10 Reading data in standard formats

Until now, we have always read data from files, and these have almost always been tabular - data in
rows and values in columns, separated by commas or -- exceptionally and usually just for practice --
something else.

Not always so. Data can also be written in other formats. Sometimes for no particular reason, but
often because the data will be structured: in csv we can only write tables -- rows and columns -- but
not more complex, say hierarchical data. A contact list is a list of people, each person can contain
several addresses, phone numbers and email addresses, all of them further characterised by whether
they are work, home or other, various notes and attachments can be added... It would be
cumbersome to record such data in tabular form. We therefore use other formats. Fortunately, there
are only a few and Python is well equipped to read them all.

1. Reading data from the web

As we will often get our data online, not in ready-made files, let's start by learning how to read data
from a web page. More specifically, from a web resource that is not really a web page for humans to
read, but for computers to take data from. To get started, we will read the NLB course book, which
can be obtained from https://www.nlb.si/services/tecajnica/?type=companies&format=csv.

Let's copy the URL into a browser, have a look.

Num Date Bank Type NCu CCu Buy Sell

001 20231227 NLB_ companies__ 840 USD 0001,111300000 0001,095000000
001 20231227 NLB_ companies__ 826 GBP 0000,873800000 0000,860800000
001 20231227 NLB_ companies__ 756 CHF 0000,951700000 0000,933700000
001 20231227 NLB_ companies__ 348 HUF 0383,700000000 0379,700000000
001 20231227 NLB_ companies__ 941 RSD 0119,470000000 0114,870000000
001 20231227 NLB_ companies__ 977 BAM 0001,968000000 0001,947000000
001 20231227 NLB_ companies__ 807 MKD 0062,300000000 0060,500000000
001 20231227 NLB_ companies__ 203 CZK 0024,760000000 0024,420000000
001 20231227 NLB_ companies__ 985 PLN 0004,354000000 0004,314000000
001 20231227 NLB_ companies__ 975 BGN 0001,967000000 0001,937000000
001 20231227 NLB_ companies__ 578 NOK 0011,292000000 0011,152000000
001 20231227 NLB_ companies__ 752 SEK 0011,112000000 0010,972000000
001 20231227 NLB_ companies__ 208 DKK 0007,504900000 0007,404900000
001 20231227 NLB_ companies__ 036 AUD 0001,624200000 0001,610200000
001 20231227 NLB_ companies__ 124 CAD 0001,463400000 0001,449400000

001 20231227 NLB_ companies__ 392 JPY 0158,140000000 0156,740000000



001 20231227 NLB_ companies__ 946 RON 0005,009200000 0004,929200000
001 20231227 NLB_ companies__ 710 ZAR 0020,701400000 0020,301400000
001 20231227 NLB_ companies__ 344 HKD 0008,724100000 0008,524100000
001 20231227 NLB_ companies__ 949 TRY 0032,628500000 0032,208500000
001 20231227 NLB_ companies__ 484 MXN 0019,047700000 0018,447700000
001 20231227 NLB_ companies__ 554 NZD 0001,760100000 0001,728100000
001 20231227 NLB_ companies__ 376 ILS 0004,041500000 0003,951500000
001 20231227 NLB_ companies__ 784 AED 0004,076000000 0004,036000000

| chose this site precisely because it gives us a course book in a format we already know. The more
"official" Bank of Slovenia exchange rate book is in XML, which we still need to learn to read.

(You may notice, by the way, that the URL ends with ‘format=csv’. Obviously it could say something
else, say ‘format=xml’. To learn more about how you can change the URL to get different information,
see https://www.nlb.si/avtomatiziran-prevzem-tecajnic. NLB documents this; we will often have to
guess the URL format ourselves or use appropriate tools to discover it.)

Now our job is not to get this data into a browser, but to read it into a Python program. We need to
use the "urllib.request™ module; this contains the ‘urlopen” function, which behaves a bit like the
“open’ function we use to open files: just as ‘open’ returns an object representing a ready-to-read
file, so ‘urlopen’ returns something that is ready-to-read.

from urllib.request import urlopen

f = urlopen("https://www.nlb.si/services/tecajnica/?type=companies&format=csv")

Now, what kind of reader from “csv'?

If you open a file with "open’ (and don't ask it to open as a non-text, binary file), you will get strings
when you read the lines (or the whole file). The ‘urlopen’ function returns an object that returns
bytes instead of strings when it is read.

f.readline()

b'eel 20231227 NLB_ companies__ 84@ USD ©0e1,11132000e 0001,295000000 \r\n'

Do we see 'b" at the beginning, before the quotation marks? This tells us that what is between the

guotation marks is not a sequence of characters (a string) but a sequence of numbers. It shows the
numbers that can be shown as ASCII characters as characters, and replaces the rest with something
strange (which we thankfully don't see here).

