

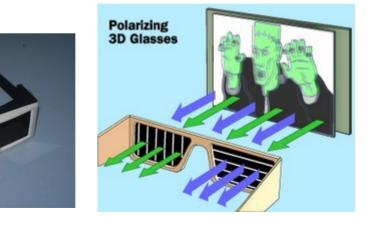
Emerging trends

Overview

- Immersive video
- Augmented reality and applications
- Interactive surfaces

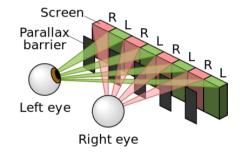
3D video

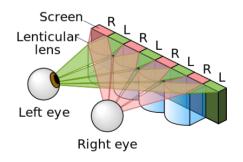
- Stereoscopic photography
 - Two images at two positions (50 mm to 75 mm apart)
 - Impression of a third dimension
- Video technology
 - Wearable technology
 - Autostereoscopy



Wearable 3D video technology

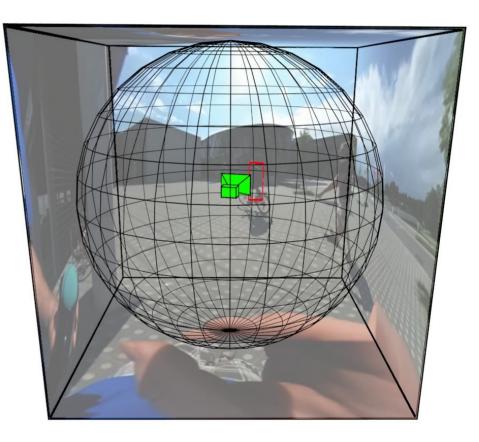
- Anaglyph glasses (passive)
- Polarized glasses (passive)
- Binocular HMD (active)
- Active shutter glasses (active)




Autostereoscopy (Glassesless 3D)

- Eye/head tracking (active)
- Parallax barrier (passive)
- Lenticular lens (passive)

Problems with 3D video


- Technology
 - Resolution
 - Frame rate
 - Cross-talk
- Usefulness
 - Limited value

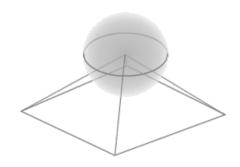
- Cost
- Health
 - Motion sickness
 - Headaches
 - Nausea
 - Disorientation

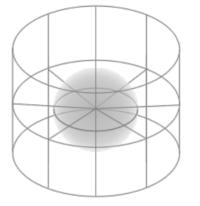
Omnidirectional video

- Single camera origin
- Projection sphere
- Interactive experience

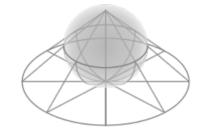
Omnidirectional video acquisition

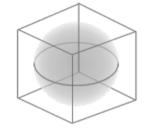
- Catadioptric camera
- Multi-camera
 - Wide-lens (less cameras, low resolution)
 - Narrow-lens (more cameras, high resolution)

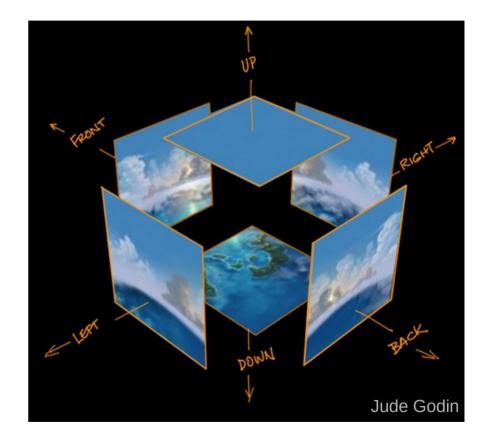



• Calibration (factory, post-processing)

Re-projection approaches


Flat Equirectangular Stereograph Cubemap





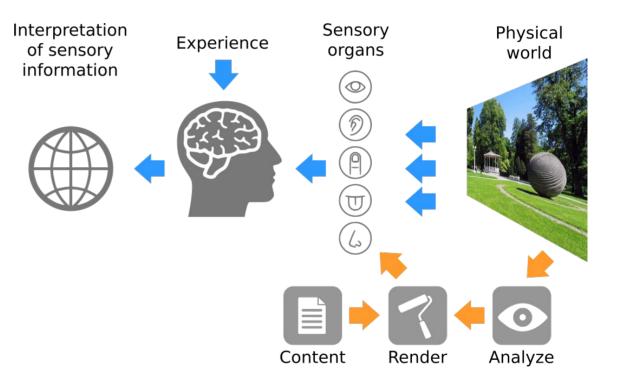
View generation

- Rendering
 - UV mapping
 - Cubemap
- Limitation
 - View angle
 - Resolution

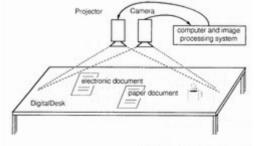
Conclusion

- Interest
 - USA, 2016 90% think 360° video improves experience
 - HMD, virtual reality
- Use cases
 - Panoramas (aesthetic)
 - Live entertainment BBC
 - Sports and tourism
 - Consumer-created (travel)

Reality-virtuality continuum


- Real world
- Augmented reality
- Mixed reality
- Virtual reality

What is augmented reality?


- Reality is subjective
 - Sight
 - Hearing
 - Smell
 - Haptics
 - Balance
- Augmenting sensory information

Augmenting visual information

- Superpositioning digital information on top of real imagery
- Who Framed Roger Rabbit (1988)
- Tom Caudell Boeing (1990)
- DigitalDesk Xerox & University of Toronto (1991)
- Virtual Fixtures (1992)

Types of augmented reality

- Anchor based
 - Reference, World
 - Global / Local
- Input based
 - Image space

Classical approach

- Visual information acquisition: camera
- Camera localization
 - Image: camera
 - Depth: depth camera
 - Other: GPS, WiFi, IMU
- Displaying augmented information: monitor, mobile phone, projector, smart glasses

Presentation

Application examples (TV)

- Olympic games 2004
 - Monitor/TV
 - Robotic camera
- USA elections 2008 CNN
 - Hologram conference
 - 35 cameras
 - 20 computers

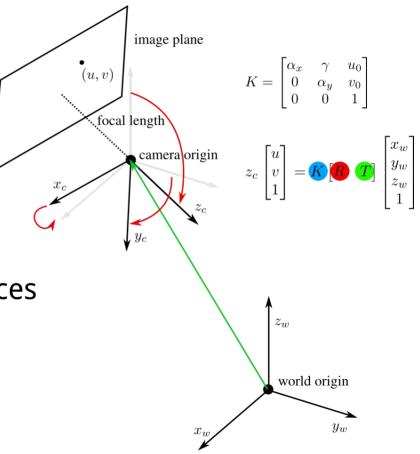
Application examples (Mobile)

- Mobile devices
 - Pokemon Go
 - Vuforia
 - ARKit, ARCore
 - Wikitude
 - BlippAR
- Wearables
 - BMW
 - Hololens

AR using depth information

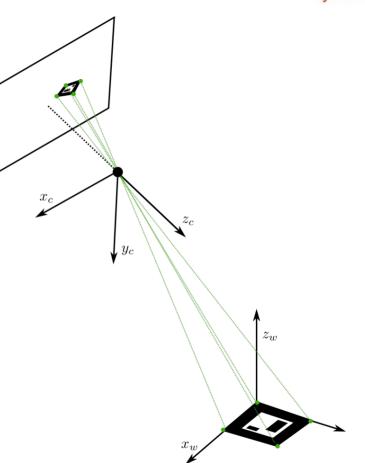
- Depth cameras
 - Active (IR light)
 - Passive (Stereo systems)
- Automatic scene reconstruction
- Easier interaction with objects

Izadi et al. "KinectFusion: Real-Time Dynamic 3D Surface Reconstruction and Interaction", SIGGRAPH, 2011


AR with visual anchor

- Localization with visual information
 - Detect key object in image
 - Determine relative position of the object to camera
 - Draw information with this relation

