
Parallel Prefix Sum on

the GPU (Scan)

Presented by Adam O’Donovan

Slides adapted from the online course slides for

ME964 at Wisconsin taught by Prof. Dan Negrut
and from slides Presented by David Luebke

Parallel Prefix Sum (Scan)

� Definition:

The all-prefix-sums operation takes a binary associative operator ⊕
with identity I, and an array of n elements

[a0, a1, …, an-1]

and returns the ordered set

[I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)].

� Example:

if ⊕ is addition, then scan on the set

[3 1 7 0 4 1 6 3]

returns the set

[0 3 4 11 11 15 16 22]

(From Blelloch, 1990, “Prefix
Sums and Their Applications)

Exclusive scan: last input

element is not included in

the result

2

Applications of Scan

� Scan is a simple and useful parallel building block
� Convert recurrences from sequential …

for(j=1;j<n;j++)
out[j] = out[j-1] + f(j);

� … into parallel:
forall(j) in parallel

temp[j] = f(j);
scan(out, temp);

� Useful in implementation of several parallel algorithms:

� radix sort

� quicksort

� String comparison

� Lexical analysis

� Stream compaction

� Polynomial evaluation

� Solving recurrences

� Tree operations

� Histograms

� Etc.
3HK-UIUC

Scan on the CPU

� Just add each element to the sum of the elements before it

� Trivial, but sequential

� Exactly n-1 adds: optimal in terms of work efficiency

void scan(float* scanned, float* input, int length)

{

scanned[0] = 0;

for(int i = 1; i < length; ++i)

{

scanned[i] = scanned[i-1] + input[i-1];

}

}

4

Parallel Scan Algorithm: Solution One

Hillis & Steele (1986)

� Note that a implementation of the algorithm shown in picture

requires two buffers of length n (shown is the case n=8=23)

� Assumption: the number n of elements is a power of 2: n=2M

5Picture courtesy of Mark Harris

The Plain English Perspective

� First iteration, I go with stride 1=20

� Start at x[2M] and apply this stride to all the array elements before x[2M] to find the
mate of each of them. When looking for the mate, the stride should not land you
before the beginning of the array. The sum replaces the element of higher index.
� This means that I have 2M-1 additions

� Second iteration, I go with stride 2=21

� Start at x[2M] and apply this stride to all the array elements before x[2M] to find the
mate of each of them. When looking for the mate, the stride should not land you
before the beginning of the array. The sum replaces the element of higher index.
� This means that I have 2M – 21 additions

� Third iteration: I go with stride 4=22

� Start at x[2M] and apply this stride to all the array elements before x[2M] to find the
mate of each of them. When looking for the mate, the stride should not land you
before the beginning of the array. The sum replaces the element of higher index.
� This means that I have 2M – 22 additions

� … (and so on)

6

The Plain English Perspective

� Consider the kth iteration (k is some arbitrary valid integer): I go with stride 2k-1

� Start at x[2M] and apply this stride to all the array elements before x[2M] to find the
mate of each of them. When looking for the mate, the stride should not land you
before the beginning of the array. The sum replaces the element of higher index.
� This means that I have 2M-2k-1 additions

� …

� Mth iteration: I go with stride 2M-1

� Start at x[2M] and apply this stride to all the array elements before x[2M] to find the
mate of each of them. When looking for the mate, the stride should not land you
before the beginning of the array. The sum replaces the element of higher index.
� This means that I have 2M-2M-1 additions

� NOTE: There is no (M+1)th iteration since this would automatically put me

beyond the bounds of the array (if you apply an offset of 2M to “&x[2M] ” it places
you right before the beginning of the array – not good…)

7

Hillis & Steele Parallel Scan Algorithm

� Algorithm looks like this:

for d := 0 to M-1 do

forall k in parallel do

if k – 2d ≥0 then

x[out][k] := x[in][k] + x[in][k − 2d]

else

x[out][k] := x[in][k]
endforall

swap(in,out)

endfor

Double-buffered version of the sum scan

8

Operation Count

Final Considerations

� The number of operations tally:

� (2M-20) + (2M-21) + … + (2M-2k) +…+ (2M-2M-1)

� Final operation count:

� This is an algorithm with O(n*log(n)) work

� This scan algorithm is not that work efficient

� Sequential scan algorithm does n-1 adds

� A factor of log(n) might hurt: 20x more work for 106 elements!

� A parallel algorithm can be slow when execution resources are
saturated due to low algorithm efficiency

9

Hillis & Steele: Kernel Function

__global__ void scan(float *g_odata, float *g_idata, int n)

{

extern __shared__ float temp[]; // allocated on invocation

int thid = threadIdx.x;

int pout = 0, pin = 1;

// load input into shared memory.

// Exclusive scan: shift right by one and set first element to 0

temp[thid] = (thid > 0) ? g_idata[thid-1] : 0;

__syncthreads();

for(int offset = 1; offset < n; offset <<= 1)

{

pout = 1 - pout; // swap double buffer indices

pin = 1 - pout;

if (thid >= offset)

temp[pout*n+thid] += temp[pin*n+thid - offset];

else

temp[pout*n+thid] = temp[pin*n+thid];

__syncthreads();

}

g_odata[thid] = temp[pout*n+thid1]; // write output

}
10

Hillis & Steele: Kernel Function, Quick Remarks

� The kernel is very simple, which is good

� Note the nice trick that was used to swap the buffers

� The kernel only works when the entire array is processed

by one block
� One block in CUDA has 512 threads, which means I can have up

to 1024 elements

� This needs to be improved upon, can’t limit solution to what’s been

presented so far

11

Improving Efficiency

� A common parallel algorithm pattern:

Balanced Trees

� Build a balanced binary tree on the input data and sweep it to and

then from the root

� Tree is not an actual data structure, but a concept to determine what

each thread does at each step

� For scan:

� Traverse down from leaves to root building partial sums at internal

nodes in the tree

� Root holds sum of all leaves (this is a reduction algorithm!)

� Traverse back up the tree building the scan from the partial sums

12HK-UIUC

Picture and Pseudocode
~ Reduction Step~

13

1[2 1]k
x j

+× -

i1 =

1 3 5 7

3 7 -1 -1

7 -1 -1 -1

i2 =

0 2 4 6

1 5 -1 -1

3 -1 -1 -1

for k=0 to M-1
offset = 2k

for j=1 to 2M-k-1 in parallel do

x[j·2k+1-1] = x[j·2k+1-1] + x[j·2k+1-2k-1]
endfor

endfor

NOTE: “-1” entries

indicate no-ops

Operation Count, Reduce Phase

By inspection:

for k=0 to M-1
offset = 2k

for j=1 to 2M-k-1 in parallel do

x[j·2k+1-1] = x[j·2k+1-1] + x[j·2k+1-2k-1]
endfor

endfor

Looks promising…
14

The Down-Sweep Phase

0 x0 (x0..x1) (x0..x2) (x0..x3) (x0..x4) (x0..x5) (x0..x6)

x0 x2 (x0..x1) x4 (x0..x3) x6 (x0..x5)

x0 (x0..x1) x2 x4 (x4..x5) x6 (x0..x3)

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6

x0 (x0..x1) x2 (x0..x3) x4 (x4..x5) x6 (x0..x7)

Zero

d=0

d=1

d=2

d=3

for k=M-1 to 0
offset = 2k

for j=1 to 2M-k-1 in parallel do
dummy = x[j·2k+1-2k-1]
x[j·2k+1-2k-1] = x[j·2k+1-1]
x[j·2k+1-1] = x[j·2k+1-1] + dummy

endfor
endfor 15

NOTE: This is just a mirror

image of the reduction

stage. Easy to come up with

the indexing scheme…

Down-Sweep Phase, Remarks

� Number of operations for the down-sweep phase:

� Additions: n-1

� Swaps: n-1 (each swap shadows an addition)

� Total number of operations associated with this algorithm

� Additions: 2n-2

� Swaps: n-1

� Looks very comparable with the work load in the sequential solution

� The algorithm is convoluted though, it won’t be easy to implement

� Kernel shown on next slide

16

01| __global__ void prescan(float *g_odata, float *g_idata, int n)

02| {

03| extern __shared__ float temp[];// allocated on invocation

04|

05|

06| int thid = threadIdx.x;

07| int offset = 1;

08|

09| temp[2*thid] = g_idata[2*thid]; // load input into shared memory

10| temp[2*thid+1] = g_idata[2*thid+1];

11|

12| for (int d = n>>1; d > 0; d >>= 1) // build sum in place up the tree

13| {

14| __syncthreads();

15|

16| if (thid < d)

17| {

18| int ai = offset*(2*thid+1)-1;

19| int bi = offset*(2*thid+2)-1;

20|

21| temp[bi] += temp[ai];

22| }

23| offset *= 2;

24| }

25|

26| if (thid == 0) { temp[n - 1] = 0; } // clear the last element

27|

28| for (int d = 1; d < n; d *= 2) // traverse down tree & build scan

29| {

30| offset >>= 1;

31| __syncthreads();

32|

33| if (thid < d)

34| {

35| int ai = offset*(2*thid+1)-1;

36| int bi = offset*(2*thid+2)-1;

37|

38| float t = temp[ai];

39| temp[ai] = temp[bi];

40| temp[bi] += t;

41| }

42| }

43|

44| __syncthreads();

45|

46| g_odata[2*thid] = temp[2*thid]; // write results to device memory

47| g_odata[2*thid+1] = temp[2*thid+1];

48| } 17

Bank Conflicts

� Current implementation has many ShMem bank conflicts

� Can significantly hurt performance on current GPU hardware

� The source of the conflicts: linear indexing with stride that is a
power of 2 multiple of thread id (see below): “j·2k+1-1”

18

for k=0 to M-1
offset = 2k

for j=1 to 2M-k-1 in parallel do

x[j·2k+1-1] = x[j·2k+1-1] + x[j·2k+1-2k-1]
endfor

endfor

� Simple modifications to current memory addressing

scheme can save a lot of cycles

Bank Conflicts

� Occur when multiple threads access the same shared memory
bank with different addresses
� In our case, we have something like 2k+1·j-1

� k=0: two way bank conflict
� k=1: four way bank conflict
� …

� No penalty if all threads access different banks
� Or if all threads access exact same address

� Recall that shared memory accesses with conflicts are serialized
� N-bank memory conflicts lead to a set of N successive shared

memory transactions

19

Initial Bank Conflicts on Load

� Each thread loads two shared mem data elements

� Tempting to interleave the loads (see lines 9 & 10, and 46 & 47)
temp[2*thid] = g_idata[2*thid];

temp[2*thid+1] = g_idata[2*thid+1];

� Thread 0 accesses banks 0 and 1

� Thread 1 accesses banks 2 and 3

� …

� Thread 8 accesses banks 16 and 17. Oops, that’s 0 and 1 again…

� Two way bank conflict, can’t be easily eliminated

� Better to load one element from each half of the array
temp[thid] = g_idata[thid];

temp[thid + (n/2)] = g_idata[thid + (n/2)];

20HK-UIUC

Bank Conflicts in the tree algorithm

� When we build the sums, during the first iteration of the

algorithm each thread in a half-warp reads two shared

memory locations and writes one:

� Th(0,8) access bank 0

7

2

…549133028536140713

...101514131211109876543210

7

2

…94101632213596547743

...101514131211109876543210

Bank:

First iteration: 2 threads access each of 8 banks.

Each corresponds

to a single thread.
Like-colored arrows represent

simultaneous memory accesses

21

…T3T1 T2T0 T7T4 T9T5 T6 T8

HK-UIUC

� When we build the sums, each thread reads two shared

memory locations and writes one:

� Th(1,9) access bank 2, etc.

Bank Conflicts in the tree algorithm

7

2

…549133028536140713

...101514131211109876543210

7

2

…94101632213596547743

...101514131211109876543210

Bank:

First iteration: 2 threads access each of 8 banks.

…

Each corresponds

to a single thread.
Like-colored arrows represent

simultaneous memory accesses

22

T3T1 T2T0 T7T4 T9T5 T6 T8

HK-UIUC

� 2nd iteration: even worse!

� 4-way bank conflicts; for example:

Th(0,4,8,12) access bank 1, Th(1,5,9,13) access Bank 5, etc.

Bank Conflicts in the tree algorithm

7

2

…94101632213596544743

...101514131211109876543210

7

2

…94161631521351465411743

...101514131211109876543210

Bank:

2nd iteration: 4 threads access each of 4 banks.

…

Each corresponds

to a single thread.
Like-colored arrows represent

simultaneous memory accesses

23

T3T1 T2T0 T4

HK-UIUC

Managing Bank Conflicts

in the Tree Algorithm

� Use padding to prevent bank conflicts

� Add a word of padding every 16 words.

� Now you work with a virtual 17 bank shared memory layout

� Within a 16-thread half-warp, all threads access different banks

� They are aligned to a 17 word memory layout

� It comes at a price: you have memory words that are wasted

� Keep in mind: you should also load data from global into shared
memory using the virtual memory layout of 17 banks

24

Use Padding to Reduce Conflicts

� After you compute a ShMem address like this:

Address = 2 * stride * thid;

� Add padding like this:

Address += (address >> 4); // divide by

NUM_BANKS

� This removes most bank conflicts

25HK-UIUC

7

2

5

1

…4P9133028536140713

…0161514131211109876543210

7

2

9

1

…4P101632213596547743

...0161514131211109876543210

Virtual

Bank:

Note that only arrows with the same color happen simultaneously.

