
11 - Markdown, Jupyter, HTML
Today's lecture will have two to three objectives.

- The main one is to learn how to harvest data from web pages that are not primarily designed to

harvest data from web pages. This may be relatively easy or relatively impossible, as it may require us

to run JavaScript inside the web page to try to convince it that the requests are coming from normal

usage and not from the application.

- The second is a side issue: we read XML last time. HTML is a bit similar, so we'll also be doing a bit of

reinforcement of the approaches we need for XML as we read HTML.

- The third is more general: we will learn, by the way, about regular expressions that can be used to

read arbitrary text. Fortunately, in HTML we are mostly spared this, because there are better libraries

for it. However, it is useful to know regular expressions, because we will come across them in many

places - even in some form in Word.

Markdown

Markdown is a simple language for basic text formatting: it allows you to enumerate, bold and

italicise, quote, insert code and image titles and web links. We use it everywhere on the web (and

elsewhere) where we want some formatted text. Markdown is used for these notes, for everything I

post on the Classroom, and for writing comments on various websites.

The language is trivial to learn: what you enclose between the asterisks is written out *slash*

(because I wrote `*slash*`), and if there are two asterisks, it is written out **creek** (because I wrote

`**creek**`). Alines are written out with minus signs and are written out

- so.

- as

- should be,

if we want to number them,

1. pa

2. by

3. number them.

Prefix headings with one, two, three, four or as many `#` characters as necessary (the more, the less

important the heading).

Links are written `[by putting the text in square brackets](https://ucilnica.fri.uni-lj.si)`, and in brackets

tell where the link leads.

Anything put in backquotes (*backtick*) is printed as "code"; I used this above to make the text

between the asterisks or in the link appear with asterisks and square brackets, not to turn it into

italics and bold or into a link.

Anyone who wants to know more will look at [plonkec](https://www.markdownguide.org/cheat-

sheet/), but there is not much more there either, as there is not much more.

HTML

Web pages are written in HTML, which is similar to XML, which we learned about last time.

XML is more general. XML is used to record and convey any kind of data - from records of routes

travelled or cycled in Strava using the standardised GPX format, to vector images in SVG format. Each

of these uses its own specific set of tags, which are written in `<...>`. Each element must start and end

(for example `<track>` for the beginning of a trail description and `</track>` for the end) and must be

properly nested. If there is a `<track>` element inside a `<trkpoint>` element, the latter must be

closed before the former.

Just as GPX and SVG are concrete XML formats for writing paths and vector images, HTML is an XML

format for describing web pages. The essential - and unfortunately important - difference is that

HTML readers are more forgiving about closing elements. If, for example, an element is closed

prematurely before the inner element has been closed, the reader will automatically close the inner

element. If we close an element that we haven't even opened, the reader will just ignore it. XML

must have a single root element that contains all the others. HTML only has one if it is well behaved.

If it's not, the reader just shrugs and reads the document normally anyway. They did this because in

the old days of the web, web pages were often typed by hand, like HTML, and they were typed by

people who weren't even computer people, so we (computer people) took pity on them. It was still

possible to show a web page, and if it looked strange because of errors in the use of tags, the author

would just fix it.

As a result, HTML is not so easy to read with a program. Actually, there are two reasons.

- One is the aforementioned: HTML is often incorrectly formatted. This used to be a pain, but

nowadays we have libraries like Beautiful Soup that save us the drudgery and instead of ignoring the

errors, read the HTML into a tree structure.

- The second problem is that HTML is not fundamentally about writing data, it's about writing text. If

that text contains data, it may not be formatted in a way that makes it easy to extract.

HTML basics

To be able to read anything from HTML, we need to have at least a rough understanding of its

structure.

Tags

Here are the basic tags (basic in the sense that we will need them when parsing data, not when

building pages).

- A `<p>` is a paragraph. HTML ignores empty space, including blank lines, so paragraphs should be

marked with P.

- `<div>` and `` are units within the text. What they mean and what the difference between

them is is irrelevant to us, we mention them because what we are looking for will often be within

DIVs with a particular tag.

