
02 files, loops, conditions
0.1 First loop

Let's repeat, let's write the program again, giving it the temperature in Celsius degrees and letting us

out the temperature in Fahrenheit.

Temperatura: 25

25 C je 77.0 F

Vnos = entry

We divided it into two parts and put a blank line between them. The first is short - just a line to

provide the data for the second part, which calculates and prints.

Now let's set our sights higher: in the file "temperature.txt" we have the predicted temperature

datain Radovljica for the week of 2 to 6 October 2023. The contents of the file are as follows:

24

18

15

16

18

Our task is to run a programme for each of these temperatures. It's as if we were entering them by

hand, only it will read them from a file. So, we would like to have a printout like this:

24 C je 75.2 F

18 C je 64.4 F

15 C je 59.0 F

16 C je 60.8 F

18 C je 64.4 F

We need to modify the program to repeat the second part for each temperature in the file. This is

done by:

24 C je 75.2 F

18 C je 64.4 F

15 C je 59.0 F

16 C je 60.8 F

18 C je 64.4 F

13 C je 55.4 F

15 C je 59.0 F

15 C je 59.0 F

10 C je 50.0 F

12 C je 53.6 F

20 C je 68.0 F

10 C je 50.0 F

15 C je 59.0 F

The last three lines are as before, but the first is new. open is a function. (How do we know? By

calling it. Just as we wrote the braces for input, int and print, here we write them for open, so open is

a function. If a name is followed by parentheses, it's always means a function call.) As an argument to

it, we obviously give it a filename. What does it do, what does it return?

The open function "opens" the file. If it were Word, Excel or, uh, VLC, for example, this would mean, it

shows text, opens a spreadsheet, starts playing a movie. But in programming languages, the functions

open and similar functions (which may have different names in different programming languages)

simply search (or I know, it's still a bit abstract, but it will stay that way. The open function returns

something, some thing, some object that represents the file. It returns a "box", which is not, as we

are used to now, int or float or str but something fourth, a file. (Anyone who expects to be told the

name of a data type, for example file, is waiting in vain. The name of the data type is strange, and it

depends on the type of file. Besides, this name is never we don't need it. So never that your lecturer

for Programming 1 doesn't even know how to use this type - or variants of these types - are really

called.)

Here, we learn about the operations that can be performed on files. While strings and numbers can

be added, multiplied, and divided, files work differently. The only operation that can be done with

files is querying them, which returns consecutive lines from the file. To query a file in Python, we use

the syntax "for input in open("temperature.txt"):". The first line of the file is requested and its

contents are stored in a variable called "input". The lines of code that are written below the "for"

statement and indented will then be executed. After executing these lines, the next line from the file

will be requested, assigned to a variable called "entry", and the lines will be executed again. This

process continues until the end of the file is reached.

In computer science, a loop is a repetitive structure that allows for the execution of a specific set of

instructions multiple times. In this context, the term "loop" refers to a repetition. A loop consists of a

header, which includes an input line and a condition that determines when the loop will end. The

body of the loop contains the instructions that are repeated. Python has two types of loops, one of

which is the for loop. The header of a for loop includes a variable name and an iterable object. The

body of the loop follows on the next lines and must be indented. If necessary, additional code can be

written after the loop without indentation. Let’s see:

= “Yes, my dears, it's going to be so warm next week in Radoljca!”

24 C je 75.2 F

18 C je 64.4 F

15 C je 59.0 F

16 C je 60.8 F

18 C je 64.4 F

13 C je 55.4 F

15 C je 59.0 F

15 C je 59.0 F

10 C je 50.0 F

12 C je 53.6 F

20 C je 68.0 F

10 C je 50.0 F

15 C je 59.0 F

Da, dragi moji, tako toplo bo prihodnji teden v Radoljci!

24 C je 75.2 F
18 C je 64.4 F
15 C je 59.0 F
16 C je 60.8 F
18 C je 64.4 F
13 C je 55.4 F
15 C je 59.0 F
15 C je 59.0 F
10 C je 50.0 F
12 C je 53.6 F
20 C je 68.0 F
10 C je 50.0 F
15 C je 59.0 F

Da, dragi moji, tako toplo bo prihodnji teden v Radoljci!

Here: the last print-command is in the zanka/loop as well:

24 C je 75.2 F
Da, dragi moji, tako toplo bo prihodnji teden v Radoljci
18 C je 64.4 F
Da, dragi moji, tako toplo bo prihodnji teden v Radoljci
15 C je 59.0 F
Da, dragi moji, tako toplo bo prihodnji teden v Radoljci

…

For delays in Python it is recommended to use
spaces. Furthermore, in any case, the indentation must be consistent within a block.

