Computational topology Lab work, 8th week

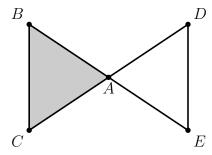
1. Calculate the following products:

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ and } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$
(b)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ and } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{bmatrix},$$
(c)
$$\begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \text{ and } \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 & k & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

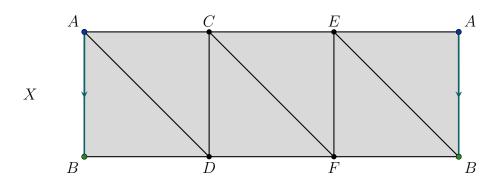
Identify which of these swap two rows/columns, add a multiple of a row/column to another row/column and multiply a row/column with a number.

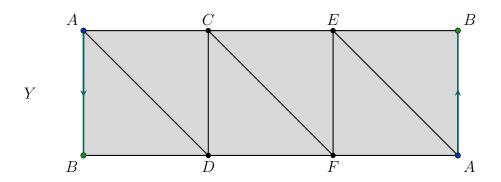
2. For the simplicial complex X in the figure below

- (a) write down the chain groups C_2 , C_1 and C_0 ,
- (b) write down the matrices D_n for the boundary homomorphisms $\partial_n \colon \mathcal{C}_n \to \mathcal{C}_{n-1}$ for n = 0, 1, 2, 3,
- (c) compute the homology groups,
- (d) collapse the free faces and determine how this changes the boundary matrices.



3. Write down the corresponding chain groups \mathcal{C}_2 , \mathcal{C}_1 and \mathcal{C}_0 for the Moebius strip (use the triangulation from last week) and the matrices D_n for the boundary homomorphisms $\partial_n \colon \mathcal{C}_n \to \mathcal{C}_{n-1}$. Compute the homology.





4. Write down the corresponding chain complexes C_2 , C_1 and C_0 and the matrices D_2 and D_1 for the boundary homomorphisms $\partial_2 : C_2 \to C_1$ and $\partial_1 : C_1 \to C_0$ for the torus, the Klein bottle and the projective plane. Use your favourite computational topology software to compute the homology groups.

