
06 Quantities
0.1 Quantities

Sets are like lists, but with the difference that they can contain each element only once. On the other

hand (and not only on the other hand, but also technically) they are like dictionaries. They can only

contain elements that are immutable, and we can very quickly determine whether a set contains a

certain element or not, in the same way as with dictionaries, we can quickly find out whether they

contain a certain key or not.

Sets are written with curly brackets, just as we are used to in mathematics.

This can only produce a non-empty set. If we just write a parenthesis and a bracket, {}, we get a

dictionary. (Why did they decide to make it a dictionary, not a set? The dictionary came first, Python

got sets later. Hence. Besides, we really need dictionaries a lot and sets much less often.)

If we want to make an empty set, we say:

The "function" set is a bit like the "function" int: you can give it different arguments and it will turn

them into a set. You can give it, say, a list, and you'll get a set with all the elements that appear in it.

In addition to lists, we can pass anything to the sets that could be passed through a for loop, say a

string or a dictionary.

The variable stems (still) contain a dictionary whose keys are the names of Benjamin's female fans.

Since the loop "returns" the keys via the dictionary, the set constructed from the dictionary will also

contain the keys.

We can add elements to the set, and we can ask whether the set contains a particular element.

Finally, we tried to add an element to the set that already contains it. This is not possible, of course,

because the set contains each element only once.

If we have two sets, we can calculate their union, intersection, difference (elements that appear in

the first set but not in the second set) and symmetric difference (elements that appear in one set and

not in the other) ...

Just as we can use += to add numbers (and write x += a instead of x = x + a), and, similarly, subtract,

multiply and divide with -=, *= and /=, we can add, subtract or divide a set with &=, |= and -=. So, for

example, u &= v is the same as u = u & v.

We can also check whether a set is a subset (or superset) of another set. The simplest way to do this

is to use the comparison operators.

{1, 2, 3} is a subset of u, but it is not a proper subset, since it contains the whole of u.

There are many other interesting things you can do with sets - but enough is enough. We'll look at

more examples as we go along.

06 Modules
1 Modules

We've said it before: Python has thousands and thousands of functions, so they need to be organised,

placed where we can find them.

One of the principles we've already learned: methods. Methods are attached to things (more learned

and correct: objects) and do things that are typical of those things. Arrays have methods like lower

and split, dictionaries have get and setdefault.

In addition to methods, Python has functions that do not belong to any specific type. Examples are

input and print. But these are few; only a few functions have the privilege of lying idle.

Most functions are boxed. In Python, boxes are called modules. You'll probably also hear the terms

package and even library. Don't worry about them: a package is a hierarchical collection of modules,

and a library is some rounded collection of different ... modules,

packages ... whatever. For us here, only modules are important. We'll find out how to use them and

see some useful things in some useful modules.

1.1 Importing modules

To use the functions in a module, we first need to import the module.

So far, for example, we have been using functions from the math module and importing them with

from math import

*. When I teach programming, I avoid having to type in some phrases that you don't understand.

from math import * was one of the few, and it's time to find out what it's all about. It's also time to

get rid of the phrase and learn to write it properly. The math functions module, math, is properly

imported like this:

This is the strangest type of variable ever. It is not simply a number (int, float) or a string (str) or a list

or a tuple (list, tuple), but a variable of type "module".

Functions belong to a module, just like methods belong to an object. If we have a string name, we can

access its upper method with a dot, name.upper. Here it is similar: if we have a module math, we will

access its function sqrt with math.sqrt, and its variable pi with math.pi.

Let's import another module, os.

There are functions in the axis that can be used to create a directory or delete a file. In addition, it

contains something interesting: a module. The path module is a module within the axis module. It

contains, for example, the splitext function, which returns a base and an extension for a given

filename.

This is how modules are imported.

1.1.1 Importing individual functions

x = 2 * math.sin(math.radians(phi) + math.pi/2) - 2 * math.cos(math.radians(alpha))

It would be better to have these functions at hand without repeating math. Let's import them with

from math import sin, cos, radians, pi imports the functions listed and makes them available to the

program under those names. We will therefore have the names sin, cos, radians and pi, but not tan

and log.