0.2 Account loop
For this purpose, we will be calculating Celsius to Fahrenheit. The idea is: in each step of the loop, we
need the variable sum of the variable, which is obtained by adding the value from the line to the
previous value of sum file. Python only complains that it doesn't know the variable named sum.
This happens because in the very first round we try to add to sum before that variable exists.
This is easy to solve: before the loop, we set it to 0. Then we'll be adding nicely.

But we know this. sum is int, input is text, p. input will need to be converted to a number.
(By the way, let's rename it to something more clever, say temperature or line.)

We, of course, need an average. If we know that a file contains exactly 5 temperatures,
we can of course print out sum / 5. But if we want to be more general, we'll keep counting as we add
up days.

0.3 Conditional sentences
let's list all temperatures greater than 17. The task we have set ourselves is to print out only those of these
numbers that are greater than 17. should therefore not always happen, but only if temp > 17.

Just as for asks Python to repeat something, if asks Python to do something only if it is
a certain condition is met. We call for (and later while) a loop. Some people call if a loop too, but only beginner
students. An if (together with what follows it) is a conditional statement. Like a for line, an if line must be
terminated by a colon and followed by one or more or more indented lines. Since the if itself is indented by
four spaces (because it is inside the for), it will print, which is inside if, is indented by eight spaces.
An interlude for socially- or even linguistically-oriented readers. When I wrote the above sentence, I initially
forgot the last comma, the one before "offset". These spacing and indentation are practically the same
thing as there are subordinate clauses in a language, which can also be subordinate, like this one, to other
to other subordinate clauses, isn't that so? These lags and digressions are practically the same thing,
as subordinate clauses are in language, which can also be subordinate, like, say, this one, other subordinate
clauses, isn't that so?

In Slovene, the beginning and the end of a subordinate clause are indicated by a comma (which, unfortunately,
doesn't tell us whether we're going inside the subordinate clause). or out), but in Python we do it with trailing
spaces and, for clarity, a colon at the trailing space.)

And if you just want to count how many warm days there will be? In the case of this data, there are three; so
we just want to 3, not individual temperatures. In this case, we replace the print with a count.

That doesn't sound very nice. Let's set a different goal here:
We want to say that there will be 3 out of 5 warm days.
To do this, we need to count all the days in addition to the warm days. We already know how to do that.

Do we see any deviations? The line warm = warm + 1 is inside the if, so it is executed only for those lines
files that contain temperatures greater than 17 The line days = days + 1 is not inside the if, but it is
inside for. Therefore, it is executed for every line of the file. If it were to be moved further, out of the loop, it
it would be executed only once.

0.4 Otherwise
Next task: someone wants to know if the temperature will be at least 20 degrees sometime next week.
So we would like a program that says either "Yes, there will be a warm day next week". or "No,
next week will be one of gloom."
We will soon learn a more proper way of solving this problem, but we are up to it even with what
we know so far. Let's simply count how many days the temperature will be at least 20 degrees and then check,
if there are more than 0 days.

The programme is working, but it will only be running for about a week, maybe two. That is, until the ARSO
reports that "temperatures will be relatively high for this time of year". As soon as they drop below 20, the
programme will not work. output anything.

Conditional sentences are sometimes used to tell something to happen only in a certain case. Often, we use
them we're setting up two scenarios: if the condition is true, do one thing, otherwise do something else. This is
already the case: if a day is above_20, it should say there will be warm days, otherwise it should say there will
not be warm days. In all normal programming languages, if is allowed to be followed by else.

Unlike if, else has no condition. The condition is already written above, in the if. The lines that follow
else will be executed when the condition is false.
If we have more than two nice days, we will say that the week will be very nice and it is a pity that you cannot
take leave. Otherwise, if there is only one nice day, let us warn that there will be only one nice day and that it is
worth taking advantage of it. Otherwise
we groan.

It works, but do we see the problem? Let's temporarily lower the temperature, instead of > 19, let's check > 10.

The second if checks if we have a warm day. But it should only do this if it hasn't just been printed out before,
that there will be (at least) two. The correct (er, more correct) way is:

Instead of all these if,else’s we can just write “elif”:

To check that it is working, raise the desired temperature back to 20 degrees.

