09- Data analysis and drawing

Now let's bite into the bigger bite: weather data.

We'll use a data file in this format:

print(open("vremenske-postaje.txt").read()[:300])

Murska Sobota,1961-01-01,-1,-4
Murska Sobota,1961-61-82,1,-1
Murska Sobota,1961-81-83,7,-4
Murska Sobota,1961-01-04,7,3
Murska Sobota,1961-01-85,4,-0@
Murska Sobota,1961-01-86,2,-2
Murska Sobota,1961-01-87,5,0
Murska Sobota,1961-01-88,5,-1
Murska Sobota,1961-01-09,4,-1
Murska Sobota,1961-01-10,4,-1
M

Read with np.genfromtxt; tell it to delimit the data with commas (delimited=",") and to read it as
strings of up to 20 characters (dtype="U20").

import numpy as np

podatki = np.genfromtxt(open("/Users/janez/Downloads/vremenske-postaje.txt"), delimiter=",", dtype="U20")

podatki[:5
array([['Murska Sobota', '1961-e1-€1', '-1', '-4'],
['Murska Sobota', "1961-81-82°', '1', '-1'],
['Murska Sobota', "1961-e1-e3', '7', '-4'],
['Murska Sobota', "1961-e1-e4', '7', '3'],
['Murska Sobota', '1961-01-85', '4', '-0']], dtype='<U28"')

As in the stock exchange minutes, we turn the columns into rows and store them in separate
variables.

kraji, datumi, tmax, tmin = podatki.T

If we are only interested in data for Ljubljana, let's build a mask.
maska = kraji == "Ljubljana"
For simplicity, let's now just throw out the data for the other places.

datumi = datumi/ maska
tmax = tmax/maska
tmin = tmin[maska

Ah, that's so annoying. It would be simpler to apply a mask to the whole table and then unpack.
Repeat the exercise.

podatki = np.genfromtxt(open("/Users/janez/Downloads/vremenske-postaje.txt"), delimiter=",", dtype="U20")
maska = podatki[:, @] == "Ljubljana"
_, datumi, tmax, tmin = podatki[maska].T

tmax
tmin

tmax.astype(float)
tmin.astype(float)

We don't care about the location (it's always Ljubljana anyway), so we just saved it in _.

Now comes the fun part: we'd like a table with the (maximum) temperatures for each day. The table
would have three indices: year, month and day. So temp[71, 0, 25] would be the temperature on 26
January 71. Obviously, this will be a three-dimensional table. Let's prepare it: at the beginning it
should contain only np.nan, not a number.

temp = np.full((124, 12, 31), np.nan)
Now it needs to be filled with data. The date column will need to be unpacked.

datumi

array(['1900-01-81', '1900-81-82', '1900-81-83', ..., '2023-106-18',
'2023-10-11", '2023-18-13'], dtype='<U20")

At first glance: you want the whole table (all strings), but only the first four characters for each.

datumi[:, :4

IndexError Traceback (most recent call last)
Cell In[9], line 1
----> 1 datumi[:, :4]

IndexError: too many indices for array: array is 1l-dimensional, but 2 were indexed

No, this table is one-dimensional and does not allow a second index. Numpy functions for working
with array tables are in np.char. The view stops at np.char.split, but this doesn't make us happy,
because it returns a table of lists, and we can't help ourselves with them.

np.char.split(datumi, "-")

array([list(['19e8', '81', '81']), list(['1%ee', 'e1', '@2']),
list(['19e8', '81', '83']), ..., list(['2823', '18', '18']),
list(['2023', '1@', '11']), list(['2e23', '1@', '13'1)],
dtype=object)

Partition saves us. (There may be something else, simpler. This part of numpy is not my strong area.)

np.char.partition(datumi, "-")

array([['1%ee', '-', 'el-e1'],
['19@@', '-', '01-082'],
['19@@', '-', '01-083'],
ey
['2023', '-', '1e-10'],
['2023", '-', '1e-11'],
['2023"', '-', '1@-13']], dtype='<U5")

Python arrays also have a partition method, and the result is the same: three arrays - everything
before the character you're partitioning by, then that character, and then everything after it. Here, in
numpy, instead of three strings, we get three columns of strings. We invert, we break into rows. We
divide the last one again.

letO, _» mes_dan = np_char\'paptition(datumi, "'")-T
mes, _, dan = np_char_paptition(mes_dan, ||_u>‘.|.

leto = leto.astype(int)
mes = mes.astype(int)
dan = dan.astype(int)

This gives us three lists containing all the years, months and dates from all the lines in the file. The
corresponding temperatures are in tmax, also by line. And now we can overwrite them in the temp
table.

temp[leto - 190@, mes - 1, dan - 1] = tmax

We subtract 1900 from the year, and 1 from each month and day, because for some reason people
don't count years from 1900 onwards, and months and days from 0.

