06 Quantities

0.1 Quantities

Sets are like lists, but with the difference that they can contain each element only once. On the other
hand (and not only on the other hand, but also technically) they are like dictionaries. They can only
contain elements that are immutable, and we can very quickly determine whether a set contains a
certain element or not, in the same way as with dictionaries, we can quickly find out whether they
contain a certain key or not.

Sets are written with curly brackets, just as we are used to in mathematics.

danasnji_klici = {"Ana", "Cilka", "Eva"}

This can only produce a non-empty set. If we just write a parenthesis and a bracket, {}, we get a
dictionary. (Why did they decide to make it a dictionary, not a set? The dictionary came first, Python
got sets later. Hence. Besides, we really need dictionaries a lot and sets much less often.)

If we want to make an empty set, we say:

prazna = set()

The "function" set is a bit like the "function" int: you can give it different arguments and it will turn
them into a set. You can give it, say, a list, and you'll get a set with all the elements that appear in it.

set([1, 2, 31)

{1, 2, 3}

set (range(5))

{0, 1, 2, 3, 4}

set([6, 42, 1, 3, 1, 1, 6])
{1, 3, 6, 42}

In addition to lists, we can pass anything to the sets that could be passed through a for loop, say a
string or a dictionary.

set("Benjamin")

{'B', 'a', 'e', 'i', 'j', 'n', 'n'}

set(stevilke)

NameError Traceback (most recent call last)

Cell In[7], line 1
-——-> 1 set(stevilke)

NameError: name 'stevilke' is not defined

The variable stems (still) contain a dictionary whose keys are the names of Benjamin's female fans.

Since the loop "returns" the keys via the dictionary, the set constructed from the dictionary will also
contain the keys.

We can add elements to the set, and we can ask whether the set contains a particular element.

8 = set("Benjamin")

e" in 8

g.add("u")

u" in s

g.add("a")
g.add("a")
g.add("a")
=

Finally, we tried to add an element to the set that already contains it. This is not possible, of course,
because the set contains each element only once.

If we have two sets, we can calculate their union, intersection, difference (elements that appear in
the first set but not in the second set) and symmetric difference (elements that appear in one set and
not in the other) ...

= 0l 2
v = {3, 4, 5}
u | v
u kv
u- v
u- v

Just as we can use +=to add numbers (and write x += a instead of x = x + a), and, similarly, subtract,
multiply and divide with -=, *= and /=, we can add, subtract or divide a set with &=, |= and -=. So, for
example, u &=visthesameasu=u&wv.

We can also check whether a set is a subset (or superset) of another set. The simplest way to do this
is to use the comparison operators.

u= {1, 2, 3}

{1, 2, 3} is a subset of u, but it is not a proper subset, since it contains the whole of u.

There are many other interesting things you can do with sets - but enough is enough. We'll look at
more examples as we go along.

06 Modules

1 Modules

We've said it before: Python has thousands and thousands of functions, so they need to be organised,
placed where we can find them.

One of the principles we've already learned: methods. Methods are attached to things (more learned
and correct: objects) and do things that are typical of those things. Arrays have methods like lower
and split, dictionaries have get and setdefault.

In addition to methods, Python has functions that do not belong to any specific type. Examples are
input and print. But these are few; only a few functions have the privilege of lying idle.

Most functions are boxed. In Python, boxes are called modules. You'll probably also hear the terms
package and even library. Don't worry about them: a package is a hierarchical collection of modules,
and a library is some rounded collection of different ... modules,

packages ... whatever. For us here, only modules are important. We'll find out how to use them and
see some useful things in some useful modules.

1.1 Importing modules
To use the functions in a module, we first need to import the module.

So far, for example, we have been using functions from the math module and importing them with
from math import

*. When | teach programming, | avoid having to type in some phrases that you don't understand.
from math import * was one of the few, and it's time to find out what it's all about. It's also time to
get rid of the phrase and learn to write it properly. The math functions module, math, is properly
imported like this:

import math

math

<module 'math' from '/Users/janez/opt/miniconda3/envs/prog/lib/python3. 11/11b-
dynload/math.cpython-31i-darwin.so'>

This is the strangest type of variable ever. It is not simply a number (int, float) or a string (str) or a list
or a tuple (list, tuple), but a variable of type "module".