- `<h1>`, `<h2>`, `<h3`> ... are the title, subtitle, sub-subtitle and so on.

- The `<a>` is a hyperlink. This is probably the one we will be most interested in.

- The `` is the image.

- The `` and `` are ordered and unordered lists. Inside them will be indented ``.

Attributes

Elements have attributes, these will be important when searching for data because a page may have

lots of DIV or A tags, but we are interested in those that are tagged with a particular attribute. Here

are the most important

- The `class` defines the formatting of the elements. How it does this is not important. What is

important is this: if we have a web page with movie titles, all the titles are likely to be formatted the

same way - same font, same format, and so on. The titles might be in `<div>` elements, and they will

all have a specific one, for example `<div class="movie-title" ...>` or `<div class="title-of-the-movie"

...>` or `<div class="ipc-metadata-list-summary-item__t">` ... until we look, we can't know. So if we

want to get to movie titles, we pick up all the `<div>`s, they have a certain desired class. The movie

poster images we see next to the links are maybe `img` with class `ipc-image` (but only on IMDB). The

classes are like some kind of variables that the page builders come up with themselves, and we can

look at them.

- `id` is a bit similar, but completely different. :) Ids are unique: there can only be one element with

such an id on each page. Ids can also define the design, but often they also serve to allow a program

running inside the page to read or modify the ids. An id may be used to denote a page title (which

may contain the information we want to read). For example - if we are just on IMDB, the

`imdbHeader` is used to denote the line at the top of the page.

- The `href` attribute is an attribute of the `a` tag (and a few others we're not interested in). The `href`

attribute contains the URL to which the link points. This will obviously come in handy if we want to

write a program that reads all the links to certain subpages and reads what those links point to.

- The `name` is also found next to the `a` tag. This does not link to a web page, but indicates a

location within that web page so that other pages can refer to it. More on this below.

- The `src` attribute is an attribute of the `img` element. It contains a link to the image. If we use

`urlopen` in Python to open (and then use `read` to read) a url written in `href` we get bytes

(hopefully we still remember - this is what a string is like, but it's not made up of characters but

numbers) which we can, say, store in a file with the appropriate extension, and we have an image.

There are hundreds and hundreds of attributes and tags. We have learned enough about them here

to cover a few basic examples and exercises.

URLs

There is one more thing to say about URLs. These, like file paths, can be absolute or relative and

worse.

- If a URL starts with `http://` or `https://`, it leads to a completely different server. (Or to the same

one, just with a URL that is too long.) It will be followed, of course, by the address of the server, for

example `ucilnica.fri.uni-lj.si`.

- If the URL starts with `ftp://` or `mailto://` or `somethingelse://`, then it doesn't lead to a web page,

but to some other server or somewhere else entirely. For example, a `mailto://` link causes a mail

sending program to open.

- Absolute paths: if a URL starts with `/`, it is, as with files, an absolute path, of course within an

existing server. If the URL `/something/other.html` is encountered on the

`http://primer.com/primer/uporaba.html` page, it will lead to the

`http://primer.com/nekaj/drugega.html` page. The server, therefore, remains the same, but the path

is replaced by a new one.

- Relative paths: if the URL does not start with `/` (or even `http://`), it is a relative path. If

`http://primer.com/primer/uporaba.html` encounters the URL `/something/other.html`, it *probably*

leads to `http://primer.com/primer/nekaj/drugega.html`. The link is therefore *probably* relative to

the path the current page is on. Why *most likely*? Because a web page can specify otherwise by

adding a `<base href="some-other-path" />` element inside the `body` element.

- Headings within the page. If the web page `http://primer.com/primer/uporaba.html` contains ``, the link `http://primer.com/primer/uporaba.html#pomembnomesto`

will lead to that page, and to that specific location - the browser will scroll itself to get there. The `#`

part can be added to absolute or relative paths, or even without them. If we put a URL

`#importantplace` inside a page, clicking on that URL will not lead to another page, it will just scroll

the browser to that place.

As with everything in these notes, the same is true for URLs: web developers are among the highest

paid programmers for a reason. Here we are just roughly (and in places wrongly) scratching the

surface of something that requires years of training.

Reading HTML

To read HTML, we will use the Beautiful Soup library. This does not come with Python, but must be

installed as an extra.

In Jupiter, the easiest way to do this is to type

``` 

%pip install bs4 

``` 

and then restart Python (Kernel / Restart) if necessary.

We will now read from the Project Gutenberg page the names of all authors whose surname starts

with the letter B. They can be found at `https://www.gutenberg.org/browse/authors/b`.

As we hopefully remember, we got bytes - let's look at the beginning.

It looks quite normal, like ASCII, but later on it contains all sorts of things, from Portuguese a's to

Chinese a's, so we have to decode it as UTF. (Incidentally, he also says, in the above, that his "charset"

is the same as "UTF-8".

Warning: Project Gutenberg changed its pages just a day or two after these notes were written.

We will therefore read here the page as it was at the time of the notes and as we have it on file.

And now we read the HTML into the tag tree, thanks Beautiful Soup.

And now? Now we really need to look at the website, at the code, and see what tags the authors'

names are written in.

Go to the page and press Ctrl-Alt-I on Windows or Cmd-Alt-I on macOS; this works in Chrome, Firefox

and Safari, but anyone using something I haven't tried should try it themselves. The HTML structure

tree appears in the bottom (or right, depending on your settings) of the window, viewed in the top (or

left) pane.

Now, if we move the mouse over the elements of the tree in the lower part, it highlights the

corresponding elements in the upper part. And vice versa: if we select the square with the arrow that

is in the row between the top and bottom of the window, we can click on the elements in the top part

and the corresponding tree element in the bottom part will be shown. For example, if I click on

Charles Babbage, this happens.

Apparently the authors' names are inside H2, i.e. as subtitles. They contain two `a` tags. The first one

sets the link within the page, `name`, to some code - for Babbage this is a556. This means that a link

to the page `https://www.gutenberg.org/browse/authors/b#a556` (the URL of that page with an

additional `#556`) puts us at Babbagea instead of the start of the page. Within this link is his name

and the years of his birth and death. This is followed by another `a` element containing the text "¶",

and the link points to https://www.gutenberg.org/browse/authors/b#a556. Clicking on this ¶ does

not change the page, but it does change the address in the browser so that it can be copied or saved.

(The first `a` also makes the name look like a link, but does nothing. I really like those.)

Now we probably know where to find the authors' names: we'll try just about any `a` element that

contains `name`. Three things can happen

- we get some other charm from the page besides the authors' names,

- we don't get all the authors' names

- we get all the authors' names and nothing but all the authors' names.

Of course, there is also a variant 4, where we don't get all the authors' names, but we do get an extra

charm.

If the former happens, we will consider how to be more specific. We might say that this `a` must be

within `h2`. If the second happens, we will have to look at the missing authors and think about what

is specific to them, how to find them and whether we could find others in the same way.

Let's listen to the Latins, who knew how to say that *audentes fortuna iuvat*. `soup` has a method

`find_all` which takes as argument the name of an element and returns all elements with that name.

A word of warning: the bulb is behaving strangely. If we get stuck on a method name, it returns

`None` instead of `AttributeError`.

It does this because `soup.tralala` or `soup.whatelse` returns the (first) `tralala` or `whatelse` tag in

the document. If it doesn't exist (more precisely: because it doesn't exist), it just returns `None`

instead of an error. This is a pain if, say, we forget `_` in `find_all`.

`soup.findall` is `None`, so it cannot be called with `"a"` or any other arguments. Or at all.

Well, if we've already learned how to get to the `a` element cheaply, let's just grab the first one that

comes along.

How do we know that the author's name is not hidden in it? As we said: elements with authors'

names. All the elements in the county have `attrs` attributes, which contains all the attributes. The

part of the HTML that contains our `link` is

The attributes are `class`, `href` and `id`. It is true:

(The `class` attribute is a list, because an element can belong to more than one class. Incidentally,

here we see another example of the use of id: it denotes main_logo. Probably just for formatting

reasons: in the page design rules, they specified how an element with id `main_logo` should be

formatted, instead of element **i** in the class `main_logo`; they did this for hygiene reasons, since

things that are unique are not "a class unto themselves".)

Now we know how to look up items with authors: they must have a `name` in the `attrs` dictionary.

Let's find the first one so we can play with it and figure out how to extract the author name.

Yes, you see, we have caught a man. Probably the first alphabetically among all of them, on `a`. :)

Elements have `string` and `strings` attributes.

The second one looks less attractive. :)

Let's make a dictionary, with the authors as the keys, and their internal links on the page as the

values.

Great: we've only got the authors and, on a quick glance, they're probably all there.

Since it would be nice to do something with this dictionary now, let's store it in Markdown. :) This will

contain the indented entries themselves: each will be the name of an author and will act as a link to

the authors page on B, specifically to that particular person within the page.

Where to go with the file? Let's use it somewhere that accepts Markdown. We can, say, copy the first

few lines here, into a notebook cell.

And then we click the link to see if it really works.

 Making search a little easier

The code we used to search for `a` elements was unnecessarily complex. The `find_all` accepts more

arguments; among other things, we can require that an element has a certain attribute.

This gives all `a`'s that have the specified `id`:

There just happens to be one. This would give `a` whose `id` is the same as `main_logo`.

We don't really care about `id'. We want to find those who have a certain `name'.

That is why I used the not very meaningful `id` as an example. The problem is that `name` is just the

name of the first argument, the one we gave the value `a`. Python therefore gets angry that the value

of the `name` argument should not be set twice, once to `a` and then to `True`.

Similarly with `class`.

The word `class` is reserved and cannot be the name of a variable or argument. When we want to

query `name` or `class`, we have to specify them with a dictionary.

We can get rid of the conditional clause when building a dictionary.

Or we can just write

Getting information from websites can be easy if we know how and if they are friendly...

A little more reading

Now let's set ourselves a more difficult task. Let's get the author or, to make it easier, his internal

code - for Babbage, let's say a556. The task is to find all his works published on Gutenberg.

If we see them on the website, they are obviously in the document, we just need to know how to get

to them. Go back to the browser, open the items under `h2` at the bottom.

Do we see structure? We start with `a`. Its father is `h2`. The brother of `h2` is `ul`. `ul`'s children

contain singletons.

So first, let's grab Babbagh. Since we know that there is only one `a` on the page whose `name` is

equal to `a556`, instead of calling `find_all` (which we would have to loop over), we just call `find`,

which returns the first - and in this case only - element that matches the given arguments.

His father is saved in `parent`.

His brother is saved in ‘next_sibling’.

Eh. Since in HTML there's a blank line character in between (we've seen the same in XML, haven't

we?), my brother is the blank line. I suppose we should take the next brother?

Yes. But we can be cautious and move so many brothers until we reach `ul`.

So, by the way, we have learned about another attribute: `name`. Each element has a `name`, which

contains the name of the tag. A `link`, for example, is `a`.

(If this were real, your experienced professor, who has seen a lot of bad things from website builders,

would be a bit more careful and, for a start, check that `ul.name` is not already `h2`, which would

mean that we are already at the next author and that the one we are investigating has no published

works.)

Otherwise, finding the nearest sibling with a given tag is common, so the above loop can be replaced

by a simple call to `find_next_sibling`:

To search backwards, through previous siblings, call `find_prev_sibling`.

So, by one way or another, we arrive at `ul` with Babbage's works.

The works are inside the `li` elements. `li` contains `a` and the strings inside it are works by that

author.

HTML in reality

This was, of course, a school example. Gutenberg's pages are kindly simple. In reality, we can have a

lot more fun reading them. But we've seen the idea.

