/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2023 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "string.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* Definitions for defaultTask */ osThreadId_t defaultTaskHandle; const osThreadAttr_t defaultTask_attributes = { .name = "defaultTask", .stack_size = 256 * 4, .priority = (osPriority_t) osPriorityNormal, }; /* Definitions for myTask02 */ osThreadId_t myTask02Handle; const osThreadAttr_t myTask02_attributes = { .name = "myTask02", .stack_size = 256 * 4, .priority = (osPriority_t) osPriorityLow, }; /* Definitions for myQueue01 */ osMessageQueueId_t myQueue01Handle; const osMessageQueueAttr_t myQueue01_attributes = { .name = "myQueue01" }; /* Definitions for myTimer01 */ osTimerId_t myTimer01Handle; const osTimerAttr_t myTimer01_attributes = { .name = "myTimer01" }; /* USER CODE BEGIN PV */ osTimerId_t mojCasovnik1; UART_HandleTypeDef huart3; osMutexId_t mojaKljucavnica; int stevec = 0; int iPeriod = 100; TIM_HandleTypeDef htim7; TIM_HandleTypeDef htim15; volatile uint16_t ocPeriod = 500; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_TIM7_Init(void); void StartDefaultTask(void *argument); void Task02(void *argument); void Callback01(void *argument); void InitCasovnikaTIM7(); void InitTIM15_OC(); void InitUART(); void FunkcijaCasovnika1(void *argument); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); InitCasovnikaTIM7(); InitTIM15_OC(); InitUART(); //MX_TIM7_Init(); /* USER CODE BEGIN 2 */ uint8_t puartdata[] = "Patricio"; uint16_t size = (uint16_t)(strlen(puartdata)); HAL_UART_Transmit(&huart3, puartdata, size, HAL_MAX_DELAY); /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* Create the timer(s) */ /* creation of myTimer01 */ myTimer01Handle = osTimerNew(Callback01, osTimerPeriodic, NULL, &myTimer01_attributes); /* USER CODE BEGIN RTOS_TIMERS */ mojCasovnik1 = osTimerNew (FunkcijaCasovnika1, osTimerPeriodic, NULL, NULL); mojaKljucavnica = osMutexNew(NULL); /* if (osTimerStart(myTimer01Handle, 500) != osOK){ Error_Handler(); } */ if (osTimerStart(mojCasovnik1, 70) != osOK) { // klice neke } /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* creation of myQueue01 */ myQueue01Handle = osMessageQueueNew (4, sizeof(uint32_t), &myQueue01_attributes); /* USER CODE BEGIN RTOS_QUEUES */ /* add queues, ... */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* creation of defaultTask */ defaultTaskHandle = osThreadNew(StartDefaultTask, NULL, &defaultTask_attributes); /* creation of myTask02 */ myTask02Handle = osThreadNew(Task02, NULL, &myTask02_attributes); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* USER CODE BEGIN RTOS_EVENTS */ /* add events, ... */ /* USER CODE END RTOS_EVENTS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Supply configuration update enable */ HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY); /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_DIV1; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1; RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ __HAL_RCC_GPIOD_CLK_ENABLE(); /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOI_CLK_ENABLE(); __HAL_RCC_GPIOJ_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_GREEN_GPIO_Port, LED_GREEN_Pin, GPIO_PIN_SET); /*Configure GPIO pin : PUSHBTN_Pin */ GPIO_InitStruct.Pin = PUSHBTN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(PUSHBTN_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LED_RED_Pin */ GPIO_InitStruct.Pin = LED_RED_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_RED_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LED_GREEN_Pin */ GPIO_InitStruct.Pin = LED_GREEN_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LED_GREEN_GPIO_Port, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 5, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); /*Configure GPIO pin : GPIOD, Pin3 */ GPIO_InitStruct.Pin = GPIO_PIN_3; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ void FunkcijaCasovnika1(void *argument) { HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_3); } void InitCasovnikaTIM7(){ __HAL_RCC_TIM7_CLK_ENABLE(); htim7.Instance = TIM7; htim7.Init.Period = 50 - 1; // ARR - perioda je 50 ms htim7.Init.Prescaler = (64000-1); // ura stevca = 1KHz htim7.Init.CounterMode = TIM_COUNTERMODE_UP; htim7.