0.5 Other comparison operators
So we have the <, <=, > and >= operators to compare.

That is better, but in the second condition we would actually like to ask whether we have one such day. Maybe
So?:

Python (and most others) uses a double equals sign for comparison!

0.6 Comparing strings

With the <, <=, >, >=, == and != operators, we can also compare strings. It compares strings in much the same
way as one would expect: alphabetically. But only quite because the capital letters come before the lower case
letters in the alphabet. Because the numbers come before the letters. Because
the quotation mark comes before the number. The curly brackets are after the letters, and the square brackets
are "alphabetically" between the capital and the lower case letters. The alphabets are ... somewhere, but
definitely after the letters.

0.7 The classics: maximum and minimum

Let's write a program that prints the maximum temperature. Imagine someone reading these numbers to us.
What would you repeat in your head? The maximum that we we've heard so far. Each successive number we
hear, we compare it to the highest ever and if it is higher than the highest, we remember it (and forget the
previous one). Sort of:

What has happened to us has happened: we cannot use the variable najvisja_doslej (“highest_so far”) inside a
loop unless we set it before the loop. We will also rename it to “highest”/”najvisja”. Hm, what value are we
going to give it before the loop? For now, with our knowledge, it should be something like
absurdly low, so the next temperature will be higher. At least as far as temperatures are concerned, we are
safe: physicists teach us that the temperature cannot be lower than 0 K, so -274 will be a safe initial
the safe value.

The minimum predicted temperature is calculated in the same way, but in reverse. However, the initial value
can be millions. We will learn to do it more correctly some other time. So, to avoid repeating essentially the
same program, let's try something more difficult: in addition to the lowest temperature, we are also interested
in the sequence number of the day with that temperature. Again, think about how we would do this if
someone was telling us to read the numbers. In addition to the lowest number, we would have to remember
two more numbers: the sequential number of the current day (we already know this: remember
how we counted the days when we worked out how many days out of which it would be warm), and we need
to remember at the same time as the lowest number, we must remember the number of the current day at
that time.

0.8 Observing sequences
Three old fortune-tellers put their heads together and predicted the December temperatures. With the help of
their grandson they typed them into a file called "december.txt":
54

-1
-6
-8
25
-6
-8
-12
-15
67
-20
23

New exercise: write a program that tells what the (expected) longes sequence of days is when the temperature
is below zero. We will have to remember two things: how long the current sequence of days with negative
temperature is and how long the longest sequence is. Every the loop gets a number and checks whether its
negative or not. If it is not, then we “reset” the length of the sequence to 0. It it is negative, we add 1 to the
length of the sequence and check whether we have accidentally obtained a sequence longer than the longest.

The important thing here is “else”: it is aligned with the first if. The length of the sequence is reset when the
temperature is not negative. If we had written this instead:

We would reset the length of the (current) sequence when it did not exceed the length of the longest one, but
not, when a non-negative temperature is encountered. However, since the extended sequence would always
exceed the length of the longest one, this program essentially counts how many days with negative
temperature we have.

0.9 Skill: remembering the previous one
For the last exercise, let's write a program that prints the maximum temperature drop over two consecutive
days. In the case of the data prepared by the fortune-tellers, this is 27, because the temperature will one day
(supposedly) will drop from 7 to -20. The loop will have to remember the biggest drop. But in addition every
new number we have, has to be subtracted from the one we had before.

Well, yes, sort of, but as I said, we need to know yesterday's temperature as well as today's.
How do we get to it? Let's remember it at the end of the loop.

the last line of the loop happens just before the next round of the loop, before the next line is read. Which
is now today will be the next moment yesterday. The program still does not run because the variable
vtomorrow does not yet exist in the first round of the loop. How to to solve this problem, we'll find out in a
lecture or two (to be precise: in a lecture and in two and in three ... there will be a whole bunch of different
ways). Today, let's solve it handily: to begin with, let's say that yesterday's temperature was -274.

In the hope that fortune-tellers know something about physics, they will not predict the temperature for the
first day, the lower than absolute zero. The temperature on the first day will therefore certainly be more than -

274, so the "drop" will be negative (because the temperature will rise, not fall), so it will not be less than 0, the
if condition will not be met and that's it, what will happen in the first round of the loop is that the temperature
of the first day will be stored in today. See we have won.

0.9.1 Appendix: subtracting negative numbers
Students like to be puzzled by this: what if the temperature was -2 yesterday and -5 today? Will the fall be
calculated correctly? Of course. -5 - (-2) = -5 + 2 = -3, as it should be.