From point to pixel

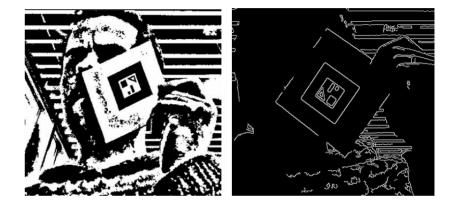

- Transform 3D point to camera coordinate system (pixels)
- Required data
 - K ... camera calibration matrix (intrinsic parameters)
 - R,t ... rotation and translation matrices (extrinsic parameters)

AR with binary marker

- Detect markers that are easy to detect and identify
 - Detect marker from edges
 - Identify marker with correlation
- Known marker size
 - Compute relation to camera
 - Use corners of marker to compute relative position

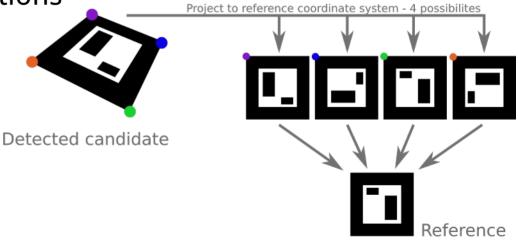
Applications of marker AR

- Catalogs
- Books
- Tourism
- Gaming



Detecting a binary marker

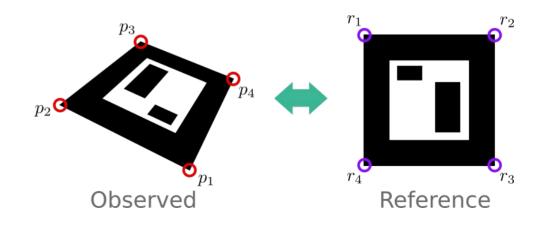
- Image processing approach
 - Speed
 - Robustness
- Finding possible candidates
 - Adaptive threshold
 - Trace contours
 - Estimate contours as polygons
 - Contours with 4 corners



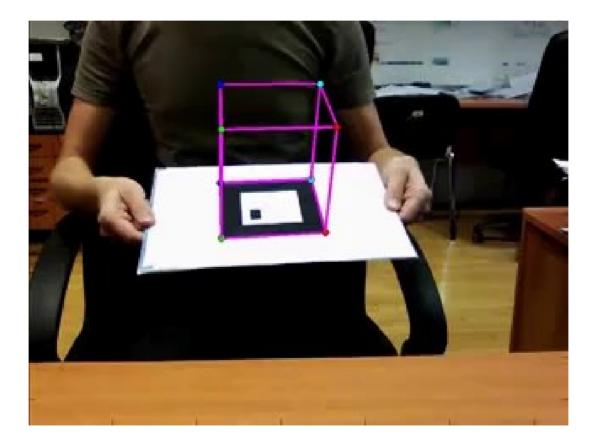
Recognizing binary marker

- Threshold on similarity
 - Project region to reference position
 - Normalized cross correlation
 - Orientation test all four options

$$G(i,j) = \frac{(\mathbf{h}^T - \hat{h})(\mathbf{f}_{ij} - \hat{f})}{\sqrt{\mathbf{h}^T \mathbf{h}} \sqrt{\mathbf{f}_{ij}^T \mathbf{f}_{ij}}}$$



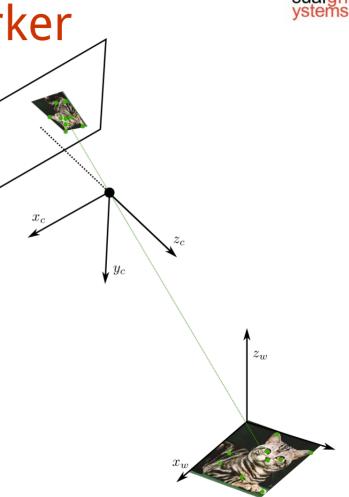
Generalizing transformation



- Transformation between planes (homography)
 - Marker plane (reference)
 - Camera plane (observed)