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; HAL_TIM_Base_Init(&htim7); /* TIM7 interrupt Init */ HAL_NVIC_SetPriority(TIM7_IRQn, 2, 0); HAL_NVIC_EnableIRQ(TIM7_IRQn); HAL_TIM_Base_Start_IT(&htim7); } void InitUART(){ /* Peripheral clock enable */ __HAL_RCC_USART3_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /**USART3 GPIO Configuration PB10 ------> USART3_TX PB11 ------> USART3_RX */ GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_10|GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF7_USART3; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); huart3.Instance = USART3; huart3.Init.BaudRate = 115200; huart3.Init.WordLength = UART_WORDLENGTH_8B; huart3.Init.StopBits = UART_STOPBITS_1; huart3.Init.Parity = UART_PARITY_NONE; huart3.Init.Mode = UART_MODE_TX_RX; huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart3.Init.OverSampling = UART_OVERSAMPLING_16; huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; HAL_UART_Init(&huart3); /* USART3 interrupt Init */ HAL_NVIC_SetPriority(USART3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(USART3_IRQn); } void InitTIM15_OC(){ __HAL_RCC_GPIOE_CLK_ENABLE(); /**TIM15 GPIO Configuration PE6 ------> TIM15_CH2 */ GPIO_InitTypeDef GPIO_InitStruct = {0}; GPIO_InitStruct.Pin = GPIO_PIN_6; GPIO_InitStruct.Mode = GPIO_MODE_AF_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStruct.Alternate = GPIO_AF4_TIM15; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); __HAL_RCC_TIM15_CLK_ENABLE(); htim15.Instance = TIM15; htim15.Init.Prescaler = 64-1; htim15.Init.CounterMode = TIM_COUNTERMODE_UP; htim15.Init.Period = 1000-1; htim15.Init.RepetitionCounter = 0; htim15.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; HAL_TIM_OC_Init(&htim15); TIM_OC_InitTypeDef sConfigOC = {0}; sConfigOC.OCMode = TIM_OCMODE_TOGGLE; sConfigOC.Pulse = 0; // vrednost v CCR sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; HAL_TIM_OC_ConfigChannel(&htim15, &sConfigOC, TIM_CHANNEL_2); //HAL_TIM_OC_Start(&htim15, TIM_CHANNEL_2); HAL_TIM_OC_Start_IT(&htim15, TIM_CHANNEL_2); } void HAL_TIM_OC_MspInit(TIM_HandleTypeDef* htim){ if(htim->Instance==TIM15) { /* Peripheral clock enable */ __HAL_RCC_TIM15_CLK_ENABLE(); /* TIM15 interrupt Init */ HAL_NVIC_SetPriority(TIM15_IRQn, 15, 0); HAL_NVIC_EnableIRQ(TIM15_IRQn); } } void HAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin){ if (GPIO_Pin == PUSHBTN_Pin) { ocPeriod = ocPeriod - 100; } if (ocPeriod < 100) ocPeriod = 500; } void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef* htim){ uint16_t ccr; // check if TIM15 asserted the interrupt: if (htim->Instance == TIM15) { // check if Channel 3 asserted the OC interrupt if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2){ // Read and update CCR1 ccr = htim->Instance->CCR2; ccr = ccr + ocPeriod; if (ccr >= htim->Instance->ARR) { htim->Instance->CCR2 = ccr - htim->Instance->ARR; } else htim->Instance->CCR2 = ccr; } } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){ // check if UART3 asserted the interrupt: if(huart->Instance == USART3){ } } /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void *argument) { /* USER CODE BEGIN 5 */ int iPeriod = 100; /* Infinite loop */ for(;;) { if (osMutexAcquire(mojaKljucavnica, osWaitForever) == osOK) { // kriticna sekcija stevec = stevec + 1; } osMutexRelease(mojaKljucavnica); HAL_GPIO_TogglePin(LED_GREEN_GPIO_Port, LED_GREEN_Pin); iPeriod = iPeriod + 100; osMessageQueuePut(myQueue01Handle, &iPeriod, 0U, osWaitForever); osDelay(5000); } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_Task02 */ /** * @brief Function implementing the myTask02 thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_Task02 */ void Task02(void *argument) { /* USER CODE BEGIN Task02 */ osStatus_t status; int msg; int iPeriod; osDelay(300); /* Infinite loop */ for(;;) { if (osMutexAcquire(mojaKljucavnica, osWaitForever) == osOK) { // kriticna sekcija stevec = stevec + 1; } osMutexRelease(mojaKljucavnica); status = osMessageQueueGet(myQueue01Handle, &msg, NULL, 0); // wait for message if (status == osOK){ iPeriod = msg; } HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin); osDelay(iPeriod); } /* USER CODE END Task02 */ } /* Callback01 function */ void Callback01(void *argument) { /* USER CODE BEGIN Callback01 */ //HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_3); /* USER CODE END Callback01 */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM6 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ /* USER CODE END Callback 0 */ if (htim->Instance == TIM6) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ if (htim->Instance == TIM7) { HAL_GPIO_TogglePin(GPIOD, GPIO_PIN_3); HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin); } /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */