Mathematical Modelling Exam

May 27th, 2024
You have 75 minutes to solve the problems. The numbers in [•] represent points.

1. Answer the following questions. In YES/NO questions verify your reasoning.
(a) [1] $f(t)=\binom{2 \cos t+5}{2 \sin t-3}, t \in[0,2 \pi]$, is a circle. YES/NO
(b) $[2] f\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\cos \varphi_{1}, \sin \varphi_{1} \cos \varphi_{2}, \sin \varphi_{1} \sin \varphi_{2} \cos \varphi_{3}, \sin \varphi_{1} \sin \varphi_{2} \sin \varphi_{3}\right), \varphi_{1}, \varphi_{2} \in$ $[0, \pi], \varphi_{3} \in[0,2 \pi]$ is a parametrization of a sphere in \mathbb{R}^{4}. YES/NO
(c) [1] There exists an analytic solution to the differential equation

$$
y^{\prime}(x)=\left(x^{2}+\cos x\right) e^{y^{2}}
$$

YES/NO
(d) [1] The translation of the second order ODE $x^{\prime \prime}-4 x^{\prime}+x=0$ into first order system of ODEs is

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
1 & -4
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

YES/NO
(e) [1] Let

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+2 x_{2}, \\
& \dot{x}_{2}=2 x_{1}+6 x_{2}
\end{aligned}
$$

by a system of differential equations. Then $\lim _{t \rightarrow-\infty} x_{1}(t)=0$ independently of the initial conditions $x_{1}(0), x_{2}(0)$. YES/NO
2. (a) [2] Sketch the graphs of the functions $f(x)=x+\cos (x)$ and $g(x)=x+\sin (x)$ for $x \in[0,2 \pi]$. Determine the local extrema of f, g on $[0,2 \pi]$. (You do not need to determine regions of convexity/concavity.)
(b) [3] Sketch the closed curves given in polar coordinates by

$$
r_{1}(\varphi)=\varphi+\cos \varphi \quad \text { and } \quad r_{2}(\varphi)=\varphi+\sin \varphi .
$$

(c) [5] Compute the area of the bounded region determined by the curves on the interval $\varphi \in[0,2 \pi]$. Hint: $\cos ^{2} \varphi=\frac{1+\cos (2 \varphi)}{2}$.
3. Let

$$
y^{\prime}=-2 x y+e^{-x^{2}-x}, \quad y(0)=1
$$

be the DE.
(a) [4] Solve the DE explicilty.
(b) [4] Use Runge-Kutta method with the Butcher tableau

0	0		
$\frac{1}{2}$	$\frac{1}{2}$	0	
1	-1	2	0
	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$

and the step-size $h=0.1$ to compute the approximation $y_{1} \approx y(0.1)$.
(c) [1] Estimate the error of the numerical solution of $y(0.1)$.