…

26

Managing Bank Conflicts
in the Tree Algorithm

Original scenario.

Modified scenario, virtual 17 bank memory layout.

T3T1 T2T0 T7T4 T9T5 T6 T8

7

2

…549133028536140713

...101514131211109876543210

7

2

…94101632213596547743

...101514131211109876543210

Bank:

…T3T1 T2T0 T7T4 T9T5 T6 T8

(0) (1) (2) (3)

Actual physical memory (true bank number)

HK-UIUC

Expanding to arbitrary sized
Array

� At this point we have assumed that the array
is processed by one block

� Extending to larger arrays requires spliting
the array into block sized chunks

� Perform scan independantly on each chunch
while storing the total sum in a new array
sums.

� Another kernel then updates each block with
all the sums to its left.

Expanding to arbitrary sized
Array

Timing results

Scan Primitives

� Enumerate

� Input: 2 arrays of size N composed of True False Value Pairs

� Output: an array of size N where each element is the total

number of true elements to its left.

� Easily implemented if we represent true with 1 and false with

zero

� Simply scan the true false array

332110

101101

Scan Primitives

� Array Compaction

� Input: 2 arrays of size N composed of True False Value Pairs

� Output: An array that consits of only the values associated with a
True key.

� Simply scan the true false array

� Everywhere the array is true we now have an index into the
output array

332110

101101

FDCA

FEDCBA

Quad Tree Construction

� Using Scan,Radix Sort, and bit interleaving

we can create a quad tree data structure

� Algorithm

� Interleave bits of the coordinate values

� Sort interleaved array using Radix sort

� Find locations of boundaries of Quadtree blocks

using scan

� Store array of indexes to boundary locations

Quad Tree Construction

Results

Taking it one step further: completely eliminating the bank conflicts
(individual reading)

37

Scan Bank Conflicts (1)

� A full binary tree with 64 leaf nodes:

� Multiple 2-and 4-way bank conflicts

� Shared memory cost for whole tree

� 1 32-thread warp = 6 cycles per thread w/o conflicts

� Counting 2 shared mem reads and one write (s[a] += s[b])

� 6 * (2+4+4+4+2+1) = 102 cycles

� 36 cycles if there were no bank conflicts (6 * 6)

Scale (s) Thread addresses

1 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

2 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

4 0 8 16 24 32 40 48 56

8 0 16 32 48

16 0 32

32 0

Conflicts Banks

2-way 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

4-way 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12

4-way 0 8 0 8 0 8 0 8

4-way 0 0 0 0

2-way 0 0

None 0

38

Scan Bank Conflicts (2)

� It’s much worse with bigger trees!

� A full binary tree with 128 leaf nodes

� Only the last 6 iterations shown (root and 5 levels below)

� Cost for whole tree:

� 12*2 + 6*(4+8+8+4+2+1) = 186 cycles

� 48 cycles if there were no bank conflicts! 12*1 + (6*6)

Scale (s) Thread addresses

2 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 122

4 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120

8 0 16 32 48 64 80 96 112

16 0 32 64 96

32 0 64

64 0

Conflicts Banks

4-way 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0 4 8 10

8-way 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8

8-way 0 0 0 0 0 0 0 0

4-way 0 0 0 0

2-way 0 0

None 0

39

Scan Bank Conflicts (3)

� A full binary tree with 512 leaf nodes
� Only the last 6 iterations shown (root and 5 levels below)

� Cost for whole tree:
� 48*2+24*4+12*8+6* (16+16+8+4+2+1) = 570 cycles

� 120 cycles if there were no bank conflicts!

Scale (s) Thread addresses

8 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272 288 304 320 336 352 368 384 400 416 432 448 464 480 496

16 0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480

32 0 64 128 192 256 320 384 448

64 0 128 256 384

128 0 256

256 0

Conflicts Banks

16-way 0

16-way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8-way 0 0 0 0 0 0 0 0

4-way 0 0 0 0

2-way 0 0

None 0

40

Fixing Scan Bank Conflicts

� Insert padding every NUM_BANKS elements

const int LOG_NUM_BANKS = 4; // 16 banks on G80

int tid = threadIdx.x;

int s = 1;

// Traversal from leaves up to root

for (d = n>>1; d > 0; d >>= 1)

{

if (thid <= d)

{

int a = s*(2*tid); int b = s*(2*tid+1)

a += (a >> LOG_NUM_BANKS); // insert pad word

b += (b >> LOG_NUM_BANKS); // insert pad word

shared[a] += shared[b];

}

}

41

Fixing Scan Bank Conflicts

� A full binary tree with 64 leaf nodes

� No more bank conflicts!

