Multimedia compression

Why do we need compression?

e Crucial for a number of multimedia
applications

e Efficient transmission over communication channel
» Efficient storage on storage devices

Motivation

* Image size
» Color 12 megapixel image 4000x3000px = ~35Mb
e Channel speed 1Mbit/s = transfer time: ~4,6 min
* Audio size
e 3 minute song, 44100 16-bit samples per second ~= 15Mb
» Channel speed 1Mbit/s = transfer time: ~2 min
* Video size

» 1920 x 1080 color video, 25 FPS, 120 minutes =~ 1Tb
» Channel speed 1Mbit/s = transfer time: ~80 days

Compression of sensory data

* Redundancy of sensory data
» Correlation across space and time

 Human perceptual sensitivity

e Lossless compression

» Minimize size without loosing information

* Lossy compression
e Minimize size with controlled loss of information

» Discard data that is not noticed by a human

Spatial correlation

Neighborhood pixels are frequently similar (image, video)

Spectrum correlation

Correlation across spectrum

(Similar intensity of colors in colors in all RGB channels)

Red Green Blue

Temporal correlation

Two frames in a video stream are very similar

It+1($: 3/) A = Tt(ilfzy) — 7t+1(1‘-: Z.U)

Frame t Frame t+1 Image difference

Perceptual sensitivity

Human perceptual system is differently sensitive to different
types of information

(e.g. human vision is more sensitive to changes in intensity than in chroma)

Cb Cr

subsample

orignial

Compression process

Compression

Transformation Mapping Encoding

j»e»» it
¢ %

= ()

Storage Transmission

Y ¢

=%

Decoding Reverse Inverse
mapping transformation

Decompression

Lossless vs. lossy

* Lossless compression

» Decoded information is equal to the original image (numerically/quantitatively
and perceptually/qualitatively)

* Lossy compression

« Decoded information should be perceptually equal to the original image (to a
required level)

 Achieves higher compression levels, removes redundant information
* Choice is application dependent
» Biomedical signals have to be stored without loss
» Entertainment industry can save space and bandwidth with lossy compression

Transforming signal/data

* Mapping signal/data to a form that is easier to encode
» Reducing correlation in data
» Reducing redundancy
« Change statistical properties

* Typical transformations
« Differential (predictive) coding
« Bijective transformation to frequency space (e.g. DCT)
« Convert colors from RGB to YCbCr (separate intensity and chroma)

From data to symbols

» Data to symbols for efficient encoding

* Split signal to smaller chunks (partitioning)
« Split image into blocks - each block is a symbol

» Encode each block separately

* Code sequences, repetitions (run-length coding)
« Absolute correlation in subsequences of data

» Blocks are sequences of repeated data

Run-length encoding - RLE

» Sequence of same numbers write as symbol (count, value)
« Count - how many times the symbol is repeated
« Value - the value of single symbol

* Sequence of data is transformed into sequence of
symbols

1110010000 $ - (3,1)(2,0)(1,1)(4,0)
data symbols

Lossless encoding

e Transformation and mapping to symbols are preprocessing

* Most lossless data compression occurs in symbol encoding
 Binary stream where each symbols is assigned a code word
» Code dictionaries can be formed on-line or off-line

» Entropy encoders minimize expected number of bytes to represent
sequences of symbols

o091, 51,5¢,53, S3, S, S, [> [> ceer Wy, W, Wi, W3, W3, W5, W,
(N, bits) (N,, < N, bits)

Lossless symbol coding

* Minimize size (number of bits) without losing information

» Statistical methods (Huffman, arithmetic)

» More frequent symbols are assigned shorter code words (variable length coding -
VLC)

« Statistics of symbol occurrence in data stream can be fixed or computed on-the-fly

 Dictionary methods (LZ77, LZW, LZMA)

» No statistics about symbol frequency

» Dynamically generate code tables (dictionary) to encode sequences of various
length

« Store dictionary and references

Information entropy

i oay Pi hip;)