But especially not math. That is:

- if we import import math, we have math and, say, math.cos, but not cos. We have imported math,

not cos.

- If we import from math import cos, we have cos and not math or math.cos. We have imported cos

and not math.

1.1.2 Importing everything

There is an even "simpler" way of importing.

This one is similar to the previous one, except that we don't list the functions. * represents everything

in the module.

The first way, importing the module, has the advantage that in each function call it is clear where the

function comes from. The disadvantage is that the expressions are much longer.

The second way, importing individual functions, shortens the expressions. We can still see where a

function comes from, but we have to look at the beginning of the program, in the import.

The third way is generally bad. The expressions are shorter, but for single functions we don't know

where they came from. This way we import at most the math module and nothing else. Especially in

larger projects.

Amendment: I wrote the above paragraph ten years ago. In fact, I haven't imported a module in this

way for a long, long time, except in the first weeks of Programming 1. It's not done.

1.2 Where to import

Always at the beginning of the program. Not just in between.

Exception: at the beginning of a function. This is done, for example, when it is not clear whether a

module can be imported, or when importing is slow, and it is only needed in a function. Another

situation where this would come in handy is when two modules are imported mutually, one after the

other. This is resolved by importing a module only when it is needed.

This is not a law, just an agreement.

Importing modules only happens once in reality. If we write import math five times, the module will

only actually be imported the first time.

1.3 Maths module

We will look at some useful modules. Python has about 200 of them; you can find thousands and

thousands more on the Internet.

The first is math, but we won't say much about it. It has all the functions that any calculator has ...

and a bit more. :) For example, greatest common divisor, faculty and binomial coefficients

...

Let's just take this opportunity to mention two features related to numbers. The float data type has

two special features in addition to the normal numbers: infinity (and minus infinity) and not a

number.

The first two can be useful for finding a minimum or maximum.

math.inf is greater than all numbers (except itself) and therefore a useful starting value for finding the

minimum.

nan is more interesting. In some languages it is obtained as a result of wrong arguments to

mathematical functions, say when trying to calculate the root or logarithm of a negative number.

Python functions return an error in this case, but it is returned by some functions in libraries

(modules) that we will install additionally, so it is good to know about it.

nan, not a number, is a dead end number. Whatever we do with it - adding, subtracting, multiplying,

even multiplying by zero - it always remains nan. Worse: nan is neither bigger nor smaller than any

number. It is not smaller than infinity (and of course not greater, but not equal either).

And, worst of all, he is not even like himself.

How do we then check if a variable has the value nan - if we can't even compare it with nan?

Rather, let us use his stupidity against himself.

A nicer, more correct way to check whether a variable has the value nan is the function math.isnan.

It will be useful to remember all this when we work with, for example, some statistical libraries that

will return nan when something cannot be calculated.

By the way, this strange behaviour, where nan is not even equal to itself, is not some Python fad, but

part of the IEEE 754 standard that defines floating point notation and its behaviour. Every language

that has been trained behaves the same way.

1.4 The random module

The random module contains functions that do (pseudo-)random things. (That is: they look random,

but they are not, because everything that is computed by ordinary computers is computed, not

drawn.) We will mention just a few. random.random() returns a random number between 0 and 1.

random.uniform(a, b) returns a random number between a and b. The function is called uniform

because it is a uniform distribution - all numbers are equally likely.

If we need a random integer, we call randint.

If we are interested in some other distribution than uniform: the random module knows many:

beta, gamma, exponential ... and of course Gaussian.

Let's make a list of names.

random.choice returns a random element of the given list.

random.sample selects a random sample of the given size.

random.choices is similar, but the selected cases can also be repeated. The sample size must be given

as an argument named k.

random.shuffle shuffles the given list.

1.5 module os

The os module contains a bunch of stuff related to the operating system. Because we don't know

enough about operating systems, we wouldn't understand most of the features.

We will use them regularly anyway.

- getcwd() returns the current directory. That is, the directory in which the open function would look

for the file if given only the filename.