We can see the difference between strings and bytes by trying to access individual elements.



s = f.readline()

b'ee1l 20231227 NLB_ companies__ 756 CHF €€00,951700000 ©e00,933700000 \r\n'

s[14]

76

If °s” were a string, we would get the 14th character "N". But this gives the fourteenth digit, 76 (which
happens to be a capital N in ASCII). We also see the difference when converting to a list.

print(list(s))

[48, 48, 49, 32, 58, 48, 50, 51, 49, 50, 5@, 55, 32, 78, 76, €6, 95, 32, 99, 111, 189, 112, 97, 1ie, 1@5, 1ei, 115, 95, 95, 32, 55, 53, 54, 32, 67, 72,

If °s™ were a string, you would get a list of letters, but this is a list of numbers.

Why? Both files and web data are just numbers. When reading files, Python assumes that the
numbers represent characters written in the default encoding for the operating system (UTF-8 on
decent systems (Linux, macQS), various local encodings on non-decent ones), or the encoding passed
to the "open’ function as an additional ‘encoding” argument. It therefore *decodes* all the numbers
it reads into strings.

When reading from the web, Python (or the object returned by ‘urlopen’) does not decode anything.
It just returns the numbers, and we have to decode them by calling the ‘decode” method ourselves.

s.decode("ascii"

‘@01 20231227 NLB_ companies__ 756 CHF @@ee,9517ee0ee eeee,3337eeeee \r\n'

This one was decoded in ASCII, as there are no alphabets in currency names (at least in this list). If we
were reading some other data, we might write

s.decode("utf-8")

'@@1 20231227 NLB_ companies__ 756 CHF @@ee,951700@0@ 00ee,9337eeeee \r\n'

Or even:

s.decode("utf-16")

"%00 C I FIRALER \ U205 FIIGER 7 \u205f[E Ej]~~E X Jf e B S BEA~~~3\ uBaed !



Whatever.

We'll just read the course book without the ‘csv’, because it won't be that complicated.

tecajnica = {}

t = urlopen("https://www.nlb.si/services/tecajnica/?type=companies&format=csv")
t.readline() # preskocimo prvo vrstico, ki vsebuje le imena stolpcev

for vrstica in t:
vrstica = vrstica.decode("ascii").split() # Pred klicem split z decode spremenimo bajte v ni:
valuta = vrstica[5] # stolpec z imenom valute
cena = vrstica[6] # stolpec z vrednostjo
tecajnica[valuta] = float(cena.replace(",", "."))

tecajnica

{'usD': 1.1113,
"GBP': ©.8738,
"CHF': ©.9517,
"HUF': 383.7,
'RSD': 119.47,
"BAM': 1.968,

'MKD': 62.3,

'CZK': 24.7s,
'PLN': 4.354,
"BGN': 1.967,

"NOK': 11.292,
'SEK': 11.112,

"mrwt. 7 caan

Since NLB publishes machine-readable data by using a decimal point instead of a period, we need to

use ‘replace(",", ".")" to put the data into machine-readable form before calling “float’.

2. JSON

One of the common formats in which we get data from the web is JSON. Because web pages are
usually programmed in JavaScript, they prefer to send data in JavaScript's own format

To read and write JSON, Python has a ‘json” module:

‘json.dump(obj, f)° dumps the value of "obj" in json format into the file f’,

‘json.load(f)" reads the (next) object from f’,

‘json.dumps(obj)’ returns a string containing the object “obj" in json format, and,

‘json.loads(s)" parses the object from the string s.

Let's see what our hinge would look like in it.

import json

json.dumps(tecajnica)

*{"UsD": 1.1113, "GBP": ©.8738, "CHF": ©.9517, "HUF": 383.7, "RSD": 119.47, "BAM": 1.968, "MKD": 62.3, "CZK": 24.76, "PLN": 4.354, "BGN": 1.967,

Yes. If you write a Python dictionary in json format, it looks exactly like a Python dictionary. :)

And the list?

"NOK"™ :



json.dumps(["Ana", "Berta"”, "Cilka"])

I["Ana", "Ber‘ta", "Cilka"]l

In short. If we store Python objects in json format, we write them exactly as we write them in Python.
Almost.

json.dumps(["Ana", True, False, None])

"["Ana", true, false, null]’

It writes them in Javascript: "True' and "False” are written in lowercase and “null” is written instead of
"None'.