1 a 00575 a 4.1

* How many bits required for each symbol 3 o oows b 52
4 4 00285 d 5.1

* 4 bit - 16 symbols g 5o
. 7 g 00133 g 6.2

5 bit - 32 symbols S b 0033 h 5.0
9 i 0.0599 i 4.1

. . 10 j 0.0006 i 10.7

* Information entropy measures how many bits are L : pom 69
needed to encode a single character based on = heh e 54
probability of its appearance in a sequence 6 p 001 b 7
5+ 008 7 pr

19 s 0.0567 s 4.1

30 t U.UT{]Q ::l 55;

h(p;) = —loga(p;) 2 v 0w v 5

23 w 0.0119 W 6.4

24 x 0.0073 X 7.1

N _;'- 3; l].:}lfi-:Tl ﬁ 5.0

H(X) = =221 pi logy pi H o

H(X) = —logs(1/27) = 4.75bit/ch
H(X) = -1, piloga(pi) = 4.1bit/ch

Entropy coding

* Known set of symbols S of size N, each of them has a
probability of occurring in stream

 Average length of word @—zﬁ;pz’w@' S ={(s1,p1); (s2:p2), -+ . (sn,pPN)}

e Determine code words that minimize the average length of
word and satisfy requirements:

» Regular - different symbols are assigned different words
* Unique - message can be understood in only one way
» Instantaneous - each word can be decoded as soon as it is read

Huffman encoding/decoding

* Type of optimal prefix coding
* Encoding

» Establish symbol statistics
e Generate word codes

« Map symbols to words
* Decoding

 Binary search tree
» Lookup table

Determining words by Huffman coding

* Sort symbols by decreasing probability of occurrence

* Merge two symbols with lowest probability and combine their
probabilities

* Repeat until all symbols have words assigned

S = {(s1,0.30), (s2,0.25), (s3,0.20), (s4,0.15), (s5,0.10)}
Naive encoding (3bit codes) - 15 bit

(51,0.30) @ , 0.55) (w1, 00) $1, 83,81, S92, So — 010001010011011
(s2,0.25) @ (w2,01) . ,

Huffman encoding - 10 bit
(53,0.20) (s1; S2; 83; 84; S5, 1.00) (w3, 10) wi, W3, W1, W2, W — 0010000101
(54,0.15)) (w4, 110)
(s5,0.10) (ws, 111)

Huffman algorithm properties

* Each symbols separately requires a non-zero integer number of bits
e Lower bound 1bit/symbol
» Optimal when encoding each symbol separately

* Encoding based on statistical properties of the data-stream
 Deviation from the model makes compression sub-optimal
» On-line updates (adaptive) are computationally expensive
e Improved algorithms
 Limit longest code words
 Avoid one-symbol one-word mapping (arithmetic coding)

Dictionary coding

* Statistical coding requires to know symbol distribution in
advance
e Dictionary coding schemes

» Dynamic dictionary generation for variable length sequences of
symbols

» Code words with fixed length
» Decoder reads message and reconstructs dictionary on-the-fly

» Not suitable for short sequences (resulting bitstream can even
Increase in size)

LZ77 coding

* Lempel and Ziv (1977)

 Sliding-window compression
« Maintain a window buffer of past N symbols

« Can only decompress from the beginning

* Replace repeated occurrences of data with references to a single
copy

« Match encoded as a triplet command (offset, length, next)

» Length can also include symbols that will be written by the command

LZ77 algorithm

while (stream not empty) do
begin

find longest prefix p of
remaining stream starting in
window

i = position of p in window
j = length of p
X = first char after p in
view
output triplet (i,j,X)
move j+1 chars
end

haca!acabcabaaac (0,0,a)
| |
i!a-la a!c alblclalblalalalc]| (1,1,c)
aac!aacahcabaaac (3,4,b)
| |
alalclalalclalb|clalblalalalc]| (3,3,a)
| ——1
fats blalalzlel
alalclalalclalblclalblalala 1,2,c
| ! ()
Dictionary (N = 6)
Longest match 1] Next character

Improving LZ77

* LZ78 encoding
 Explicit dictionary
» Supports partial decompression
* LZW encoding (Lempel-Ziv-Welch)
» Patented by Unisys (expired)
« Dictionary pre-initialized with all possible symbols

« When a match is not found, the current symbol is assumed
to be the first symbol of an existing string in the dictionary