Functions belong to a module, just like methods belong to an object. If we have a string name, we can
access its upper method with a dot, name.upper. Here it is similar: if we have a module math, we will
access its function sqrt with math.sqrt, and its variable pi with math.pi.

math.pi
3.141502653689793
math.sin(math.p1 / 4)
0.70T1067811865475

Uvozimo % en modul, os.

import os
Let's import another module, os.

import os

There are functions in the axis that can be used to create a directory or delete a file. In addition, it
contains something interesting: a module. The path module is a module within the axis module. It
contains, for example, the splitext function, which returns a base and an extension for a given
filename.

0Snova, koncnica = os.path.splitext("nek film.avi")
OENOVA

'nek_f1lm'

koncnica

R
This is how modules are imported.
1.1.1 Importing individual functions
X = 2 * math.sin(math.radians(phi) + math.pi/2) - 2 * math.cos(math.radians(alpha))
It would be better to have these functions at hand without repeating math. Let's import them with
from math import sin, cos, radians, pi
cos(pl / 4)
D.707106781186547T6

from math import sin, cos, radians, pi imports the functions listed and makes them available to the
program under those names. We will therefore have the names sin, cos, radians and pi, but not tan
and log.

But especially not math. That is:

- if we import import math, we have math and, say, math.cos, but not cos. We have imported math,
not cos.

- If we import from math import cos, we have cos and not math or math.cos. We have imported cos
and not math.

1.1.2 Importing everything
There is an even "simpler" way of importing.

from math import *

This one is similar to the previous one, except that we don't list the functions. * represents everything
in the module.

The first way, importing the module, has the advantage that in each function call it is clear where the
function comes from. The disadvantage is that the expressions are much longer.

The second way, importing individual functions, shortens the expressions. We can still see where a
function comes from, but we have to look at the beginning of the program, in the import.

The third way is generally bad. The expressions are shorter, but for single functions we don't know
where they came from. This way we import at most the math module and nothing else. Especially in
larger projects.

Amendment: | wrote the above paragraph ten years ago. In fact, | haven't imported a module in this
way for a long, long time, except in the first weeks of Programming 1. It's not done.

1.2 Where to import
Always at the beginning of the program. Not just in between.

Exception: at the beginning of a function. This is done, for example, when it is not clear whether a
module can be imported, or when importing is slow, and it is only needed in a function. Another
situation where this would come in handy is when two modules are imported mutually, one after the
other. This is resolved by importing a module only when it is needed.

This is not a law, just an agreement.

Importing modules only happens once in reality. If we write import math five times, the module will
only actually be imported the first time.

1.3 Maths module

We will look at some useful modules. Python has about 200 of them; you can find thousands and
thousands more on the Internet.

The first is math, but we won't say much about it. It has all the functions that any calculator has ...
and a bit more. :) For example, greatest common divisor, faculty and binomial coefficients

Let's just take this opportunity to mention two features related to numbers. The float data type has
two special features in addition to the normal numbers: infinity (and minus infinity) and not a
number.

math. inf
inf
~math.inf
-inf
math.nan
Tan

The first two can be useful for finding a minimum or maximum.

def minis):
m = math.inf
for X in B!
if ¥ < m:

math.inf is greater than all numbers (except itself) and therefore a useful starting value for finding the
minimum.

nan is more interesting. In some languages it is obtained as a result of wrong arguments to
mathematical functions, say when trying to calculate the root or logarithm of a negative number.
Python functions return an error in this case, but it is returned by some functions in libraries
(modules) that we will install additionally, so it is good to know about it.

nan, not a number, is a dead end number. Whatever we do with it - adding, subtracting, multiplying,
even multiplying by zero - it always remains nan. Worse: nan is neither bigger nor smaller than any
number. It is not smaller than infinity (and of course not greater, but not equal either).

math.nan < math.inf
Falsa
math.nan > math.inf
False
math.nan == math.inf

Falsae

And, worst of all, he is not even like himself.

math.nan == math.nan

False
How do we then check if a variable has the value nan - if we can't even compare it with nan?
* = math.nan
if x == math.nan:
priont{"0joj!t™)
elsa:
print("Vese je OK.")

Vee je OK.

Rather, let us use his stupidity against himself.

¥ = math.nan

if x I=x:
print("2vet se podiral™)

Svet se podiral

A nicer, more correct way to check whether a variable has the value nan is the function math.isnan.

if math.ispan(x):
print("0jojt™)

0jo]!

