DMA con-
troller in the endpoint device after being initialized from the application driver (i.e.,
receiving parameters that define DMA transaction and memory buffer address).

Summary: Bus Mastering

Bus Mastering DMA is the highest performing DMA type. Peripheral de-
vices, which support the Bus Mastering technology, have the ability to move
data to and from system memory without the intervention of the CPU or a
third party DMA controller.

Bus Mastering is used in the computer systems with a PCI Express (PCIe)
bus.

PCIe peripheral devices are called PCI endpoint devices. Endpoint devices
have their own integrated DMA controller, which is not shared by other
endpoint devices.

	Direct memory access
	Introduction
	Programmed Input/Output
	Interrupt-driven I/O
	Direct Memory Access
	Real-world DMA Controllers
	Intel 8237A DMA controller
	STM32H7 series DMA controller

	Bus Mastering DMA

