Mathematical Modelling Exam

May 27th, 2024

You have 75 minutes to solve the problems. The numbers in [•] represent points.

1. Answer the following questions. In YES/NO questions verify your reasoning.
(a) [1] $f(t)=\binom{2 \sin t-3}{2 \cos t+4}, t \in[0,2 \pi]$, is a circle. YES/NO

Solution: YES. This is a circle with the center $(-3,4)$ and radius 2 :

$$
(x+3)^{2}+(y-4)^{2}=(2 \sin t)^{2}+(2 \cos t)^{2}=4
$$

(b) [2] $f\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)=\left(\sin \varphi_{2} \cos \varphi_{1}, \cos \varphi_{2}, \sin \varphi_{2} \sin \varphi_{1} \cos \varphi_{3}, \sin \varphi_{2} \sin \varphi_{1} \sin \varphi_{3}\right), \varphi_{1}, \varphi_{2} \in$ $[0, \pi], \varphi_{3} \in[0,2 \pi]$ is a parametrization of a sphere in \mathbb{R}^{4}. YES/NO
Solution: YES. This is a sphere in \mathbb{R}^{4} centered at the origin with radius 1 :

$$
\begin{aligned}
& x^{2}+y^{2}+z^{2} \\
& =\left(\sin \varphi_{2} \cos \varphi_{1}\right)^{2}+\cos \varphi_{2}^{2}+\left(\sin \varphi_{2} \sin \varphi_{1} \cos \varphi_{3}\right)^{2}+\left(\sin \varphi_{2} \sin \varphi_{1} \sin \varphi_{3}\right)^{2} \\
& =\sin \varphi_{2}^{2} \cos \varphi_{1}^{2}+\cos \varphi_{2}^{2}+\sin \varphi_{2}^{2} \sin \varphi_{1}^{2} \cos \varphi_{3}^{2}+\sin \varphi_{2}^{2} \sin \varphi_{1}^{2} \sin \varphi_{3}^{2} \\
& =\sin \varphi_{2}^{2} \cos \varphi_{1}^{2}+\cos \varphi_{2}^{2}+\sin \varphi_{2}^{2} \sin \varphi_{1}^{2}\left(\cos \varphi_{3}^{2}+\sin \varphi_{3}^{2}\right) \\
& =\cos \varphi_{2}^{2}+\sin \varphi_{2}^{2}\left(\cos \varphi_{1}^{2}+\sin \varphi_{1}^{2}\right) \\
& =\cos \varphi_{2}^{2}+\sin \varphi_{2}^{2}=1 .
\end{aligned}
$$

(c) [1] There exists an analytic solution to the differential equation

$$
y^{\prime}(x)=\left(x^{3}+3 \sin x+x^{2}\right) e^{y^{2}}
$$

YES/NO
Solution: NO. This is an ODE with separable variables:

$$
e^{-y^{2}} d y=\left(x^{3}+3 \cos x+x^{2}\right) d x
$$

Therefore we would need to know the analytic expression for the indefinite integral of $e^{-y^{2}}$, to know the analytic solution to the ODE. But this does not exist.
(d) [1] The translation of the second order ODE $x^{\prime \prime}-4 x^{\prime}+x=0$ into first order system of ODEs is

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 4
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

YES/NO
Solution: YES. We introduce new variables $x_{1}=x$ and $x_{2}=x^{\prime}$ to obtain a system $\dot{x}_{1}=x_{2}, \dot{x}_{2}=4 x_{2}-x_{1}$. The matricial version of this system is

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 4
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