� However, there are ~8 cycles overhead for addressing

� For each s[a] += s[b] (8 cycles/iter. * 6 iter. = 48 extra

cycles)

� So just barely worth the overhead on a small tree

� 84 cycles vs. 102 with conflicts vs. 36 optimal

Leaf Nodes Scale (s) Thread addresses

64 1 0 2 4 6 8 10 12 14 17 19 21 23 25 27 29 31 34 36 38 40 42 44 46 48 51 53 55 57 59 61 63

2 0 4 8 12 17 21 25 29 34 38 42 46 51 55 59 63

4 0 8 17 25 34 42 51 59

8 0 17 34 51

16 0 34 = Padding inserted

32 0

Conflicts Banks

None 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 2 4 6 8 10 12 14 0 3 5 7 9 11 13 15

None 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

None 0 8 1 9 2 10 3 11

None 0 1 2 3

None 0 2

None 0

42

Fixing Scan Bank Conflicts

� A full binary tree with 128 leaf nodes

� Only the last 6 iterations shown (root and 5 levels below)

� No more bank conflicts!

� Significant performance win:

� 106 cycles vs. 186 with bank conflicts vs. 48 optimal

Scale (s) Thread addresses

2 0 4 8 12 17 21 25 29 34 38 42 46 51 55 59 63 68 72 76 80 85 89 93 97 102 106 110 114 119 123 127 131

4 0 8 17 25 34 42 51 59 68 76 85 93 102 110 119 127

8 0 17 34 51 68 85 102 119

16 0 34 68 102

32 0 68 = Padding inserted

64 0

Conflicts Banks

None 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 0 5 9 13 1 6 10 14 2 7 11 15 3

None 0 8 1 9 2 10 3 11 4 12 5 13 6 14 7 15

None 0 1 2 3 4 5 6 7

None 0 2 4 6

None 0 4

None 0

43

Fixing Scan Bank Conflicts

� A full binary tree with 512 leaf nodes

� Only the last 6 iterations shown (root and 5 levels below)

� Wait, we still have bank conflicts

� Method is not foolproof, but still much improved

� 304 cycles vs. 570 with bank conflicts vs. 120 optimal

Scale (s) Thread addresses

8 0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 272 289 306 323 340 357 374 391 408 425 442 459 476 493 510 527

16 0 34 68 102 136 170 204 238 272 306 340 374 408 442 476 510

32 0 68 136 204 272 340 408 476

64 0 136 272 408

128 0 272 = Padding inserted

256 0

Conflicts Banks

None 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2-way 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

2-way 0 4 8 12 0 4 8 12

2-way 0 8 0 8

2-way 0 0

None 0

44

Fixing Scan Bank Conflicts

� It’s possible to remove all bank conflicts
� Just do multi-level padding

� Example: two-level padding:

const int LOG_NUM_BANKS = 4; // 16 banks on G80

int tid = threadIdx.x;

int s = 1;

// Traversal from leaves up to root

for (d = n>>1; d > 0; d >>= 1)

{

if (thid <= d)

{

int a = s*(2*tid); int b = s*(2*tid+1)

int offset = (a >> LOG_NUM_BANKS); // first level

a += offset + (offset >>LOG_NUM_BANKS); // second level

offset = (b >> LOG_NUM_BANKS); // first level

b += offset + (offset >>LOG_NUM_BANKS); // second level

temp[a] += temp[b];

}

}

45

Fixing Scan Bank Conflicts

� A full binary tree with 512 leaf nodes

� Only the last 6 iterations shown (root and 5 levels below)

� No bank conflicts

� But an extra cycle overhead per address calculation

� Not worth it: 440 cycles vs. 304 with 1-level padding

� With 1-level padding, bank conflicts only occur in warp 0

� Very small remaining cost due to bank conflicts

� Removing them hurts all other warps

Scale (s) Thread addresses

8 0 17 34 51 68 85 102 119 136 153 170 187 204 221 238 255 273 290 307 324 341 358 375 392 409 426 443 460 477 494 511 528

16 0 34 68 102 136 170 204 238 273 307 341 375 409 443 477 511

32 0 68 136 204 273 341 409 477

64 0 136 273 409

128 0 273 = 1-level padding inserted

256 0 = 2-level padding inserted

Conflicts Banks

None 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0

None 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15

None 0 4 8 12 1 5 9 13

None 0 8 1 9

None 0 1

None 0

46