- chdir(path) changes the current directory. The path can be absolute (with / at the beginning) or

relative.

- mkdir(path) makes a new directory.

- remove(filename) deletes the file with the given name. No mercy. No "do you really want to delete".

- rename(name, newname) renames the file.

- listdir(path) returns a list of all filenames in the given directory.

Most often you will need the latter. For example, I got weather station data in the form of thousands

of files, which I then read and wrote the (filtered, of course) data to a new file.

This is the current contents of the current directory (where these records are).

1.6 The os.path module

path is a module within the os module. It also has many features, some of which are suitable for us.

- os.path.exists(name) returns True if a file or directory with the given name exists (in the current

directory).

- os.path.isdir(name) returns True if the given directory name exists (within the current directory).

- os.path.isfile(name) returns True if the given name is a file (within the current directory).

- os.path.splitext(name) returns the base and extension of the given filename.

The others are obvious, but the last one is particularly interesting for us.

Let's list the names of all files with extension .txt that are located in the current directory.

1.7 Collections module

Among all the interesting things in collections, let's mention just two, at least for now.

1.7.1 defaultdict

defaultdict is a dictionary that adds non-existent keys on the fly, and we need to give it a function to

invent their values. Only functions that do not accept arguments are suitable, or more precisely,

functions that can be called (even) without arguments. Most often, this will be int. If called without

arguments, it returns 0.

We can even, say, increase the value of a non-existent key.

Let's count how many times the author of the bicycle.txt file has ridden which bicycle and how far he

has travelled on it. Let's remember: the lines of the file represent individual journeys and contain the

name of the bike, the distance in kilometres and something else that we are not interested in here

(the height).

Uporaba = use

pot = way

razdalja = distance

You could do the same with normal dictionaries, but it would require some if statements or methods

like setdefault or get.

Now let's turn to the auction: we want to build a dictionary whose keys will be objects, the values of

which will be the bid lists for that object. Again we will use defaultdict, but the values will not be ints,

but lists. The list function, if called without arguments, conveniently returns an empty list.

We can even add to such a list with append!

Now for real.

Ponudbe = offers

predmet = subject

1.7.2 Counter

For some reason we write Counter with a capital. (The reason is not a very good one. For the same

reason, we could also capitalize defaultdict. Counter is related to defaultdict and sometimes replaces

it. We don't currently have a good example of its use at hand, or, more accurately, to use it effectively

we would need to know something we don't know yet. However, we can show what it does. Let's say

we have a list of names of people who have been telephoned.

Of course, we want to count how many times he called who. We could do this trivially with

defaultdict, but with Counter it's even more trivial:

Stevci =counters

Often we will want to know who he called most often - or which three - and there is a method for

this.

This is the list, ordered by frequency.

1.8 The csv module

You'll like this one. Files containing comma-separated data, like our minutes.txt, are quite common.

This form of notation is called comma separated values or, in abbreviation,

Excel can also save in this format - with the caveat that it will lose all formatting and whatnot. (I once

promised that we would learn how to read Excel files. That's not it yet. We will also read .xlsx. But not

yet.) Our auction minutes and all the other files were in that format. Python therefore has a csv

module that can read such things.

1.8.1 reader

Are we interested in the names of all the participants in the auction?

Give the csv.reader function the file (not just the name, you also need to call open). It returns

something that can be passed over with a for loop, and we get the data from the lines. No split.

csv.reader defaults to comma separated data. If they are by something else, we tell it that with an

additional delimiter argument. The delimiter in the "wheels.txt" file from the fifth homework

assignment was -.

In addition to punctuation, a file can have a bunch of other properties. Suppose a set of Louis XIV

spoon, knife and fork is being sold at auction. In the file, you would get the line Louis XIV spoon, knife

and fork,Ana,12945 and s.split(",") would return four things instead of three, just because of the

comma between the spoon and the knife. Excel, in this case, would write something like "Louis XIV's

spoon, knife and fork",Ana,12945

By enclosing the first field in quotation marks, it would say that there is a single thing and that the

comma within it should be ignored. Different programs and systems have different rules; this is called

a dialect in the language of the csv.reader function. The default dialect is "excel" and this will usually

work for Excel files. For others you can use Sniffer.

