PCY Example

The PCY algorithm is an improvement over Apriori, particularly in its handling of the first
pass over the dataset. Key steps are as follows:

Pass 1: Counting Items and Hashing Pairs
e Foreach transaction, count the occurrences of individual items.

¢ Hash each pair of items in the transaction and increment the corresponding
bucket countin the hash table.

Determine Frequent Items and Buckets
o After the first pass, identify frequent items based on the support threshold.

¢ Identify frequent buckets in the hash table.

Pass 2: Counting Candidate Pairs
o Generate candidate pairs only from frequent items that hash to frequent buckets.

e Countthe occurrences of these candidate pairs in the dataset.

Prune and Generate Frequent Pairs

¢ Eliminate infrequent candidate pairs based on the support threshold to get the
frequent pairs.

Transaction Dataset:

e T1:{A, B, C}
e T2:{A,C,D}
e T3:{B,C,D}
o T4:{A, D}}

Support Threshold: 3

Assume a simple hash function H(x, y) = (x x y) mod 4, where x and y are item IDs.
For simplicity, let's map: A=1, B=2, C=3, D=4.



Pass 1: Counting Items and Hashing Pairs

Step 1: Count Item Frequencies

» A=3B=2C=3D=3

Frequent items (support threshold = 3):

« {A,C,D}

Step 2: Hash Each Pair into Buckets

Hash function:

H(z,y) = (z x y) mod 4
Hashing pairs (only pairs of frequent items):
1. T1={A,B,C}: Pair (A,C)
» H(A,C)=(1x3) mod4 =3 - Bucket 3
2. T2 ={A,C, D} pairs (A,C), (A, D), (C,D)
e H(A,C)=(1x3) mod 4 =3 — Bucket 3
« H(A,D)=(1x4)
« H(C,D)=(3x4) mod 4 =0 - Bucket 0
3. T3 ={B,C, D}:Pair (C, D)
e H(C,D)=(3x4) mod4 =0 — Bucket0
4. T4 = {A, D}: pair (A, D)

mod 4 = 0 — Bucket 0

» H(A,D)=(1x4) mod 4 =0 - Bucket0

Determine Frequent Items and Buckets

Step 3: Bucket Counts
® Bucket 0: 4
e Bucket1:0
® Bucket2: 0

* Bucket 3:2

Step 4: Identify Frequent Buckets
Buckets with counts > 3 (support threshold):

* Frequent buckets: {0}



Pass 2: Counting Candidate Pairs

Step 1: Generate Candidate Pairs

From frequent items { A, C, D}
{(4,C), (4, D), (C, D)}
Pairs must hash into frequent buckets {0}:
1. (A,C): H(A, C) = 3 — Bucket 3 (not frequent) — Pruned
2. (A,D): H(A, D) = 0 — Bucket 0 (frequent)
3. (C,D): H(C, D) = 0 — Bucket 0 (frequent)

Only (A, D) and (C, D) remain as candidates.

Step 2: Count Remaining Candidate Pairs in Transactions

Count how many times the remaining candidate pairs appear in the transactions:
e (A,D):AppearsinT2,T4 - Count = 2
e (C,D): AppearsinT2,T3 — Count = 2

Prune and Generate Frequent Pairs

Step 3: Filter Frequent Pairs
Apply the support threshold = 3:
* Frequent pairs: None (both (A, D) and (C, D) have counts below the threshold).

FINAL RESULTS

e Frequentitems: {A,C,D}
e Frequent Pairs: None

This demonstrates how the PCY algorithm avoids unnecessary counting by pruning

candidate pairs early:

e The pair (A,C) hashed into Bucket 3, which is not frequent. Therefore, (A,C) was
pruned and never counted in Pass 2.
e Only pairs that hashed into frequent buckets ({0}) were considered as candidates.