Example video

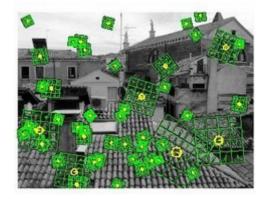
Problems with binary markers

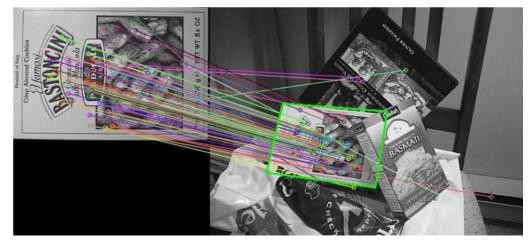

- Artificial appearance
- Entire marker must be visible
 - No touching
 - No overlapping
 - Within the image
- Image quality
 - Contrast
 - Motion blur

AR with arbitrary planar marker

- Match an arbitrary surface
 - Describe local texture
 - Robust matching
- Less constrained can use existing textures from real world
 - Posters
 - Building facades

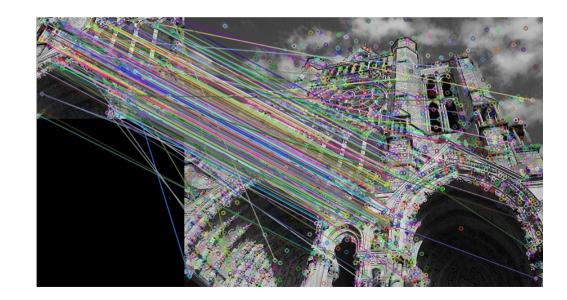
Augmented reality with planar marker


- Natural surfaces
 - Unable to detect corners robustly
 - Partial occlusions
 - Can detect feature-points
- Over-sample reference points
 - Not all points will match correctly
 - Robustly estimate homography



Matching keypoints

- Detector of keypoints
- Descriptor of regions
 - SIFT, SURF
 - BRIEF, ORB
- Matching descriptors
 - Distance function
 - Symmetric matches



Robust estimation of homography


- Many correspondences
 - Over-determined system
 - Not all correspondences are correct
- Robust matching
 - Exclude outliers from calculation
 - Find sub-set of correspondences that agree on a model

RANSAC

- Random Sample Consensus
 - Meta algorithm (used for many tasks)
 - Probabilistic interpretation
- Repeat k times
 - Select random set of 4 correspondences
 - Estimate model homography (DLT)
 - Look which other pairs agree with the model (projection from one plane to the other is small enough)
 - Take the model with largest support (inliers)

RANSAC for line fitting (source: F. Moreno)

Reference plane example

Disney AR coloring book

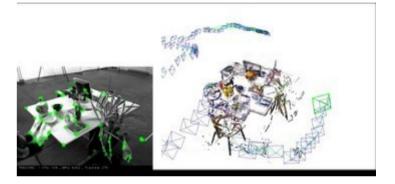
Urban AR

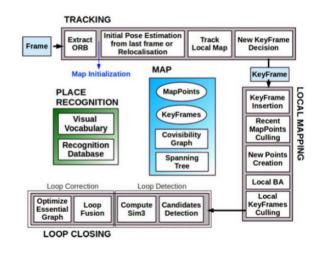
Beyond planar markers

- Reference objects
- Deformable surfaces
- No reference

Positioning without an explicit anchor

- Entire world is an anchor
 - Detect points
 - Not planar
- Visual SLAM

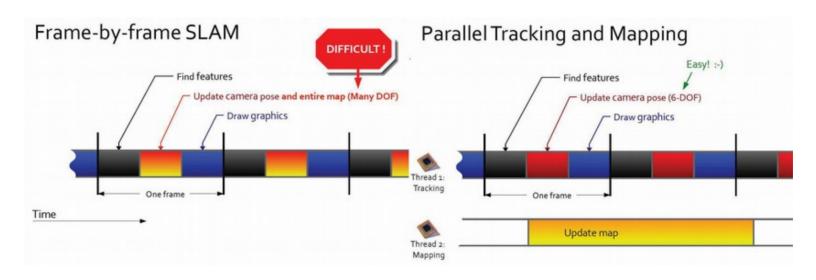



- Simultaneous localization and mapping
- Mapping building a 3D model of world
- Lots of parameters slow

R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: A Versatile and Accurate Monocular SLAM System," IEEE Trans. Robot. 2015.

