
Information retrieval



Structured vs. unstructured content
● Structured content

● Relational databases (SQL)
● NoSQL databases (JSON)

● Searching unstructured content in large 
databases

● Text
● Images
● Video
● Sound



Overview
● Search using Boolean expressions
● Building search dictionary
● Approximate queries
● Ranking results
● Document similarity
● Feedback loops
● Retrieval sysems evaluation



Conceptual model
● Content retrieval steps

● User submits a query
(how to use language to specify what we are 
looking for?)

● Compose and rank results based on the data
(how to match query with documents?)

● User evaluates results
(how to optimize the query for better 
experience?)

● Iteration of steps can improve results 
quality



Example of search engine



Search engine challenges

● Data is unstructured, not suitable for direct 
retrieval

● Multiple ways to set up the same query – 
describe the requested information

● Large quantities (data and queries)
● Two key processes: Querying and Indexing



Searching using Boolean expressions
● Shakespeare – The Complete Works
● Which plays contain words Brutus and 

Caesar, but do not contain word Calpurnia?
● Naive approach:

● Sequentially scan text of all plays
● Takes a lot of time (especially on large 

databases)
● Better approach: pre-index all documents



Incidence matrix
For each term remember which documents contain it

Terms

Documents



Retrieval example
● Query: »Brutus AND Caesar AND NOT Calpurnia«
● Obtain binary vectors for all three terms, negate the last one and join them 

with AND:

● Limitation: computer memory

1            0           0           1           0           0

-
1
1
0
-
-
-
...



Inverted index

● Incidence matrix is sparse
● Per-term list of documents that include the 

term

Terms List of documents



Processing queries
● Query: »Brutus AND Calpurnia«
● Find lists of documents that include »Brutus« and 

»Calpurnia«
● Compute intersection of lists (linear complexity for ordered 

lists)



Optimizing queries
● AND query: »Brutus AND Caesar AND Calpurnia«

● Reduce number of comparisons – start with two least frequent terms

● Optimized: »(Calpurnia AND Brutus) AND Ceasar«
● OR query: »(madding OR crowd) AND (killed OR slain)«

● Sum terms in OR relation to obtain conservative estimates of 
combined lists

● Sort AND queries based on the estimates



Choosing the »document« unit
● Granularity

● Are documents files? (MS Word, LibreOffice, ...)
● What about mailbox file full of emails? (Thunderbird, Outlook)
● Attachments in email messages?

● Fine-grained – bad recall of relevant documents
● Coarse-grained – recall opacity
● Document selection depends on the use-case
● We can also search at multiple granularity levels



Decoding content
● Text is a sequence of bytes
● Different encoding schemes: ASCII, UTF-8, ...
● Is text a linear, unambiguous sequence of characters?

● Other modalities even more complicated (e.g. images)



Building inverted index
● Split each document into a list of 

tokens
● Linguistic processing, tokens 

normalization
● Build a list of (token, document) pairs
● Sort the list alphabetically by token
● Group occurrences of same token 

into list
● Remember document frequency  



Building term dictionary
● Tokenization (sequence to 

tokens)
● Exclude »stop« 

tokens/words
● Normalization 

(equivalence classes)
● Stemming and 

lemmatization



Tokenization
● Punctuation marks: 

● U.S.A = USA , O‘Niel = Oniel
● Problems: C.A.T. = CAT ?? … Civil Air Transport (C.A.T)

● Connected words: 
● lower-case = lowercase, 
● San Francisco = SanFrancisco
● San Francisco-Los Angeles = ?
● Lebensversicherungsgesellschaftsangestellter = ?

● Numbers:
● (800) 234-2333, (Mar 11 1983), (3/11/1983)

● More language-specific definitions (East Asia – no spaces)



Token normalization
● Removing accent marks (diacritics)

● cliché = cliche 
● peña = pena 
● Universität = Universitaet

● Convert to lower-case
● Father = father 
● General Motors = general motors (company name - phrase)

● Language specific conversions
● colour = color
● 30.10.1978 = 10.30.1978



Removing stop words
● Words that occur very often in all documents and 

therefore do not have any retrieval value

● How to query “Let It Be“ or “The Who”?
● Some search engines do not use stop words to 

support phrase search



Stemming and lemmatization
● Lemmatization – transformation based on language rules

● am, are = be 
● car, cars, car's, cars' = car 
● »the boy's cars are different colors« = »the boy car be differ 

color«
● Stemming is heuristic approach where we only cut parts of 

words (faster)
● Porter Stemming Algorithm
● »boy ’ s car are differ color«



Querying phrases
● How to search for »multimedia systems«?
● Most engines support use of quotes to convey phrases
● Option 1: Biword-index

● Use each sequential pair of terms as a combined term
● Friends, Romans, Countrymen = [friends romans] [romans countrymen]

● Option 2: Positional index
● For each term also store its positions in the document
● Use positions to determine relations between words



Positional index example
Term »to« occurs 993427 times in the entire corpus. It occurs in documents {1,2,4,5,7}. 
In document 1 it occurs six times at places <7,18,33,72,86,231>.