The .read() method reads the entire contents of the file.

sniffer has a sniff method, which takes as argument the contents of a file (or at least a chunk big

enough to show how the file is formatted). The sniffer will guess what style the file is written in.

Then call csv.reader and give it the dialect along with the file. To make it easier to see, let's do it all

again.

1.8.2 DictReader

Suppose you had a file like this with wheels:

bike,distance,height,owner,year of purchase

Cube,5031,159,Janez,2017

Stevens,3819,1284,Ana,2012

Focus,3823,1921,Benjamin,2019

Unlike the previous files (and all the ones we have seen so far), this file has column names in the first

line. Therefore, instead of using a reader, it can be read with DictReader, which returns not a list but a

dictionary for each line, the keys of which are the column names. That's great.

As your files will often have a header, you will mainly use DictReader. This is practical, as dictionaries

are easier to work with than lists. Column names such as bike, owner and year of purchase are easier

to read than indexes 0, 3 and 4, and you won't make any mistakes when counting.

1.9 Statistics module

We will not discuss the statistics module too much. Personally, I never use it, because all this and

much more can be found in the numpy library modules, which also make it much easier to do much

more - but only if you know how. Python only has this module because numpy is a huge extra library

that you don't get with Python. (On the other hand, any serious Python user will install numpy.)

In short: statistics contains mean, median, mode, stdev and a bunch of other functions that can

calculate mean, median, mode, standard deviation and a bunch of other things for a given list.

He also knows about correlation and linear regression, but that's where it stops. Anyone who wants

to know more should consult the statistics module documentation.

1.10 Time, datetime, calendar modules

In your work you will probably often come across dates, times and so on. The functions related to

these are spread over three modules. It's all a mess. It is not so much Python's fault as, above all, the

fact that it refers to various standardised functions of different systems.

Some things work differently on Windows than they do on macOS or Linux, and then we get what we

get.

1.10.1 time

The time module (documentation) deals with the current time and other times and the conversion

between them.

The main function is time, which returns the number of seconds elapsed since 1 January 1970

according to Greenwich.

This is useful if you want to measure the (real) time elapsed between two events in the programme.

But ... well, not really. There are better functions for that.

For our purposes, gmtime and localtime are perhaps more useful.

You both return a miracle of the same type. It is called struct_time. Both the name and the format

come from the C language.

The name is not important, what matters are the names of the fields containing the current year,

month and day, hour, minutes and seconds, and the day of the week and year, with a field to tell

whether it is the time of year (1) or not (0).

The module also contains a date formatting function, which can be used as follows:

It is given a string containing characters such as %d, %m, %Y and so on, and a time. The function will

replace these characters with the corresponding values.

The full list of possible characters can be found at

https://docs.python.org/3/library/time.html#time.strftime.

This one didn't turn out so well. Apparently he didn't choose Slovenian. He could have been prepared

for this.

Now it will be.

We've also used the locale module here, which contains everything related to the different usages of

different languages - from the names of days and months, to whether they use a decimal point or a

period, to how currencies are written.

1.10.2 datetime

The core of the datetime (documentation) module is date manipulation. It allows you to subtract two

times and find out how many years, months, days, hours, minutes, seconds there are between them.

Or you can create a timedelta object, which will be, say, two months and three days, and add that to

a date. More importantly: the module can convert times from strings.

First, a strange import: we import a "function" datetime from the datetime module. (It's not really a

function, it's a type, but there's no time for that right now. :)

The strptime function requires a string containing the date, and a string telling the format of the

string - again in letters, as we saw in strftime. Parts of the result are again accessed by field names.

https://docs.python.org/3/library/time.html#time.strftime

This will be able to break up the date for you in any format you like. Here's how we do it with the

Americans

And so it is with the Americans, who are writing a year without centuries.

1.10.3 calendar

The last of the three time-related modules is the simple calendar (documentation). This contains

things like names of days, months and so on.

1.11 The urllib module

(In progress. To be added. Sooner or later. Maybe. Probably.)