Terks become lists.

json.dumps((1, 2, 3))

'[1, 2, 3]

He doesn't know about the masses.

json.dumps({"Ana", "Berta"})

X raises-exception + Tag

TypeError Traceback (most recent call last)
Cell In[33], line 1

----> 1 json.dumps({"Ana", "Berta"})

File ~/opt/miniconda3/envs/prog/lib/python3.11/json/__init__ .py:231, in dumps(o
226 # cached encoder

227 if (not skinkevs and ensure ascii and

Tuples and sets won't hurt us much: in Python, we don't usually store things in JSON (except when
we're doing it to send data somewhere, and the recipient will typically be JavaScript, which doesn't

like sets and terks anyway). We'll read the data in JSON, and it'll be whatever they put in there. We'll
be able to read everything.

Nevertheless: let's write the courseware in JSON. Let's also add a suitable motivation: if we were to
write a currency conversion program, it would read the data from the NLB every time we run it. It
might be more convenient to store it in a file. The program would then work by retrieving the data
from the web only the first time, and then reading it straight from the file.



import os
from urllib.request import urlopen
import json

if os.path.exists("tecajnica.json"):
tecajnica = json.load(open("tecajnica.json"))
else:
tecajnica = {}
t = urlopen("https://www.nlb.si/services/tecajnica/?type=companies&format=csv")
t.readline()
for vrstica in t:
vrstica = vrstica.decode("ascii").split()
valuta = vrstica[5]
cena = vrstica[6]
tecajnica[valuta] = float(cena.replace(",", "."))

json.dump(tecajnica, open("tecajnica.json", "w"))

Now let us consider that the hinge actually changes daily. When we read the file, we need to check
that it contains today's data. The easiest way to do this is to write the date in it.

(To avoid the file we have just written getting in the way in the next step, let's delete it here.)

if os.path.exists("tecajnica.json"):
os.remove("tecajnica.json")

import os

from urllib.request import urlopen
import json

from datetime import datetime

danes = datetime.today().strftime("%Y-%m-%d")

tecajnica = {}
if os.path.exists("tecajnica.json"):
print("Tedajnico berem iz datoteke.™)
datum, tecajnica = json.load(open("tecajnica.json"))
if datum != today:
tecajnica = {}

if not tecajnica:

print("Tedajnico berem s spleta.")

t = urlopen("https://www.nlb.si/services/tecajnica/?type=companies&format=csv")
t.readline()
for vrstica in t:

vrstica = vrstica.decode("ascii").split()

valuta = vrstica[5]

cena = vrstica[6]

"

tecajnica[valuta] = float(cena.replace(",", "."))

json.dump([danes, tecajnica], open("tecajnica.json", "w"))

,Tecajnico berem iz datoteke.”

The first time the top cell is run, it says it is reading from the web. On subsequent runs, it says it is
reading from a file. If we wait a day (or run one cell higher, the one that deletes the file), it will read
from the web again.

The file tecajnica.json looks like this.



["2023-12-27", {"USD": 1.1113, "GBP": ©.8738, "CHF": ©.9517, "HUF": 383.7, "RSD": 119.47, "BAM": 1.968,
"MKD": 62.3, "CZK": 24.76, "PLN": 4.354, "BGN": 1.967, "NOK": 11.292, "SEK": 11.112, "DKK": 7.5849,
"AUD": 1.6242, "CAD": 1.4634, "IPY": 158.14, "RON": 5.8092, "ZAR": 20.7014, "HKD": 8.7241, "TRY": 32.6285,
"MXN": 19.8477, "NZD": 1.7601, "ILS": 4.8415, "AED": 4.876}]

3. Pickle

Pickle is not a standard format. You won't find data written in it on the web. But it is useful if you
want to save any Python object (or several objects) to a file in a quick and easy way.

We use it in a similar way to json.

import pickle

pickle.dump(tecajnica, open("tecajnica.pickle", "wb"))

t = pickle.load(open("tecajnica.pickle”, "rb"))

print(t)

{'usD’: 1.1113, 'GBP': ©.8738, 'CHF': ©.9517, 'HUF': 383.7, 'RSD': 119.47, 'BAM': 1.968, 'MKD': 62.3, 'CZK': 24.76, 'PLN': 4.354, 'BGN': 1.967, 'NOK'

Pickle does not write to a text file, so it is not offered a file opened with ***open(name)” but rather
‘open(name, "wb")" or when reading ‘open(name, "rb") **. The second letter, "b", indicates that it is
a binary file.

Pickle can write anything. (Say. It is possible to define a new data type that Pickle doesn't understand,
but it takes almost no effort.) The problem with Pickle is that only Python knows this notation format
and, worse, the notation changes and a newer version of Python can compose a new format that is
not readable in older ones.

If we want to save something to read later - by ourselves, to ourselves - pickle is the simplest.
4. XML

JSON is designed to carry data. However, data that is made publicly available to be read by computers
will most often be in XML format.

For those who have ever seen HTML, XML, the *Extensible markup language*, will look familiar. Let's
start with hand-crafted XML that could be used to describe contact information. In the notes, we find
them in the file clovek.xml.