DEFLATE encoding

* Combination of LZ77 and Huffman encoding
o LZ77 - duplicate string elimination
» Huffman - replace symbols with prefix codes

* Configurable encoding
 Set time that can be spend for searching sub-strings

Compression in multimedia

* Image compression
 PNG compression
» JPEG compression

* Video compression
« MPEG video codecs

e Sound compression
e FLAC compression
« MPEG-1 Layer 3 compression

Encoding comparison

* Compression efficiency
» What is the ratio between encoded and raw data size
* Delay
» Time for compression/decompression
« Amount of data processed at once (buffer)
* Implementation Complexity
* Robustness
 Corruption of encoded data stream
* Scalability
 Support for multiple profiles

PNG format

* Portable Network Graphics - 1996
 Lossless data compression

e Substitute for GIF format (patents, limitations)
« Alpha channel (transparency)
e RGB and indexed modes

* Two stage compression

« Predictive filtering - encode difference to predicted value
o DEFLATE compression

Predictive filtering

* Predicting pixel values based on value of previous pixel,
encoding the difference

 Different filter types, chosen for each scan-line using heuristic
algorithm

e Unaltered value

Use value of A

Use value of B

Use mean value of A and B (round down)
UseA+B-C

PNG examples

200 x 200 px RGB image - raw size: 120kB

-

2grays-616B 10 px chunks - 2,3 kB

Random RGB - 120, 5 kB

Vector graphics - 22,1 kB Photograph - 79,9 kB

Back to digital signal processing

* Downsample
» Fewer samples — fewer pixels
 But: aliasing

* Quantize
» Fewer bits/sample — fewer intensity levels
 But: banding, blocking

* We have to do it cleverly to reduce side effects

Lossy compression in images

Iz,y) — I(z,y+1)

* Exploit spatial correlation

 Local pixels are usually very
similar

e Divide image in small regions

e Encode region in a way that some
information is discarded

Block truncation coding (BTC)

* Divide image into square blocks

* Encode each block with only two
intensities

e Mean value and standard deviation
of the block should not change

* Simple, but used in real life
o Mars Pathfinder (1997)

EEEEEEN RN ENENEN
B WL/ 1S Y P S A0 TS

BATHNENANNISCEITINENN
FEHRUAESBAENAES S EDENE
SEINESDNER
IENENENEER
EEEENEENNNE
FEEEREEEEER

142 146 139 139 139 139

3 102 84 94 81 | 81 | 81 | 81

0 118 85 3 139 139 81 g1

20 132 119 77 139 139 139 81

BTC compression / decompression

* Compression

T =110

» Divide image into n x n blocks o'
e Threshold each block with mean value of values in

the bIOCk B = T>T
« Store thresholded value (1bit per pixel), mean

value (8bit) and standard deviation (8bit) - 4 bytes g

in total

* Decompression

» Use mean and standard deviation to compute two
values

« Assign higher values to pixels above the threshold,
lower to the ones below

nt =|z € Bya=1|

n” =z € Byz=0|

=

I

5l

|

Q
R R

Properties of BTC encoding

* Compression ratio (8bit values, 4x4 region) - 4.1

* Very simple method
» Noticeable errors due to loss of information
» Frequent edges between blocks

« Artifacts around edges and in parts of image with low
contrast where the values are slowly changing from
one to another

The JPEG standard

 Joint Photographic Experts Group (1992)
* Most popular standard for image compression

* Defines lossy and lossless compression
» Lossy - DCT, quantization, RLE, Huffman
 Lossless - predictive coding, Huffman

* Take into account human perception system

» Discard information that is least relevant to human perception

The JPEG lossy compression

» Sequential and progressive coding
* Low computational requirements

e Suitable for all types of images, works better with photographs

 Allows compromise between transfer speed and quality
 Color depth: 8-12 bits

* File formats
« Raw image data + metadata
 JPEG File Interchange Format (JFIF) - multi-platform
» Exchangeable Image file Format (EXIF) - digital cameras

JPEG lossy encoder

 Signal transformation (DCT)
« Image divided in 8 x 8 blocks JPEG file
« Each block described using DCT coefficients