Here we have it: the maximum daily temperature on 26 January 1971 was

temp[71, 6, 25

2.0

What have been the average monthly temperatures since 2019?

We take the temp[119:] (because we subtracted 1900 years) and calculate the nanmean on axis 2.
Axis 2 is the days of the month - we want to calculate the average over them.

np.nanmean(temp[119:], axis=2)

/var/folders/2y/4j70c4q56811j41b6glrofkeeeeegn/T/ipykernel_56181/117835579.py:1: RuntimeWarning: Mean of empty slice
np.nanmean(temp[119:], axis=2)

array([[4. , 11.32142857, 15.16129832, 16.73333333, 17.70967742,
29.4 ., 28.93548387, 28.32258065, 22.3 , 18.67741935,
11.16666667, 7.06451613],

[6.74193548, 11.75862069, 12.77419355, 20.1 , 20.74193548,
24.86666667, 27.93548387, 28.16129032, 23.43333333, 16.61298323,
9.2 . 4.48387097],

[4.99677419, 10.67857143, 13.41935484, 14.8 , 19.32258065,
29.23333333, 29.06451613, 27.35483871, 24.3 , 14.83870968,

8.63333333, 3.4516129],
[5.4516129 , 16.39285714, 13.32258@65, 16.13333333, 24.290832258,
29.86666667, 30.90322581, 29.22580645, 21.53333333, 20.51612903,
11.23333333, 6.29032258],

[6.74193548, 9.07142857, 13.90322581, 15.9 , 208.5483871 ,
26.76666667, 28.83870968, 27.93548387, 26.94444444, 23.63636364,
nan, nan]])

The above warning refers to the last two items: we don't have data for November and December
2023 (I picked up a 7 GB file with data for the whole world in October 2023), so nanmean has
returned nan there.

What about average monthly temperatures in general?

In this case we average over years and days, only the months need to remain. So the axes will be 0
and 2.

monthly = np.nanmean(temp, axis=(©, 2))

monthly_min = np.nanmin(temp, axis=(©, 2))
monthly_max = np.nanmax(temp, axis=(©, 2))

monthly

array([2.38911129, 5.54746462, 10.78914687, 15.72681704, 20.73475936,
24.4570011 , 26.72576326, 26.07096774, 21.48240223, 15.41874323,
8.40751121, 3.43990188])

We know better.

import locale
import calendar

locale.setlocale(locale.LC_ALL, "sl_SI")

for month, t in zip(calendar.month_name[1:], monthly):
print(f"{month.title():>10}: {t:4.1f} {'*' * int(t)}")

Januar: 2.4 **
Februar: 5.5 #*¥*#**
Marec: 1@.8 *#xF&ixkdx
Apr.il: 15_7 EEE+ 2+ 2+ 35+ + 3
Maj: 29_7 sk ok s sk ok sk ok sk sk sk sk e sk Sk ke sk ek ok ok
Junij: 24.5 ok 2k 3 3k ok e R ok oK i R ok ke ok e ki i ok ik ke
Julij: 26_7 EEE LS EE LS LS LSS E LTS 3
AVgUSt: 26_1 EEEEEEEEEEEEEELEEEEEE EL L T
September: 21.5 o 3 3 3k ok e ok ok Dk i Rl K ik e e K kK
Oktober: 15_4 sk 3k s Sk s s R ok Bk o ol ok sk ok ok
November: 8,4 ##***x%x
December: 3.4 ***

OK, enough fiddling: isn't it time we drew a real graph of temperatures?

Drawing graphs

There are, of course, several libraries for drawing graphs, which work in different environments. For
our purposes, the simplest one is the one that gets along well with Jupyter Notebook. (Incidentally, |
must admit that | don't draw in Notebook myself, but elsewhere with other libraries, so I'm not a
particular expert on “matplotlib'.)

Install it with “pip install matplotlib. If we have several Pythons and we're not good at this, and we
don't know where we have “pip” and so on, it's easiest to just install it in Jupiter. We're going to use it
inside Jupyter anyway, so there's nothing wrong if it might only be installed in the environment we're
using for Jupyter.

In the cell you write

%pip install matplotlib

and execute it, and it will. If you don't have matplot yet, you will then need to restart Python using
Kernel/Restart.

Now import “pyplot’ from the ‘matplotlib® module under the name “plt” (to reduce typing).
import matplotlib.pyplot as plt

One last thing:

%matplotlib inline

These are the magic words that tell matplotlib to display the images in the notebook. At least one
alternative that should probably work is %matplotlib gt: the graphs will be in a separate window.
inline is more practical and, at least for me, seems to be the default.

