Seminar 1: Optimizing Conference Paper
Assignment Using Genetic Algorithms

Intelligent Systems
October 28, 2024

Introduction

In this seminar assignment, the primary objective is to utilize genetic algorithms
to develop a smart and efficient system for assigning conference papers to review-
ers. The system must optimize assignments to maximize overall satisfaction by
aligning reviewer preferences while satisfying all constraints. This optimization
task is essential for conference organizers to automate the paper-review process
effectively, ensuring fairness and efficiency. The task must consider multiple con-
straints, such as the number of papers each reviewer can handle, the number of
reviews each paper needs, friendship relationships between reviewers to prevent
conflicts of interest (e.g., friends reviewing the same paper), and authorship
constraints where reviewers cannot review papers they have authored.

Dataset Examples
Example 1

e Number of Papers (N): 5

e Number of Reviewers (K): 5

e Reviewer Capacity (R): 3

Review Requirements per Paper: Each paper must receive between
3 and 5 reviews.

Authorship Constraints: Certain reviewers have authored specific pa-
pers and cannot review them.

Preference Matrix (P;;):

Reviewer \Paper | Paper 1 | Paper 2 | Paper 3 | Paper 4 | Paper 5
Reviewer 1 5 4 5 3 4
Reviewer 2 4 5 4 5 3
Reviewer 3 3 4 5 4 5
Reviewer 4 5 3 4 5 4
Reviewer 5 4 5 3 4 5

Friendship Matrix (Fj;):

Reviewer \Reviewer | Rev 1 | Rev2 | Rev 3 | Rev4 | Rev 5
Reviewer 1 0 1 0 0 0
Reviewer 2 1 0 1 0 0
Reviewer 3 0 1 0 1 0
Reviewer 4 0 0 1 0 1
Reviewer 5 0 0 0 1 0

Authorship Matrix (4;;):

Reviewer \Paper | Paper 1 | Paper 2 | Paper 3 | Paper 4 | Paper 5
Reviewer 1 1 0 0 0 0
Reviewer 2 0 1 0 0 0
Reviewer 3 0 0 1 0 0
Reviewer 4 0 0 0 1 0
Reviewer 5 0 0 0 0 1

Example 2

e Number of Papers (N): 6
e Number of Reviewers (K): 8
¢ Reviewer Capacity (R): 2

¢ Review Requirements per Paper: Each paper must receive between
3 and 5 reviews.

Authorship Constraints: Certain reviewers have authored specific pa-
pers and cannot review them.

Preference Matrix (FP;;):

Reviewer \Paper | Paper 1 | Paper 2 | Paper 3 | Paper 4 | Paper 5 | Paper 6
Reviewer 1 5 2 3 4 1 5
Reviewer 2 4 5 2 3 5 1
Reviewer 3 3 1 5 2 4 3
Reviewer 4 2 3 4 5 2 4
Reviewer 5 1 4 1 2 5 5
Reviewer 6 5 5 3 1 3 2
Reviewer 7 2 3 5 4 1 3
Reviewer 8 3 2 1 5 4 2
Friendship Matrix (Fj;):

Reviewer \Reviewer | Rev 1 | Rev2 | Rev3 | Rev4 | Rev5 | Rev 6 | Rev 7 | Rev 8
Reviewer 1 0 1 0 0 0 0 0 0
Reviewer 2 1 0 1 0 0 0 0 0
Reviewer 3 0 1 0 1 0 0 0 0
Reviewer 4 0 0 1 0 1 0 0 0
Reviewer 5 0 0 0 1 0 1 0 0
Reviewer 6 0 0 0 0 1 0 1 0
Reviewer 7 0 0 0 0 0 1 0 1
Reviewer 8 0 0 0 0 0 0 1 0

Authorship Matrix (4;;):

Reviewer \Paper | Paper 1 | Paper 2 | Paper 3 | Paper 4 | Paper 5 | Paper 6
Reviewer 1 1 0 0 0 0 0
Reviewer 2 0 1 0 0 0 0
Reviewer 3 0 0 1 0 0 0
Reviewer 4 0 0 0 1 0 0
Reviewer 5 0 0 0 0 1 0
Reviewer 6 0 0 0 0 0 1
Reviewer 7 0 0 0 0 0 0
Reviewer 8 0 0 0 0 0 0

Task 1 - Representation (25%)

Develop a function to process the reviewer preferences and yield the optimal
assignment of papers to reviewers, as derived by the genetic algorithm. The
primary steps involve:

e Converting the preference data into an appropriate format.

— Hint: First, write a data structure to represent the preference matrix,
friendship matrix, and authorship constraints.

e Deciding on an effective solution representation.

— Represent assignments as a matrix where each cell indicates whether
a reviewer is assigned to a paper.

e Designing a fitness function.

— The fitness function should evaluate how well an assignment max-
imizes the preference score while minimizing constraint violations,
including reviewer capacity, paper review requirements, friendship
constraints, and authorship constraints.

e Implementing and executing the genetic algorithm.

— Hint: An initial solution can be generated using generative Al, but
it should be further refined to meet all constraints effectively.

Task 2 - Crossover and Mutation (30%)

Standard crossover and mutation functions might not be ideal for evolving as-
signment solutions, as they may produce invalid or infeasible assignments. Thus,
it’s pivotal to:

e Modify the crossover and mutation functions to ensure the gen-
eration of valid assignments.

— Ensure that the offspring solutions satisfy all constraints, includ-
ing reviewer capacities, friendship relationships, and authorship con-
straints.

e Consider the structure and constraints of the assignment prob-
lem during mutation and crossover.

— Maintain the integrity of reviewer capacities, friendship constraints,
and authorship constraints when performing genetic operations.

e Utilize existing genetic algorithm libraries, such as PyGAD, and
adapt them to suit this problem.

— Hint: While libraries provide standard functions, customizing them
to handle specific constraints will yield better performance.

Note: An initial solution can be generated using generative Al,
but students are encouraged to design custom and more advanced
crossover and mutation functions for optimized performance and
higher scores. Specify the prompts used for generating the initial
solution and discuss subsequent improvements made manually.

Task 3 - Complexity and Diversity (20%)

Introduce diversity in the genetic algorithm to explore a broader space of po-
tential solutions. This can include varying genetic operators and incorporating
additional constraints, such as ensuring that friends and authors do not review
the same paper. The goal is to allow the algorithm to navigate complex as-
signment scenarios. Additionally, when constructing the assignments, aim for
efficiency by penalizing violations like over-assignment or under-assignment.

Task 4 - Evaluation and Report (25%)

Compile a comprehensive report detailing your approach, showcasing code high-
lights, and presenting the results. Prepare a single notebook for the results. It’s
crucial to:

e Compare the performance under different genetic algorithm con-
figurations (e.g., different mutation rates, crossover methods, selection
criteria).

e Assess the approach across varied datasets to understand its
robustness and versatility.

e Visualize how the complexity of the dataset affects the algo-
rithm’s runtime and efficiency using appropriate graphs.

1 Submission

e Deadline: December 1, 2024
e Format: Jupyter Notebook

e Group Work: Maximum of two people per group (if you need a partner,
please contact an assistant)

e Use of Generative AIl: Using ChatGPT to initiate the solution is per-
mitted. Please attach the conversation as a single .txt file alongside your
Jupyter Notebook.