Hearer and
metadata

« If the image size is not divisible by 8 add
lines/columns

Quantization of DCT coefficients

* Mapping to symbols

coding
e Encode difference between DC coefficients of *
sequential blocks

Encode using Huffman or arithmetic encoding —

Discrete Cosine Transformation - DCT

e Apply 2D DCT to each block
 Projection (dot product) to 64 basis functions
« Function representation in frequency domain

. DCT(X) = m

| 1
X=X-Fi)h.i+(X- F*,Z)Fl.z +---+ (X - Fgg)Fyg

A

First component is direct
current (DC) offset and

X Fup=>_ 3 X(mn)F,(mn)

represe nts the mean Fu_,-u(mg ﬂ,) _ C(“u{f?(.u) COS (2-.:;1—1|-61)u?r COS (211-;;)U7r
value in the block.) g =1
Remaining components e {1 otherwise

are alternating - AC

DCT coefficient quantization

* DCT coefficients are divided by H* JE
quantization table and rounded “

» Defined using psychophysical tests X = ———-
(but not defined in standard)

 Table quantizes higher frequencies e T T
more coarsely B R s
* Controlled loss of information SRR RN
» Higher information is lost ol [[=
. _X/KJ . K _ 45 | o | o |50 0
» Quality parameter scales the e [

quantization matrix i [io | =

11111111

DCT coefficients as symbols

* Separate encoding for DC (1 value) and AC components
(63 values)

* Encoding DC component
« Difference between sequential blocks

* Encoding AC coefficients
« Ordered from lower to higher frequencies

» Sequence encoded as a RLE sequence (contains sequences of
Zeros)

e Writing symbols

« DC and AC symbols encoded using Huffman or arithmetic
encoding

« Huffman code maps are predefined or calculated on-the-fly

Start

1

JPEG compression example
640x480 RGB image - raw size: 900kB

Quality 100: 200kB, error: 0.55
Quality 80: 47.7kB, error: 1.63
Quality 60: 32.3kB, error: 2.14
Quality 40: 25.0kB, error: 2.61

Quality 20: 16.6kB, error: 3.34
Quality 0: 5.6kB, error: 9.46

Compressing color images

 Human eye is less sensitive to
changes in chroma

 Separate RGB to intensity and chroma
(YCrCb)

e Down-sample chroma (Cr,Cb) with factor
2

» Encode each channel separately (different
quantization table for Y and Cr/Cb)

 Using different quantization tables for
chroma and intensity

Deep learning for image compression

* Auto-encoder architecture
» Reduce spatial resolution
 Increase channels
» Learn to decode quantized latent representation

* Unsupervised training
e Learn to reconstruct image

 Train on real world images

Compression architecture

RB1 RBEZ RB1 RBZ2 RB1 RB2 RB1 REBZ

3|l [128] l128| |[12a| 128 |128| |128| |128] |[128 128
input o o o o) . , Cony o
tensor " i " " v Pz sz pi| | gmoid
e e . e Qlamlizer
RB2 IRB1 IRB2 IRB1 RB2 IRB1 IRB2 IRB1 IRep °feoded
R N R R . nEar
3 128 128 128 128 128 128 128 128 128
paripa; Teomv e 6 ' — A e a— A

tensor kd =2 pi

Jan Pelicon, “Kompresija video posnetkov z nevronskimi mreZzami”, 2020

Comparison

n =2 bpp = 0.150,
S5-55IM = 0.57,

=3, bpp = 0.142,
S.‘:,-.S:SIM = 0.43,
JPEG 4:2:0

n =2, bpp = 0.152,
S55-S5TM = .58,
AEChpize = 0

ﬂﬂ!ﬁP_ﬂ

n = 16, bpp = 0.511,
S5-85IM = 0.77,
AEChgise =0

280
260
240
220

w 200
g

n = 16, bpp = 0.503,
SS-SSIM = 0.70,
AECgise =

= 14, bpp = 0.498,
Sb-.‘:‘SH—I = (.70,
JPEG 4:2:0

=— noise=0

—— noisesvariance2
—— noise=variance
—— JPEG {4:2:0)

0l 0.2 0.2 04 0.3 0.6 o7
— noise=0
— OiSE=YAriance/2
— poise=variance
— JPEG [4:2:0)

01 0.2 0.3 0.4 0.5 0.6 0.7

bpp