<oseba>
<ime>Janez</ime>
<priimek>Novak</priimek>
<starost>35<¢/starost>
<danRojstva»l. 1. 1971</danRojstva>
<krajRojstva>Vrhnika</krajRojstva>
<kontakti>
<telefon tip="domaci">+386 1 234 5678</telefon>
<telefon tip="sluzbeni">+386 1 876 5432</telefon>
<mail uraden="ne">janez.novak@gmail.com</mail>
<mail uraden="ne">janez.novak@hotmail.com</mail>
<mail uraden="da">janez.novak@fri.uni-1j.si</mail>
</kontakti>
</oseba>

As we can see, XML consists of a hierarchy of elements. A file always has one basic, root element -
here it is “person’. This is "opened" at the beginning, with “<person>" and closed at the end, with



‘</person>". In between are other elements, say ‘name’ (starting with ‘<name>" and ending with
‘</name>"), and ‘last name’, ‘age" and so on. Within the ‘contacts’ element, there are, if we so agree,
elements of the type “phone’ and ‘mail’, each of which may be repeated several times.

The ‘phone’ element may have the ‘type’ attribute, and the ‘mail’ element may have the “official’
attribute.

We can see how to format a thing by an example. There is a lot more that could be said about XML,
but here, for this subject, let us restrict ourselves to the basic idea. The details will be found
elsewhere by those who need them.

XML reading libraries work in two ways - this is true not only for Python but also in general. The first
type works by reading the file and informing us of the elements it encounters. This way of reading
takes up less memory, but is more complex to use. Here we will look at the simpler one, which works
by reading the whole file into a tree structure and then allowing us to search through it.

from xml.dom import minidom
kontakt = minidom.parse(open("xml/clovek-stisnjen.xml"))

kontakt

<xml.dom.minidom.Document at 8x1@9cce638>

For reasons that will be explained later, instead of clovek.xml we read clovek-compressed.xml, which
is identical to clovek.xml, except that we compressed everything into one line and deleted the spaces
between the elements.

The “contact’ variable now contains the document being read. It has a bunch of properties and
methods, but we'll only be interested in one: “getElementsByTagName'. This is how, say, we get all
the elements of “phone:

kontakt.getElementsByTagName("telefon")

[<DOM Element: telefon at @x1efdf23fe>, <DOM Element: telefon at &x1efdf2e38>]
Let's play with the first of them.

el = kontakt.getElementsByTagName("telefon")[8]
The “el’ element has brothers. The first is "nextSibling".

brat = el.nextSibling
brat

<DOM Element: telefon at exlefdfz2e3e>

She also has a brother.



brat.nextSibling

<DOM Element: mail at exleff9az2be>

The brother of the first phone is the second phone. The brother of the second phone is the first mail.
And so on.

An item also has a parent.

oce = el.parentNode
oce

<DOM Element: kontakti at exlefdf2g85e>

The father of the telephone is Edison. The father of the ‘phone' element is “contacts'.

The father has children - these are the "children" of the ‘contacts' element - telephones and mails.

oce.childNodes

[<DOM Element: telefon at exlefdf23fe>,
<DOM Element: telefon at @xlefdf2e3e>,
<DOM Element: mail at exleffSaz2be>,
<DOM Element: mail at @x1leff9855@>,
<DOM Element: mail at @x1eff998be>]

The “getElementsByTagName™ method does not have only the document but each element. So we
can get the mails inside the “element’.

oce.getElementsByTagName("mail™)

[<DOM Element: mail at @xleff9az2be>,
<DOM Element: mail at @xl1leff98550>,
<DOM Element: mail at @x1eff998bo>]

The element also has children. Actually, only one, so we won't go through the “childNodes’, we'll just
go with “firstChild".

el.firstChild

<DOM Text node "'+386 1 234'...">

The element that is the child of ‘phone’ is "Text Node'. This has no children, but has a value,
‘nodeValue'.



el.firstChild.nodeValue

'+386 1 234 5678'

Oh, and the attributes.

el.getAttribute("tip")

"domaci’

That's it. Let's summarise everything we will need.

- "el.getElementsByTagName(name)" returns the elements named ‘'name” within “el".
- "el.getAttribute(name)” returns the value of the attribute ‘name".

- The “el.childNodes" are the children of the element.

- The “el.firstChild" is the first child.

- The “el.nextSibling” is the next sibling.

- The “el.parentNode" is the father of the element.

- "el.nodeValue’ is the value within the element.

Now we know how to read most of the XML we will come across.

5. Why compressed-clover.xml?

If an XML file is formatted so that it can be read by mortals, not just computers, it contains spaces and
newline characters. These are seen as additional elements of the Text Node type. In principle they
wouldn't (and won't) bother us, only the "nextSibling™ of a phone or email would be a Text Node, and
they would also appear in all the children's lists, spoiling the simplicity of the example. Just this.