ORB-SLAM

- ORB local features
 - Tracking
 - Localization
 - Loop closing
- Robust re-initialization
- Fast operation
 - Large environments
 - Co-visibility graph
 - Discarding redundant features

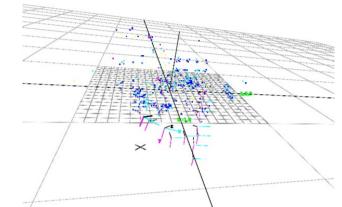


Parallel tracking and mapping (PTAM)

- Camera tracking
- Mapping of points

Klein, Georg, and David Murray. "Parallel tracking and mapping for small AR workspaces." ISMAR 2007.

Camera tracking


- Motion model
 - Better starting position
- Re-project points from map to image
 - Find local matches
 - Correct camera position

Building a map

- Initialization
 - Stereo correspondences
 - Sideways camera panning
 - Possible initialization with a marker
- Updates
 - Key-frames (not every frame is processed)
 - Bundle adjustment

Initializing map building

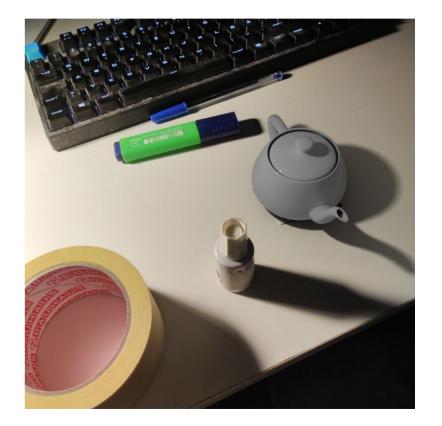
- Internal
 - Correspondences (ORB-SLAM)
 - Known motion (PTAM)
- External
 - Sensor fusion (ARKit, ARCore)
 - Pre-built map (scene prior)

Initialization with scene prior

Loboda L., "Uporaba 3D modelov za inicializacijo algoritma lokalizacije kamere v obogateni resničnosti", 2020

Realistic rendering

- Acquired images are degraded by various factors
 - Motion blur
 - Chromatic aberration
 - Vignetting
 - Radial distortion



Illumination

- Matching lighting setup
 - Position and intensity
 - Ambient conditions
- Determine parameters
 - Number of lights
 - Position, strength
 - Environmental illumination

Augmented reality challenges

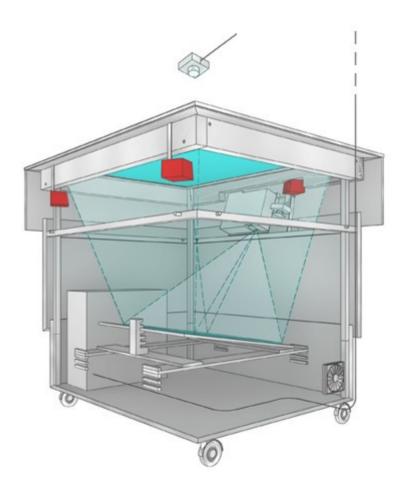
- Perception
 - Full understanding of the scene
 - Immersive experience
- Hardware requirements
 - Wearable computing
 - Battery
- Content
 - What are useful applications

Ethical considerations

- Ownership
 - Private property
 - Data ownership
 - Anonymity
- Misleading information
 - Who provides the information
 - Deception

Interactive surfaces

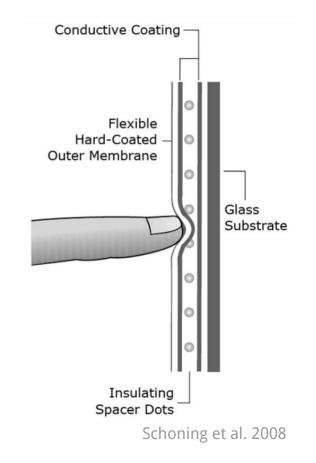
- Small form
 - Smart phone
 - Tablets
- Multi-user Tabletops
 - Ergonomics
 - Dedicated purpose



sualgnitive

Enabling technologies

- Touch sensor
 - Size, shape
 - Embedding / integration
 - Latency, multi-touch
- Display
 - Front (LCD, projector)
 - Back (projector)
- Software / application