Regular expressions

The authors' names include the year of birth and death. But not all of them. How do we extract the

year so that we have it stored and can do something useful with it? Or, say, leave it out when you

print it out.

We could probably do something with `split`, but here we will show a different, more powerful

approach. A year has a certain shape, a pattern, which is easy to describe: it contains a few digits,

then a minus and a few more digits. The "something" can also be 0 if the year is unknown. To be

precise, we would add that the digits are a maximum of four, but this restriction will probably not be

necessary.

To make the case suitably challenging, the digits can be followed by a question mark if we are not

sure of the year and the man (or woman) may have been married or died at an earlier or later date.

The pattern of this form is described by the regular expression `\d*\??-\d*\??`.

True. Thus, from `"Tannenbaum, Samuel A. (Samuel Aaron), 1874?-1948"` we extract when

Tannenbaum was born and died.

If necessary, we can also get each number separately.

Was the *teaser* OK? Are we interested? So first we need to learn the syntax of regular expressions,

and then we need to learn the Python functions to work with them.

The syntax of regular expressions

What we'll learn here applies in general, not just in Python. Regular expressions are a pattern

description language familiar to all general-purpose programming languages, and regular expressions

can also be used to search through text in text editors.

Regular expressions consist of the characters we want to search for (in the example above, it was just

`-`) and characters with a special meaning. Here is a (non-exhaustive) list:

- `.`: any character

- `\w`: any letter or digit

- `\d`: any digit

- `\s`: white space (space, tab, newline)

- `^`: start of string

- `$`: end of string.

Characters also have negations: `\W` is anything that is not a letter or a digit, `\D` is anything that is

not a digit, and `\S` is anything that is not a blank space.

Let's look at some simple examples

- `l.pa` can be `lipa` or `lopa`, but it can also be `lrpa`, or it can also be `l1pa`, `l)pa` or `l pa`. The dot

can be anything.

- `l\wpa` is similar, but eliminates non-alphanumeric characters - among the above examples, it

forbids `l)pa` or `l pa`.

- `^l\wpa` will catch the same thing, but additionally requires that the substring matching the search

pattern, `l\wpa`, is at the beginning of the string being searched.

- The `l.p.` is `lipa`, `lipe`, `lipi`, `lipo`, as well as `lopa`, `lope`, `lopi`, `lopo`, and, of course, also `lipr`,

`lrpr`, and even `l(p)`, `l)p^`, and `l-p`.

- `l...` is anything beginning with `l`.

- `....` is any sequence of four characters.

Obviously both `.` and `\w` are too liberal: it would be good if we could list the characters we allow.

For `l.pa` we could allow e, i, o and u. When we want to list the allowed characters, we enclose them

in square brackets:

- `l[eiou]pa` could be `lepa`, `lipa`, `lop` or `lupa`. And nothing else.

- But `l[eiou]p[aeio]` is all of the above in the first four syllables.

If you put a `^` immediately after `[`, the regular expression would catch all **except** the characters

in the parentheses. So letters and digits that are not vowels.

What about `lip`? Can we tell that a character may or may not be present?

- The `*` allows the thing before the asterisk to be repeated any number of times.

- `+` does the same, but wants it to occur at least once.

- `?` says it can appear at most once.

A couple of examples:

- `le+pa` is `beautiful`, `beautiful`, `leeepa`, `leeeepa`, or even more beautiful.

- `le*pa` can be all of the above, plus `lpa` next to it.

- But `beautiful` can be `beautiful` or `beautiful`.

All three, `*`, `+` and `?` do not necessarily refer to the letter.

- `l[eiou]+pa` can also be `leieoieoieoieoeiiioioiepa`

- `l.+pa` can be `l8umv9 jv &BT G#)GUJI pa`. The important thing is that it starts with `l` and ends with

`pa`, and it can be anything in between - but there must be at least one thing.

Round brackets can be used to group parts of a regular expression.

- An `l(ep)*a` is `la`, `lepa`, `lepepa`, `lepepepa` ...

- `l([eiou]p)*a` can be, say, `lepapapopopopupa`.