(e) [1] Let

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+2 x_{2}, \\
& \dot{x}_{2}=2 x_{1}-6 x_{2}
\end{aligned}
$$

by a system of differential equations. Then $\lim _{t \rightarrow \infty} x_{1}(t)=0$ independently of the initial conditions $x_{1}(0), x_{2}(0)$. YES/NO
Solution: NO. We only need to compute the eigenvalues of the matrix $A=$ $\left(\begin{array}{cc}1 & 2 \\ 2 & -6\end{array}\right)$. The characteristic polynomial is $(1-x)(-6-x)-4=x^{2}+5 x-10$ and hence $\lambda_{1}=\frac{-5+\sqrt{25+40}}{2}>0, \lambda_{2}=\frac{-5-\sqrt{25+40}}{2}<0$. Hence, the solutions to the system are

$$
\binom{x_{1}(t)}{x_{2}(t)}=C_{1} e^{\lambda_{1} t} v_{1}+C_{2} e^{\lambda_{2} t} v_{2}
$$

where C_{1}, C_{2} are constants and v_{1}, v_{2} the eigenvectors of A. Since $\lambda_{2}<0<\lambda_{1}$, it follows that $\lim _{t \rightarrow \infty} x_{1}(t)=\infty$ for $C_{1}>0$.
2. (a) [2] Sketch the graphs of the functions

$$
f(x)=2 x+\cos (x) \quad \text { and } \quad g(x)=2 x+\sin (x)
$$

for $x \in[0,2 \pi]$. Determine the local extrema of f, g on $[0,2 \pi]$. (You do not need to determine regions of convexity/concavity.)
Solution: Since $f^{\prime}(x)=2-\sin (x)$ and $g^{\prime}(x)=2+\cos (x)$, we have that $f^{\prime}(x) \geq 0$, $g^{\prime}(x) \geq 0$ for every x. So f and g are both increasing functions on $[0,2 \pi]$. The candidates for extrema are $f^{\prime}(x)=0$ and $g^{\prime}(x)=0$. But such solutions do not exist and there are no extrema of f, g (except the boundary points).

(b) [3] Sketch the closed curves given in polar coordinates by

$$
r_{1}(\varphi)=2 \varphi+\cos \varphi \quad \text { and } \quad r_{2}(\varphi)=2 \varphi+\sin \varphi .
$$

Solution:

(c) [5] Compute the area of the bounded region determined by the curves on the interval $\varphi \in[0,2 \pi]$. Hint: $\cos ^{2} \varphi=\frac{1+\cos (2 \varphi)}{2}$.
Solution: We need to determine the points of intersection of the curves for $\varphi \in$ $[0,2 \pi]$. We have that

$$
r_{1}(\varphi)=r_{2}(\varphi) \Leftrightarrow \cos (\varphi)=\sin (\varphi) \Leftrightarrow \tan (\varphi)=1 \Leftrightarrow \varphi \in\left\{\frac{\pi}{4}, \frac{5 \pi}{4}\right\} .
$$

So the area is

$$
\begin{aligned}
A & =\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(r_{2}^{2}-r_{1}^{2}\right) d \varphi\right) \\
& =\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(4 \varphi^{2}+4 \varphi \sin \varphi+\sin ^{2} \varphi-4 \varphi^{2}-4 \varphi \cos \varphi-\cos ^{2} \varphi\right) d \varphi\right) \\
& =\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(4 \varphi \sin \varphi+\sin ^{2} \varphi-4 \varphi \cos \varphi-\cos ^{2} \varphi\right) d \varphi\right) \\
& =\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}\left(4 \varphi \sin \varphi-4 \varphi \cos \varphi+1-2 \cos ^{2} \varphi\right) d \varphi\right) \\
& =\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{5 \pi}{4}}(4 \varphi \sin \varphi-4 \varphi \cos \varphi-\cos 2 \varphi) d \varphi\right) .
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{a}^{b} \varphi \sin \varphi d \varphi=[-\varphi \cos \varphi]_{a}^{b}+\int_{a}^{b} \cos \varphi d \varphi=[-\varphi \cos \varphi+\sin \varphi]_{a}^{b} \\
& \int_{a}^{b} \varphi \cos \varphi d \varphi=[\varphi \sin \varphi]_{a}^{b}-\int_{a}^{b} \sin \varphi d \varphi=[\varphi \sin \varphi+\cos \varphi]_{a}^{b}
\end{aligned}
$$

we get

$$
\begin{aligned}
A=2(& \left.\frac{5 \pi}{4} \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}+\frac{\pi}{4} \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right)-2\left(-\frac{5 \pi}{4} \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}-\frac{\pi}{4} \frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\right) \\
& -\frac{1}{4}[\sin (2 \varphi)]_{\frac{5 \pi}{4}}^{4} \\
=3 \pi & \sqrt{2}-\frac{1}{4}(1-1)=3 \pi \sqrt{2} .
\end{aligned}
$$