Then open the matplotlib web page and choose a graph type. For temperatures, probably the most
suitable will be bars, [https://matplotlib.org/stable/plot_types/basic/bar.html#sphx-glr-plot-types-
basic-bar-py].

plt.bar(calendar.month abbr[1:], monthly)

<BarContainer object of 12 artists>»

jan feb mar apr maj jun jul avg sep okt nov dec

Since | know that nobody will ask whether this graph can also be drawn horizontally, because that is
stupid, | will do it on my own initiative.

plt.barh(calendar.month _abbr[1:], monthly)

<BarContainer object of 12 artists>»

avg
jul

jun

apr
mar
feb

jan

To make it look a little less awkward, let's reverse the ‘y" axis.

plt.axes().invert yaxis()
plt.barh(calendar.month_abbr[1:], monthly)

<BarContainer object of 12 artists>

jan
feb
mar

apr

jun
Jul

avg

L 1 T L 1 T

0 5 10 15 20 25

plt.axes()?! A person who is not familiar with matplotlib would naturally think that these are the axes

of a graph. In fact, the axes are what "draw" the graph. The very first thing we did is actually just a
shorthand for

ax = plt.axes()
ax.bar(calendar.month_abbr[1:], monthly)

<BarContainer object of 12 artists>

jan feb mar apr maj jun jul avg sep okt nov dec

Let's not go further in that direction - at least not until we have to. Let's look at this instead: if we
want to draw a curve instead of columns, we call

plt.plot(calendar.month_abbr[1:], monthly)

[35]:

[<matplotlib.lines.Line2D at @x114a53e90>]

251

20 A

15 A

10 ~

jan feb mar apr maj jun jul avg sep okt nov dec
But no one is stopping us from drawing both.
plt.figure(figsize=(13, 4), dpi=96)

ax = plt.subplot(1, 2, 1)
ax.bar(calendar.month_abbr[1:], monthly, alpha=0.2)

ax = plt.subplot(122)
ax.plot(calendar.month_abbr[1:], monthly)

[<matplotlib.lines.Line2D at @x126d3bf5e>]

251 251

204 20

154 15

10 104

] T
jan feb mar apr maj jun jul avg sep okt nov dec jan feb mar apr maj jun jul avg sep okt nov dec

Oh, um, no, | didn't mean that ... | meant the same picture. But, anyway, while we're here - what is
it?!

| used plt.figure(figsize=(13, 4), dpi=96) to say that | wanted a 13x4 inch figure (because inches, i.e.
2.54 centimetres, is the most standard unit of length, ever since all units switched to the decimal

system, in Europe, say, sometime around the time of the French Revolution), and that | wanted a
resolution of 96 pixels per inch. In short, an image of

13 * 96, 4 * 96

pixels (pixels, in local terms). Why not give the resolution in pixels? Why in inches? If not
centimetres? It is one thing what happens when we save the image. If the program we load it into is
anything clever, it will keep those dimensions. The image will be large

13 * 2.54, 4 * 2.54

centimetres. Second, the font size is given in the units we know from office software, points. As you
may or may not know, 1 pt equals 1/72 of an inch; 12 pt is therefore 12/72 of an inch, so 12/72 * 2.45
cm, that is, just under half an inch.

12 / 72 * 2.54
Since the font is given in inches, we need to give the resolution of the image in dots per inch to
determine how many dots (say on the screen) high the letter is.
We continued with
ax = plt.subplot(1, 2, 1)

ax.bar(calendar.month_abbr[1:], monthly, alpha=0.2)

ax = plt.subplot(122)

ax.plot(calendar.month_abbr[1:], monthly)

axes will be the "axes" that draw the graphs. With plt.subplot(1, 2, 1) we say that we would like to
place the images in a grid with 1 row and 2 columns, and that we would now like to talk about the
first of the images in this grid. Therefore 1, 2, 1. Then we draw the columns in this image. alpha=0.2
makes the columns a bit more transparent, brighter.

Then we say that we would draw the second image in this grid with 1 row 2 columns. Because we are
lazy, we write 122 without commas. And then we draw the second picture.

But, as | said, | would like both in the same picture. This is simpler, of course. :)

plt.bar(calendar.month _abbr[1:], monthly, alpha=e.2)
plt.plot(calendar.month_abbr[1:], monthly)

[<matplotlib.lines.Line2D at @x126e73f50>]

25 A

20 A

15 ~

10 4

0 T I T T U Ll U Ll T T I T
jan feb mar apr maj jun jul avg sep okt nov dec

Why would anyone want that? | don't know. This picture shows the same thing twice. Edward Tufte
would be turning in his grave if (a) he saw it and (b) he were no longer alive, but fortunately he is.
(And if you ever get your hands on one of his books, just flick through it!)