6. Bank of Slovenia exchange rates

The Bank of Slovenia publishes the latest exchange rates in XML format at
https://www.bsi.si/ data/tecajnice/dtecbs.xml.

“sml

<DtecBS xmlns="http://www.bsi.si" xmlIns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.bsi.si http://www.bsi.si/ data/tecajnice/DTecBS.xsd">

<tecajnica datum="2023-12-22">

<tecaj oznaka="USD" sifra="840">1.1023</tecaj>


https://www.bsi.si/_data/tecajnice/dtecbs.xml

<tecaj oznaka="JPY" sifra="392">156.66</tecaj>
<tecaj oznaka="BGN" sifra="975">1.9558</tecaj>
<tecaj oznaka="CZK" sifra="203">24.589</tecaj>
<tecaj oznaka="DKK" sifra="208">7.4560</tecaj>
<tecaj oznaka="GBP" sifra="826">0.86660</tecaj>
<tecaj oznaka="HUF" sifra="348">381.93</tecaj>
<tecaj oznaka="PLN" sifra="985">4.3420</tecaj>
<tecaj oznaka="RON" sifra="946">4.9708</tecaj>
<tecaj oznaka="SEK" sifra="752">11.0556</tecaj>
<tecaj oznaka="1SK" sifra="352">150.50</tecaj>
<tecaj oznaka="CHF" sifra="756">0.9417</tecaj>
<tecaj oznaka="NOK" sifra="578">11.2705</tecaj>
<tecaj oznaka="TRY" sifra="949">32.2044</tecaj>
<tecaj oznaka="AUD" sifra="036">1.6197</tecaj>
<tecaj oznaka="BRL" sifra="986">5.3624</tecaj>
<tecaj oznaka="CAD" sifra="124">1.4639</tecaj>
<tecaj oznaka="CNY" sifra="156">7.8640</tecaj>
<tecaj oznaka="HKD" sifra="344">8.6105</tecaj>
<tecaj oznaka="IDR" sifra="360">17029.65</tecaj>
<tecaj oznaka="ILS" sifra="376">3.9764</tecaj>
<tecaj oznaka="INR" sifra="356">91.6280</tecaj>
<tecaj oznaka="KRW" sifra="410">1430.05</tecaj>
<tecaj oznaka="MXN" sifra="484">18.6955</tecaj>
<tecaj oznaka="MYR" sifra="458">5.1059</tecaj>
<tecaj oznaka="NZD" sifra="554">1.7505</tecaj>
<tecaj oznaka="PHP" sifra="608">61.067</tecaj>
<tecaj oznaka="SGD" sifra="702">1.4593</tecaj>
<tecaj oznaka="THB" sifra="764">38.084</tecaj>
<tecaj oznaka="ZAR" sifra="710">20.3070</tecaj>
</tecajnica>

</DtecBS>

=>» The structure is obvious. Let's read it!



from urllib.request import urlopen
from xml.dom import minidom

tecaji = minidom.parse(urlopen("https://www.bsi.si/_data/tecajnice/dtecbs.xml"))

tecajnica = {}
for tecaj in tecaji.getElementsByTagName("tecaj"):
tecajnica[tecaj.getAttribute("oznaka")] = float(tecaj.firstChild.nodeValue)
Quite simple, isn't it?

At https://www.bsi.si/_data/tecajnice/dtecbs-l.xml we can find the courses from 1 January 2007.
Since this XML takes a long time to download, we already have it saved alongside the notes, so we'll
just read it from the file.

The file is structured as follows.
xml

<?xml version="1.0"?><DtecBS xmlns="http://www.bsi.si"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemalocation="http://www.bsi.si
http://www.bsi.si/_data/tecajnice/DTecBS-l.xsd">

<tecSBSBS date="2007-01-01">
<tecaj code="USD" sifra="840">1.3170</tecaj>
<here code="JPY" code="392">156.93</here>

<tecaj code="BGN" code="975">1.9558</tecaj>

Same as the previous one, except that the rates for each day are also enclosed in “tecajnica’, which
contains the date as an attribute.

Let's read, say, the dollar rate. We will read in two lists: one will contain the dates, the other the rate.
The dates will not be written in days, years and so on, but in the number of days that have passed
since 1 January 2007. For this we will use "datetime’; this has a method ‘fromisoformat’ that can read
the date as it is written in this file. We will subtract 1 January 2007 from the date; the result will be
some ‘timeday’ data type that has “days’ attributes. This contains the difference in days.