Positional index
● Proximity constraint 

(documents where word A and 
B are in distance x).

● Example:
● Query: »to be or not to be«
● Terms: to, be, or, not
● Intersection of lists for »to« and 

»be«



Bi-word vs. positional index
● Bi-word index 

● More terms in index
● Limited relations

● Positional index
● Increased index size and complexity
● Increased query time

● Combined approach:
● Bi-word index for common phrases, e.g., »The Who«
● Positional index for other terms



Tolerant retrieval
● Incomplete queries

● Find words that begin 
with »vo«

● Wildcard: *vo, vo*, pa*vo, 
...

● Typographical errors
● »ceasar«
● »gogle«



Wildcard queries
● Normal queries use hash table, which is not suitable for 

wildcard queries
● Use data-structures that order terms

● Trees: order terms that all terms in a branch start with the same 
prefix

● Wildcard queries generates different possible words that are 
then processed in a classical way with inverse index

● Permuterm, K-gram index - significant increase in dictionary size
● Boolean processing of wildcard queries is slow in general



Permuterm and K-gram indexing
● Permuterm

● All shifts of word
● Special stop sign
● Large index

● K-gram
● All sub-strings of length K
● Special signs for start and stop
● Brute-force post-processing



Typographical errors
● Example: »Britian Spears« instead of »Britney Spears«
● Correcting errors:

● For each term separately: »padna« = »panda«
● Based on neighbor terms (context) »Flew form Heathrow«

● Suggest corrections for terms that are not in dictionary
● Offer the most likely: 

● String distance (Levenshtein)
● Phonetic distance (Soundex)

● Optional: with multiple equal possibilities offer the one that users use 
most often



Ranking documents

● Boolean queries only determine if a 
documents matches the query or not

● Can generate large number of document
● Time-consuming to check all of them
● Show more relevant documents first



Ranking with term frequency
● Document that includes a queried term multiple 

times should be more relevant than the rest

● Bag-of-words model
● Problem - no context:

● »Mary is quicker than John« equals to »John is 
quicker than Marry«



Problems of term frequency
● Some terms do not discriminate between documents because they 

occur in all of them
● Corpus of documents in automotive industry will include term »auto« a 

lot

● Reduce weights of frequent terms – document frequency

● Inverse document frequency:
● N – number of all documents in corpus
● idf is low for frequent terms and high for scarce ones



Composite weights
● Term weight computed as :
● Weight is: 

● High: if t is frequent only in a small number of documents
● Low:  if t is rare or occurs in many documents
● Very low: if term t occurs in almost all documents

● Compute document weight for query q



Ranking example
We have corpus of N=100 documents, in which we search for query 
q=»white pig«. We know in advance that »white« occurs in ten 
documents and that it occurs in document d1 five times. We also know 
that the word »pig« occurs in fifty documents and that it occurs in 
document d1 three times. Compute ranking weight of document d1 for 
query q.



Document similarity

Document can be written as a vector of weights for all terms 
in the dictionary (similar to a histogram)



Vector space
● Similarity as dot product in vector space

● Vector normalization
● Longer vectors will have larger norm
● Longer documents are not more important
● Euclidean normalization
● Similarity interpreted as cosine of angle between vectors



Similarity example
● Left table shows tf values (not weighted with idf) for dictionary of 

three terms for three books: SaS, PaP, and WH.
● Which document is most similar to document SaS?

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

Term frequency

term SaS PaP WH

affection 0.996 0.993 0.847

jealous 0.087 0.120 0.466

gossip 0.017 0 0.254

Normalized term frequency



Matching query with documents
● Vector space can be used to rank documents
● Similarity of query q and document d:
● Example: q = »jealous gossip« 



Weighting schemes

● Other interpretations of tf and idf also exist
● Can be different for query and documents
● Proportional to the tf and idf qualities



Weighting vectors example
● Query q=»best car insurance« in corpus of documents (N=100000)

Corpus Query (unary-idf) Document (tf-idf)

term df idf tf w tf w nw

auto 5000 1.3 0 0 1 1.3 0.21

best 50000 0.3 1 0.3 0 0 0

car 10000 1.0 1 1.0 1 1.0 0.16

insurance 100 3.0 1 3.0 2 6.0 0.96

# appearances in query # appearances in document



Document retrieval algorithm
● Cosine similarity between query sample and all 

documents
● Order documents by similarity 
● Return top K documents
● Weighting with tf-idf requires:

● For each term also store its document frequency
● For every term in every document store term frequency



Feedback loops
● Multiple »words«, same concept

● User does not know how to specify a specific enough query 
● Examples: »aircraft« vs. »plane«; »ship« vs. »boat«