What about when we want the expression to contain a full stop? So really a full stop, not just

anything. How do we tell that we mean a full stop? Or with a question mark? By bracketing it with

parentheses? Before we put a backslash.

- An `l.p.` is a `blind.`, `lop.`, `l)p.` ... The full stop at the end is really a full stop.

What if we want a backslash? In this case, we write two slashes. We've got that down - it's the same

as when some stubborn Windows user wanted to use backslashes in path descriptions at all costs.

We can now return to the regular expression for years: “

- `\d` wants a digit

- `\d*` says that there can be more digits. There may be more than one.

- `\d*\?` says it has to be followed by a question mark (a real, literal question mark, since we put a ` in

front of it).

-\d*\?? The question mark is a question mark: there may be a question mark, or there may not be

one.

- ``\d*\??-`: as Freud said, sometimes a cigar is just a cigar; a minus here is just a minus.

- ``d*\??-\d\??`: adds a pattern for the year of death.

Regular expressions in Python

`findall`

Let's start with a string.

"In front of the lime tree was a beautiful shed. With a magnifying glass I could have looked for beauty

defects, but a rogue would never have found them."

All sheds could be searched with

You could also search for `lepa` (`lepo`, `lepi`...).

We got rid of the villain, but we got some spaces and dots. Dots? But isn't it meant that a full stop is

not a full stop, but ... Yeah, no worries. That dot in the pattern was matched with an a. The `\W` is the

dot in the string. Just like a space. Since we said that the pattern had to contain something that

wasn't a letter, we just got that too.

Now we have a bunch of details to work out. First: **beware of backslashes**. Backslashes have their

own meaning. We know `\n` is the sign for a new line. Fortunately for us, `\W` doesn't have any

special meaning, otherwise the above wouldn't work.

Every time we use backslashes in a string in Python, and we only want to get backslashes, we have to

double them. So not `\Wlep.\W` but `\\Wlep.\\W`. In regular expressions this gets tricky because

sometimes we have to write double slashes in an expression (see above) and when we double each

one we get quadruple slashes. We will therefore prefer to write regular expressions with r-nices. If we

put an `r` before the quotation mark, the backslashes will just be backslashes. (The `r` here does not

stand for *regular expression*, but for *raw string*; such strings can be used in other places than

regular expressions.) So the correct way to use it is

There is no difference here, but in general there will be.

But what are we going to do about the spaces? Before we tackle them, let's point out something else:

He didn't catch the word "Beautiful" at the beginning, first of all because it is capitalized. We can add

[flags to change how it works](https://docs.python.org/3/library/re.html#flags) to the `re.findall`

function, and one of them is `re.IGNORECASE`.

She is still not Beautiful. Now, obviously, because there is nothing in front of the word that is not a

letter - simply because there is nothing in front of it at all. The pattern will have to be reformulated to

allow the word to be preceded by either a non-letter or the beginning of a string.

To avoid doctoring the patterns, we simply paste a space at the beginning and end of the string.

Now let's get rid of the spaces in the found string: if the pattern contains a

group, `findall` will not return the whole substring but only what is in the

group.

Finally, we half everything that makes a nice magnifying glass or loupe.

Now let's try this: we'd like all words that start with lep-, lip-, lop- or lup-.

The pattern is now that it must start with something that is not a letter (but that is not part of the

group), followed by `l`, then `e`, `i`, `o` or `u`, then `p` and then any number (0 is possible) of letters.

What about words that contain `l[eiou]p`, but can have any other letters in front and behind?

 `Operators in distress`

A word of caution: what does `l.*pa` return? Unexpectedly, this:

TELL for *?

Python is right. It is a string starting with `l` and ending with `pa`. I suppose we were expecting a

shorter one, weren't we?

The `*` and `+` operators are greedy: they take as much as possible - but of course in such a way that

it's still possible to add `pa` (or whatever) to the end. We often imagine that they'll take the

shortest possible string. This is achieved by adding a question mark after `*` or `+`. So `*?` and `+?`

are the unmissable versions of asterisk and plus.