Let's go!



from datetime import datetime
from xml.dom import minidom

zacetek = datetime(2007, 1, 1)
datumi = []
vrednosti = []

dokument = minidom.parse(open("xml/dtecbs-1.xml"))
for tecajnica in dokument.getElementsByTagName("tecajnica"):
datum = datetime.fromisoformat(tecajnica.getAttribute("datum"))
for tecaj in tecajnica.getElementsByTagName("tecaj"):
if tecaj.getAttribute("oznaka") == "USD":
datumi.append((datum - zacetek).days)
vrednosti.append(float(tecaj.firstChild.nodeValue))
break

And how is he doing, dollar? Like this.
N

plt.plot(datumi, vrednosti)

[<matplotlib.lines.Line2D at @x13564efle>]

1.6 1

1.5 4

1.4 4

1.3 A

1.2 A

1.1 4

1.0 A

T T T T T T
0 1000 2000 3000 4000 5000 6000

7. XML is everywhere
If you can read XML, you can read almost anything.

Have you ever planned a route and got a .gpx file? Or done a route and saved it on Strava or
something? You can export that to GPX too. GPX is XML in some standardised format.

This is how Strava saves your run. It contains time location and altitude information, plus whatever
your watch (or whatever you use to feed your ego during and after your run) is recording.

AN

xml



<?xml version="1.0" encoding="UTF-8"?>

<gpx creator="StravaGPX" xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance'
xsi:schemalocation="http://www.topografix.com/GPX/1/1
http://www.topografix.com/GPX/1/1/gpx.xsd
http://www.garmin.com/xmlschemas/GpxExtensions/v3
http://www.garmin.com/xmlschemas/GpxExtensionsv3.xsd
http://www.garmin.com/xmlschemas/TrackPointExtension/v1
http://www.garmin.com/xmlschemas/TrackPointExtensionvl.xsd" version="1.1"
xmlns="http://www.topografix.com/GPX/1/1"
xmins:gpxtpx="http://www.garmin.com/xmlschemas/TrackPointExtension/v1"
xmlins:gpxx="http://www.garmin.com/xmlschemas/GpxExtensions/v3">

<metadata>
<time>2023-12-16T14:22:38Z</time>
</metadata>
<trk>
<name>Dragomelj z repom</name>
<type>running</type>
<trkseg>
<trkpt lat="46.0988580" lon="14.5596710">
<ele>293.6</ele>
<time>2023-12-16T14:24:247</time>
<extensions>
<power>404</power>
<gpxtpx:TrackPointExtension>
<gpxtpx:atemp>25</gpxtpx:atemp>
<gpxtpx:hr>140</gpxtpx:hr>
<gpxtpx:cad>82</gpxtpx:cad>
</gpxtpx:TrackPointExtension>
</extensions>
</trkpt>
<trkpt lat="46.0988890" lon="14.5596830">
<ele>293.6</ele>
<time>2023-12-16T14:24:257Z</time>
<extensions>

<power>408</power>



<gpxtpx:TrackPointExtension>
<gpxtpx:atemp>25</gpxtpx:atemp>
<gpxtpx:hr>141</gpxtpx:hr>
<gpxtpx:cad>81</gpxtpx:cad>
</gpxtpx:TrackPointExtension>
</extensions>
</trkpt>
<trkpt lat="46.0989220" lon="14.5597030">
<ele>293.8</ele>
<time>2023-12-16T14:24:26Z</time>

<extensions>

The svg files in which we store images in vector format are XML.

<?xml version="1.8" encoding="utf-8"?>
<1-- Generator: Adobe Illustrator 24.0.2, SVG Export Plug-In . SVG Version: 6.89 Build @) -->
<svg version="1.1" id="Layer_1" xmlns="http://www.w3.0rg/2000/svg" xmlns:xlink="http://www.w3.0rg/1999/x1link" x="0px" y="epx"
viewBox="0 © 595.28 841.89" style="enable-background:new © @ 595,28 841.89;" xml:space="preserve">
<style type="text/css">
.ste{fill:#FFeee1;stroke:#0600000;stroke-width:3;stroke-miterlimit:10;}
.st1{fill:none;stroke:#018837; stroke-width:10;stroke-linecap:round;stroke-miterlimit:1e;}
</style>
<ellipse class="st@" cx="232.21" cy="251.29" rx="56.79" ry="20.71"/>
<path class="st1" d="M59.71,201.29170,191.43¢117.14,5.71,131.43-111.43,117.14,5,71c-14,29,117.14,110,61.43,109.29,43.57"/>
</svg>

ARSO publishes the weather forecast in XML format. This is probably friendly to the authors of the
various phone apps that capture data from their website.

Even if we rename an .xlsx or .docx file to zip and unzip it, we find XMLs containing our text and its
formatting.