It would be more appropriate to plot the maximum and minimum monthly temperature and the
average. The graph we need is called fill_between and in addition to the x-axis data, we give two y-
axis data - the upper and lower bounds. Over this, of course, we plot the average.

plt.fill between(calendar.month_abbr[1:], monthly min, monthly max, alpha=0.2)
plt.plot(calendar.month abbr[1:], monthly)

[<matplotlib.lines.Line2D at ex126f47die>]

4,0_

30 4

20

10 +

—10 A

jan feb mar apr maj jun jul avg sep okt nov dec

If you want nicer pictures, install ‘seaborn’: do *%pip install seaborn’, restart Python (Kernel /
Restart), import it and set its theme.

import seaborn

seaborn.set theme()

plt.fill between(calendar.month_abbr[1:], monthly min, monthly max, alpha=0.2)
plt.plot(calendar.month abbr[1:], monthly)

[<matplotlib.lines.Line2D at ©x136703790>]

40

jan feb mar apr maj jun jul avg sep okt nov dec

Save? Let's go! In png? Or svg? Maybe pfd? Right, pdf.

plt.fill between(calendar.month _abbr[1:], monthly min, monthly max, alpha=6.2
plt.plot(calendar.month_abbr[1:], monthly)
plt.savefig("mesecna-povprecja.pdf")

40

10

-10

jan feb mar apr maj jun jul avg sep okt nov dec

Different formats will work; at least .png will work everywhere, but the others depend on how your
Jupyter is put together.

Would you add the average monthly temperatures for the last ten years to this graph?

months = calendar.month_abbr[1:]

plt.fill between(months, monthly min, monthly max, alpha=8.2)
for year in range(118, 123):

plt.plot(months, np.nanmean(temp|[year], axis=1), linewidth=1, alpha=6.7)
plt.plot(months, monthly, linewidth=3, color="blue")

[<matplotlib.lines.Line2D at ex12f7e3@50>]

10

10

jan feb mar apr maj jun jul avg sep okt nov dec

We are playing a little game: we have narrowed and lightened the lines for individual years, thickened
the average and explicitly asked for it to be blue.

Not very convincing. Perhaps we would have preferred to replace the lines with circles?

names = calendar.month_abbr[1:]

plt.fill_between(names, monthly_min, monthly_max, alpha=0.2)
plt.plot(names, monthly, linewidth=3)
for year in range(118, 123):
plt.plot(names, np.nanmean(temp[year], axis=1),
linestyle="none', marker="o0", markerfacecolor="none"

10

-10

jan feb mar apr maj jun jul avg sep okt nov dec

If we are interested in looking at something by month - maybe a moustache?

Let's make a list of tables: each element will contain all the temperatures measured in that month, in
any year.

months = []

for month in range(12):
X = temp[:, month, :].flatten()
months.append(x[~np.ishan(x)])

With temp[:, month, :] we say that for the given month we would like all "rows" and "columns" - all
years and days. The table will be two-dimensional - the first index will be the year, the second the day.
With flatten, we push it into a single dimension. With x[~np.isnan(x)], we fix only those elements that
are not nan - that is, only known measurements.

fig = plt.boxplot(months, labels=names)

since the function returns a bunch of things, we store them in “fig’ so they don't get printed out

10

giyle o

—1og§

jan feb mar apr ma] jun jul avg sep okt nov dec

(oo

A similar thing, violins, show distributions.

_ = plt.violinplot(months, showmeans=True)

10

How about this? Let's plot average monthly temperatures by decade.

plt.plot(np.arange(196@, 2024), np.nanmean(temp, axis=(1, 2)))

/var/folders/2y/4j70c4q56811j4lb6glrofkeeeeegn/T/ipykernel_69438/2795102103.py:1: RuntimeWarning: Mean of emp
ty slice
plt.plot(np.arange(1908, 2024), np.nanmean(temp, axis=(1, 2)))

[<matplotlib.lines.Line2D at @xl146c2bbde>]

25

15

10

2 <+ 6 8 10 12

But this is quite interesting: it shows that the temperature is rising over the years. Who would have
thought?

But here's how the average monthly temperature varies by year.

plt.plot(np.arange(1968, 2024), np.nanmean(temp, axis=(1, 2)))

/var/folders/2y/4j7@c4q56811j41b6glrefkeeeeegn/T/ipykernel_69438/2795102103.py:1: RuntimeWarning: Mean of emp
ty slice
plt.plot(np.arange(1960, 2624), np.nanmean(temp, axis=(1, 2)))

[<matplotlib.lines.Line2D at ©x146c2bbde>]

18
16
w W
12

10

1900 1920 1940 1960 1980 2000 2020

We will stop here. | hope that's enough for you to see that serious graphs are not drawn with Excel.
Matplotlib is probably the most serious graphing tool in science, next to R.

What we have seen here is nothing of the sort. We haven't scratched the surface yet. Take a walk
through the gallery and you will see that there is probably everything you will ever need. And next to
each image, there is a code that prints it out - a code that you can copy and adapt to your needs.