● Global methods:
● Expand query to as many possibilities with as many possible terms 

with error correction, synonyms, etc.
● Local methods:

● Based on interaction between the user and the system
● Relevance feedback



Relevance feedback
User reports information about relevance of individual results back to 
the system to improve the query

● Forming good queries is hard 
if the entire corpus is not 
known to the user

● Assessing individual documents
is simple



Rocchio algorithm
● Documents represented in vector space
● Known query and some relevant and irrelevant samples
● Formulate new query that is

● Maximally similar to relevant results
● Minimally similar to irrelevant results

● Use new query to retrieve better results



Blind/pseudo relevance feedback
● Use default method to find most relevant documents
● Assume that K highest ranked documents are relevant
● Compute relevance feedback (Rocchio)
● Example TREC ad hoc task (Buckley et al. 1995)



Objective retrieval performance
How many of the retrieved documents are relevant?
● Precision – percentage of relevant documents among retrieved documents 
● Recall – percentage of returned relevant documents with respect to all relevant 

documents 



Retrieval as classification



Precision vs. recall
● Precision and Recall are related measures

● Precision typically falls if the number of retrieved documents is 
increased

● Recall increases if the number of retrieved documents is increased

● F-measure as a compromise
● Typical weight 

● Higher value is better (maximum is 1)



Similarity threshold
● Decide which documents to 

return
● Document similarity
● Threshold

● Depending on the threshold we 
get different precision and recall



Plotting performance
● For each threshold we get a point 

in 2D space
● Visualize performance as plot for 

all thresholds
● Average Precision (AP) - Averaging 

over multiple thresholds (k)

● MAP (average of AP for multiple 
queries) 



Retrieval performance analysis
● Dataset with ground-truth

● Compute similarity for all documents
● Compute TPR and FPR for threshold

True condition: 1 1 0 1 0 1

Similarity: 1.0 0.2 0.1 0.8 0.9 0.8

For threshold 0.3: 1(TP) 0(FN) 0(TN) 1(TP) 1(FP) 1(TP)

TPrate=3/4=0.75

FPrate=1/2=0.5



The ROC curve
● Receiver operating 

characteristic with respect to 
criterion (threshold)

● True positive rate
● False positive rate

● Interpretable measures
● Distance to (0, 1)
● Area under the curve (AUC)



ROC analysis example
● Documents are scored for relevance by their similarity to the query

● Calculate the ROC curve and determine optimal threshold
● Sort documents by similarity
● Set of unique similarity scores is threshold pool
● For each threshold in pool calculate TPrate and FPrate
● Each pair (FPrate, TPrate) is a point on a ROC curve
● Select threshold that maximizes chosen criteria (e.g. point closest to (0,1))

Q T1 T2 T3 T4 T5 T6 T7 T8

scores:            0.6     0.2    0.5      0.2     0.5     0.35   0.3     0.4
groundtruth:   1        1        0         0        1         0         0        1



Reading a ROC curve
● What is the percentage of 

retrieved relevant documents if 
we allow 20% of irrelevant 
documents in the result?

● What percentage of irrelevant 
results do we get if we want at 
least 90% of relevant documents 
in the results?


	Slide 1
	Kaj je „pridobivanje informacij“?
	Vsebina...
	Konceptualni model
	Šolski primer iskalnika
	Iskalnik – stroj za poizvedovanje
	Primer poizvedovanja...
	Incidenčna matrika
	Primer priklica
	Obrnjen indeks (angl., inverted index)
	Procesiranje poizvedb
	Slide 12
	Izbira enote „Dokument“
	Dekodiranje sekvence znakov
	Koraki izgradnje obrnjenega indeksa
	Izgradnja slovarja terminov
	Izgradnja 1. Tokenizacija (Žetonjenje)
	Izgradnja 3. Normalizacija žetonov
	Izgradnja 2. „Stop“ besede
	Izgradnja 4. Korenjenje in lematizacija
	Iskanje fraz?
	Primer pozicijskega indeksa
	Pozicijski indeks
	Parni ali Pozicijski indeks?
	Nepopolna povpraševanja
	Izpeljanke
	Slide 27
	Tipkarske napake
	Rangiranje dokumentov
	Rangiranje s pogostostjo terminov
	Slide 31
	Sestavljena utež za rangiranje
	Primer
	Kateri dokumenti so si podobni?
	Vektorski prostor
	Primerjava znotraj korpusa
	Ujemanje poizvedba-dokument
	Slide 38
	Slide 39
	Priklic dokumentov
	Povratne zanke
	Povratnozančna relevanca
	Algoritem Rocchio (1971)
	Slepa povratna zanka
	Object retrieval performance
	Slide 46
	Precision vs. recall
	Thresholding similarity
	Plotting performance
	Retrieval performance analysis
	Slide 51
	ROC analysis example
	Reading a ROC curve