Sitcoms

We got a list with the most popular sitcoms in Python format from ChatGPT.

https://www.omdbapi.com/ - here you get the posters from

The queries are of the form http://www.omdbapi.com/?apikey={api_key}&{parameters}. You can
search by titles and whatnot, most useful is to search by imdb codes. They are easy to get

api_key = open("omdb-api-key.txt").read().strip()


https://www.omdbapi.com/

imdb_id = sitcoms[@]["imdb_link"].split("/")[-2]

imdb_id

'tt01e8778"'

split the imdb_id with split("/") and take the second to last part - the last part is empty because there
is a slash at the end.

from urllib.request import urlopen

response = urlopen(f"http://www.omdbapi.com/?apikey={api_key}&i={imdb_id}")
response.read()

b'{"Title":"Friends","Year":"1994\xe2\x80\x932004", "Rated":"TV-14","Released":"22 Sep 1994","R
untime™:"22 min","Genre":"Comedy, Romance","Director”:"N/A","Writer":"David Crane, Marta Kauff
man","Actors":"Jennifer Aniston, Courteney Cox, Lisa Kudrow","Plot":"Follows the personal and
professional lives of six twenty to thirty year-old friends living in the Manhattan borough of
New York City.","Language":"English, Spanish, Italian, French, Dutch, Hebrew","Country":"Unite
d States","Awards":"Won 6 Primetime Emmys. 79 wins & 231 nominations total","Poster":"https://
m.media-amazon.com/images,/M/MV5BOTU2YMM5Z] ctOGVIMCO@YTcZLT1M2MEYFhINGISYWMYyZ]FKXKEYXKFqcGe@. _
V1_SX380.7jpg","Ratings":[{"Source":"Internet Movie Database","Value":"8.9/18"}], "Metascor
e":"N/A","imdbRating":"8.9","imdbVotes":"1,122,459","imdbID": "tt0168778", "Type": "series", "tota
1Seasons":"1@","Response"”:"True"}'

We imported the urlopen function from the urllib.request module. We give it an URL as an argument
and it returns the server’s response. The response contains a lot of things, like

response.status

280

- Which can be 404 (if the page doesn’t exist), 500 (if there’s something wrong with it) and 418
(if we happen to be talking to a teapot). Here it is 200, which is OK.

There are more things we can find out:



response.headers.items()

[('Date', 'Mon, 23 Dec 2024 22:04:24 GMT'),
('Content-Type', 'application/json; charset=utf-8'),
('Content-Length', '864'),

('Connection', 'close'),

('Cache-Control', 'public, max-age=86408'),
('Expires', 'Mon, 23 Dec 2024 22:34:37 GMT'),
('Last-Modified', 'Mon, 23 Dec 20824 21:34:37 GMT'),
('vary', '*, Accept-Encoding'),
('X-AspNet-Version', '4.0.30319'),
('X-Powered-By', 'ASP.NET'),
('Access-Control-Allow-Origin', '*'),
('CF-Cache-Status', 'HIT'),

('Age', '1787'),

('Accept-Ranges', 'bytes'),

('Server', 'cloudflare'),

('CF-RAY', '8f6baSaaee9b5a77-VIE')]

- But none of this interests us.

All we need to know here is that response has a read method that returns the data we have been
given. We've already extracted them above, so (as with files) they are consumed. Right, let's
retrieve them again and save them this time.

response = urlopen(f"http://www.omdbapi.com/?apikey={api_key}&i={imdb_id}")
data = response.read()

data

b'{"Title":"Friends","Year":"1994\xe2\x80\x932004", "Rated":"TV-14","Released":"22 Sep 1994","R

w,n non w,n

untime"”:"22 min","Genre":"Comedy, Romance","Director”:"N/A","Writer":"David Crane, Marta Kauff
man","Actors":"Jennifer Aniston, Courteney Cox, Lisa Kudrow","Plot":"Follows the personal and
professional lives of six twenty to thirty year-old friends living in the Manhattan borough of
New York City.","Language":"English, Spanish, Italian, French, Dutch, Hebrew","Country":"Unite
d States","Awards":"Won 6 Primetime Emmys. 79 wins & 231 nominations total","Poster":"https://
m.media-amazon.com/images,/M/MV5BOTU2YmMM5ZjctOGV1MCBOYTczLT1jM2MtYFhINGISYWMyZjFkXKEyXkFqcGe@. _
V1_SX38e.jpg","Ratings":[{"Source":"Internet Movie Database","Value":"8.9/18"}], "Metascor
e":"N/A","imdbRating":"8.9", "imdbVotes":"1,122,459","imdbID": "tt0108778", "Type": "series", "tota
1Seasons":"18","Response” :"True"}'

The data looks like a Python dictionary. It's actually JSON, which is, um, roughly a JavaScript
dictionary. The most reliable way to convert them to a Python dictionary is json.loads.