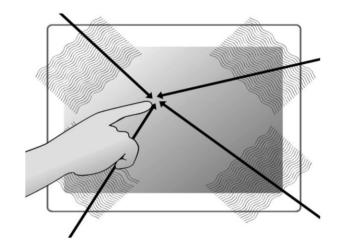


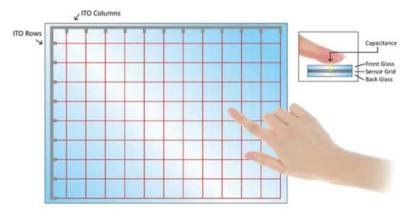
Touch technologies

- Electronics
 - Resistive panels
 - Capacitive panels
- Optical
 - FTIR
 - Diffused illumination
 - Depth camera
 - Laser
- Ultrasonic

Resistive sensors

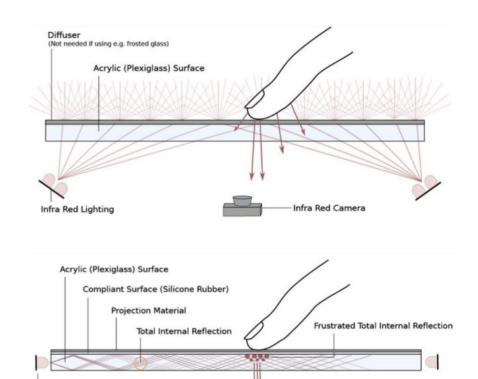
- Two conductive layers with insulation
- Detect position
 - Switching electrodes
 - Horizontal and vertical
- Low-cost, low-power
- Physical pressure
- Reduced display quality





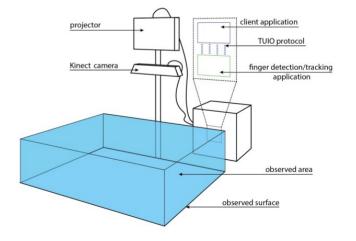
Capacitive sensors

- Surface capacitive
 - Electrodes in corners
 - Hard to detect multi-touch
- Projected capacitive
 - Grid of sensors
 - Can detect multiple inputs
 - Used in mobile phones



Infrared

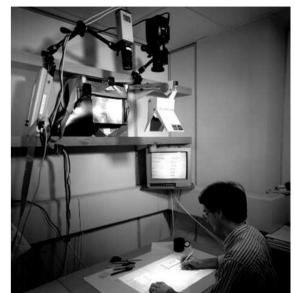
- IR light sources
- Detect reflected light
- Diffused Illumination
 - Wrong detections (hovering)
 - Easier to detect objects
- Frustrated Total Internal Reflection
 - Detects only touching objects


Infra Red Camera

Infra Red Lighting

Depth camera

- Use 2.5D depth information
 - IR projector
 - Stereo
- Computationally intensive
 - Finger detection
 - Gesture recognition
 - Object recognition



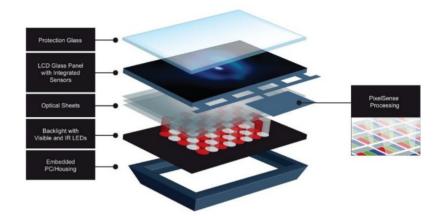


Tabletops - early prototypes

- DigitialDesk (Xerox)
 - Augmented desk prototype
- DiamonTouch (Mitsubishi)
 - Capacitive surface
 - Touch association

Tabletops - DIY

- Based on IR light
- Reactable (2007)
 - Diffused illumination
 - Fiducial markers
- Jeff Han (2008)
 - Popularization of FTIR



Tabletops - commercial

- Microsoft PixelSense
 - Embedded IR sensors
 - Samsung SUR40
 - Surface Studio
- HP Sprout
 - 3D scanning
 - Blended reality

Tabletop challenges

- Ergonomic issues
 - Neck muscle strain or back problems (gorilla arm)
 - Surface size and position
- Usability issues
 - Visibility and reachability in multi-user scenarios
 - Use-cases, added value