3. Let

$$
y^{\prime}=-2 x y+e^{-x^{2}+2 x}, \quad y(0)=1
$$

be the DE.
(a) [4] Solve the DE explicilty. Solution:

Homogeneous part: $y^{\prime}=-2 x y$. Then $\frac{d y}{y}=-2 x d x$ and hence $\log |y|=-x^{2}+C$, $C \in \mathbb{R}$. Expressing y we get $y=A e^{-x^{2}}, A \in \mathbb{R}$.

Particular solution: We use variation of constants: $y_{p}(x)=A(x) e^{-x^{2}}$. Hence, $A^{\prime}(x) e^{-x^{2}}-2 x A(x) e^{-x^{2}}=-2 x A(x) e^{-x^{2}}+e^{-x^{2}+2 x}$. Further on, $A^{\prime}(x) e^{-x^{2}}=$ $e^{-x^{2}+2 x}$ and so $A^{\prime}(x)=e^{2 x}$. Then $A(x)=\frac{1}{2} e^{2 x}$ and $y_{p}(x)=\frac{1}{2} e^{-x^{2}+2 x}$.

So $y(x)=A e^{-x^{2}}+\frac{1}{2} e^{-x^{2}+2 x}$. Using $y(0)=1$ we get $A=\frac{1}{2}$ and hence $y(x)=$ $\frac{1}{2} e^{-x^{2}}+\frac{1}{2} e^{-x^{2}+2 x}$.
(b) [4] Use Runge-Kutta method with the Butcher tableau

$$
\begin{array}{c|ccc}
0 & 0 & & \\
\frac{1}{2} & \frac{1}{2} & 0 & \\
1 & -1 & 2 & 0 \\
\hline & \frac{1}{6} & \frac{4}{6} & \frac{1}{6}
\end{array},
$$

and the step-size $h=0.1$ to compute the approximation $y_{1} \approx y(0.1)$.
Solution: We have

$$
y(0.1) \approx y(0)+\frac{1}{6} k_{1}+\frac{4}{6} k_{2}+\frac{1}{6} k_{3},
$$

where

$$
\begin{aligned}
k_{1} & =0.1 \cdot f(0, y(0))=0.1 \cdot f(0,1)=0.1 \cdot\left(0+e^{0}\right)=0.1 \\
k_{2} & =0.1 \cdot f\left(\frac{1}{2} \cdot 0.1, y(0)+\frac{1}{2} k_{1}\right)=0.1 \cdot f(0.05,1+0.05) \\
& =0.1 \cdot\left(-2 \cdot 0.05 \cdot 1.05+e^{-0.05^{2}+0.1}\right) \approx 0.0997, \\
k_{3} & =0.1 \dot{f}\left(0.1, y(0)-k_{1}+2 k_{2}\right)=0.1 \cdot f(0.1,1-0.1+0.0997) \\
& =0.1 \cdot\left(-2 \cdot 0.1 \cdot 0.9997+e^{-0.1^{2}+2 \cdot 0.1}\right) \approx 0.0989 .
\end{aligned}
$$

Finally,

$$
y(0.1) \approx 1+\frac{1}{6} \cdot 0.1+\frac{4}{6} \cdot 0.0997+\frac{1}{6} \cdot 0.0989=1.0996
$$

(c) [1] Estimate the error of the numerical solution of $y(0.1)$.

Solution: Error is $\left|\frac{1}{2} e^{-0.1^{2}}+\frac{1}{2} e^{-0.1^{2}+2 \cdot 0.1}-1.0996\right| \approx 0.005986$.