import json

data = json.loads(data)



data

{'Title': 'Friends’,
'Year': '1994-2004',
'Rated': 'TV-14',
'Released': '22 Sep 1994°',

'Runtime’: '22 min',

'Genre': 'Comedy, Romance',

'Director': 'N/A',

'"Writer': 'David Crane, Marta Kauffman',

'Actors': 'Jennifer Aniston, Courteney Cox, Lisa Kudrow',

'Plot': 'Follows the personal and professional lives of six twenty to thirty year-old friends
living in the Manhattan borough of New York City.’,

'Language': 'English, Spanish, Italian, French, Dutch, Hebrew',

"Country': 'United States',

'Awards': 'Won 6 Primetime Emmys. 79 wins & 231 nominations total’,

'Poster’: 'https://m.media-amazon.com/images/M/MV5BOTU2YmM5Z]ctOGVIMC@@YTczLT1jM2MtYFhINGISYW

MyZjFkXkEyXkFqcGe@. _V1_SX3ee.jpg',
'Ratings': [{'Source': 'Internet Movie Database', 'Value': '8.9/10'}],
'Metascore': 'N/A',
'imdbRating': '8.9°,
'imdbVotes': '1,122,459',
'imdbID': 'tteles778',
'Type': 'series',
'totalSeasons': '1@°,
'Response’: 'True'}

| said | needed pictures. | got a lot of useful stuff, but for now: a picture. This one is obviously in

img_url = data["Poster"]
img_url

'https://m.media-amazon.com/images/M/MVSBOTU2YmMMSZjctOGV1IMCRBYTcZLT1jM2MEYJhINGISYWMYZFKXKEYX
kFqcGe@._V1_SXx3ee.jpg'

Well, not the image, its URL.

If | type <img src="https://m.media-
amazon.com/images/M/MV5BOTU2YmM5ZjctOGVIMCOOYTczLTIjM2MtYjhINGISYWMyZjFkXkEyXk

FqcGe@._V1_SX300.jpg"/> into this Jupyter, it will show it.

| would, of course, want to pick it up in afile.

poster = urlopen(img_url).read()

poster[:188]

b "\ xFf\xd8\xFf\xe@\x00\x10IFIF\x80\x081\x081\xe0\xe8\xe01\xee\x01\xee\xee\xf\xdb\xee\x84\xee\xa5
\x@5\x@5\t\xee\t\t\t\t\xBc\x13\xBe\xBe\xBc\xBe\xBe\x19\x12\xBe\x12\x18\x17 \x0e\x10\x18\x17\x106
AX17A\X17\x18\x14 \x17\x14\x14\x1a\ X1 7\ x13\x13\x17\x1a\x14\x17 \x18# \x18\x1c\x19\x1f\x1la\x18!\x18
#FAxA8#" "I\ (#\x17\ 5\ E\E\X@5\ N\t \xOc\ T\ t\x13"

Whatever is in this poster, it is obviously a picture. Let's save it in a file whose name will be the
name of the batch.



import os

fhame = data["Title"] + os.path.splitext(img_url)[1]
open(fname, "wb").write(poster)

20545

Don't overlook the second argument when opening a file: wb. w tells us, as we already know, that
we want to write to the file. b tells us that it is a binary file.

| look in the directory and, lo and behold, there is indeed a "Friends.jpg" file with a poster of the
series (which, disclaimer, | never watched; even though | was just the right age, it seemed a bit ...
saccharine).

Satisfied with the result, let's put it all together in a finished program.

import os
import json
from urllib.request import urlopen

api_key = open("omdb-api-key.txt").read().strip()

for sitcom in sitcoms: # sitcoms smo si pripravili prej
imdb_id = sitcom["imdb_link"].split("/")[-2]
response = urlopen(f"http://www.omdbapi.com/?apikey={api_key}&i={imdb_id}")
data = response.read()
data = json.loads(data)
img_url = data["Poster"]
poster = urlopen(img_url).read()
open(data["Title"] + os.path.splitext(img_url)[1], "wb").write(poster)

A minor annoyance: on Windows and Linux, certain characters are banned from filenames:
Before writing a file, we need to correct the name accordingly.

Conclusion

Two things we have not discussed. The first is broad, very broad: how to send more complex
requests, work with cookies and so on. And how to better understand the answers we get from
the server. This is in the area of web application development, we are not really going to deal
with that here.

The second is what was that poster. You may have noticed that it is preceded by a b:

poster[:30]

b " \xFf\xd8\xff\xe@\x00\x10JFIF\x80\x81\xe1l\xe8\xee\xe1l\xee\xe1\xee\xee\xff\xdb\xee\x84\xee\xes5
\x@5\xe5\t\xe6"’

We will deal with this in the next topic.