This is, of course, again not in line with expectations, but we see the difference: he starts with `l` and

then adds as much as necessary to get to the next `pa`. The result is undesirable, but at least it's fun.

:)

The above would of course be avoided if `.*?` were replaced by `\w*`:

By the way, let's show how to extract all the words from the text (the St Nicholas Letters homework

required something like this, but in a more complicated way).

Regular expressions have many more options and tricks, complications and solutions. We cannot list

them all in this short introduction; it would require several lectures in theory, and a lot of experience

in practice.

`search` in `match` (in `finditer`)

So far we have only been concerned with patterns and finding subsets that match them. There is

much more you can do with regular expressions in Python. Patterns will often consist of several parts,

groups, and we will usually be interested in their contents.

Recall the expression we used to look for birth and death years, `\d*\??-\d*\??`. This obviously has

two parts, the year of birth and the year of death. They can also be formally referred to as groups.

If the pattern contains multiple groups, `findall` returns a list of targets rather than a list of strings.

This would be enough to be able to tell the year of birth and death, and - because we have cunningly

enclosed a question mark in its own group instead of appending it to the digits - we have a separate

indicator that tells whether the year is reliable or not.

What if we wanted to change the output - say, remove the years from the author's name?

Unfortunately, `findall` only tells us *what* it found, not *where*. On the other hand, `findall`

returns a list, even though we know here that this list will contain at most one element.

For such cases, the `search` and `match` methods are more useful.

This one, obviously, is more `search`. :) The difference is that `match` requires the pattern to appear

at the beginning of the string, while `search` does not.

The result returned by `search` is `re.Match`: an object containing more information about what the

pattern captured.

First: `re.search` may return `None` if it finds nothing. The function call will therefore typically be

followed by `if`, which will take care of this scenario.

The `group` method returns the contents of each group.

Or several groups.

We start counting groups with `1` because `0` represents the whole captured subset.

Since this is exactly what we usually need, `0` is also the default value. The complete string is

therefore obtained by

All subgroups - what would be returned by `findall` - are given by `groups`.

As there can be many groups and it is difficult to count them, we can also name them. This

complicates the expression, but simplifies working with it. Naming groups is done by replacing `(...)`

with `(?P<name>...)`.

Now we can address groups with names, not just indexes.

Or we can just get a dictionary of groups.

For a group, we can find out where in the original string it starts or ends. Or both.

You can add an index or a group name.

 Now let's take our Tannenbaum, store his birth and death years in a separate variable and remove

them from the string, leaving only the author's name.

 `sub` and `split`

Arrays have a `replace` method to replace a given substring with another. Regular expressions have a

`sub` method that does the same thing, except that the string to be replaced is given by a regular

expression.

This is of course wrong. Let us replace lime with house, and obviously lepa should be replaced by

hasha. Let us do so.

And finally, a `split`. A string has a `split` method that receives a delimiter by which to split the string.

The separator is always just the string. Regular expressions have a `split` method that receives a

regular expression. Let's split the word according to the vowels.

(Interlude: if we want to get syllables - in the sense of combinations of letters ending in a vowel, then

it's not `split` but `findall`:

End of interlude.)

Capturing data from texts

In this lecture, we touched briefly on a topic that requires a lot of knowledge and experience, and

even more patience: extracting data from documents that were not intended to be extracted

(automatically) in the first place. HTML is basically meant to be read, and free text is not meant to be

read at all. Since HTML pages are usually formatted, and since they are often assembled

automatically (especially if the data comes from a database), we can hope that the formatting will be

sufficiently transparent and consistent to allow the tags to be used to identify the parts that contain

the data we are looking for. Within them, we will often be able to use regular expressions.

The page we have seen here is simple. In practice, it will not always be so. And, worse, in practice,

pages change and if we struggle to develop a program to capture data from a page, there is no

guarantee that next week everything will be different and we will have to start all over again. When it

is possible to get the data in a readable format by some other means, this is always a better option.

Otherwise - good luck. :)