It will be useful to remember all this when we work with, for example, some statistical libraries that
will return nan when something cannot be calculated.

By the way, this strange behaviour, where nan is not even equal to itself, is not some Python fad, but
part of the IEEE 754 standard that defines floating point notation and its behaviour. Every language
that has been trained behaves the same way.

1.4 The random module

The random module contains functions that do (pseudo-)random things. (That is: they look random,
but they are not, because everything that is computed by ordinary computers is computed, not
drawn.) We will mention just a few. random.random() returns a random number between 0 and 1.

import random
random. random ()

0. 64941 TEO36386138

random . random ()

0.7117311287907189

random.uniform(a, b) returns a random number between a and b. The function is called uniform
because it is a uniform distribution - all numbers are equally likely.

random.uniform(10, 20)
19.118192660781837
random.uniferm(10, 20)
17.985517474304324

If we need a random integer, we call randint.

random.randint (10, 20)

15

If we are interested in some other distribution than uniform: the random module knows many:
beta, gamma, exponential ... and of course Gaussian.

: iq = random.gauss(100, 10)
iq

: 08.30080171519482

Let's make a list of names.

imena = ["Ana", "Berta", "Cilka", "Dani", "Ema", "Fan&i"]

random.choice returns a random element of the given list.

random.choice(imena)

"Cilka'

random.sample selects a random sample of the given size.
random.sample (imena, 3)
['Fanéi', 'Ema', 'Ana']

random.choices is similar, but the selected cases can also be repeated. The sample size must be given
as an argument named k.

random.choices (imena, k=5)

['Berta', 'Berta', 'Ana', 'Dani', 'Cilka']
random.shuffle shuffles the given list.

imena

["Ana', 'Berta', 'Cilka', 'Dani', 'Ema', 'Fan&i']
random.shuffle(imena)

imena

["Ana', 'Dami', 'Cilka', 'Ema', 'Fanéi', 'Berta']

1.5 module os

The os module contains a bunch of stuff related to the operating system. Because we don't know
enough about operating systems, we wouldn't understand most of the features.

We will use them regularly anyway.

- getcwd() returns the current directory. That is, the directory in which the open function would look
for the file if given only the filename.

- chdir(path) changes the current directory. The path can be absolute (with / at the beginning) or
relative.

- mkdir(path) makes a new directory.

- remove(filename) deletes the file with the given name. No mercy. No "do you really want to delete".

- rename(name, newname) renames the file.
- listdir(path) returns a list of all filenames in the given directory.

Most often you will need the latter. For example, | got weather station data in the form of thousands
of files, which | then read and wrote the (filtered, of course) data to a new file.

This is the current contents of the current directory (where these records are).

import os
os.listdir()

[' progkog 10-24.ipynb',
'"Untitledl.ipynb’,
'kolesa.txt',
'.DS_Store',
'kolesaZ.txt',

'03c Slovarji.ipynb',
'temperature.txt’,
'04 seznami.ipynb',
"vreme',

'03a Kako racunalnik shrani besedilo.ipymb’,
'05 Moduli.ipynb',
'02b logiéni izrazi.ipynb',
' .ipynb_checkpoints',
'02 datoteke, zanke, pogeoji.ipymb',
'december.txt’,
'03b Metode nizov.ipynb']
1.6 The os.path module

path is a module within the os module. It also has many features, some of which are suitable for us.

- 0s.path.exists(name) returns True if a file or directory with the given name exists (in the current
directory).

- 0s.path.isdir(name) returns True if the given directory name exists (within the current directory).
- os.path.isfile(name) returns True if the given name is a file (within the current directory).

- 0s.path.splitext(name) returns the base and extension of the given filename.

The others are obvious, but the last one is particularly interesting for us.

Let's list the names of all files with extension .txt that are located in the current directory.

for ime in os.listdir():
osnova, koncnica = os.path.splitext(ime)
if os.path.isfile(ime) and koncnica == ".txzt":
print(ime)
kolesa.txt
kolesaZ.txt

temperature.txt
december.txt

1.7 Collections module
Among all the interesting things in collections, let's mention just two, at least for now.

1.7.1 defaultdict

defaultdict is a dictionary that adds non-existent keys on the fly, and we need to give it a function to
invent their values. Only functions that do not accept arguments are suitable, or more precisely,
functions that can be called (even) without arguments. Most often, this will be int. If called without
arguments, it returns 0.

int()
0

from collections import defaultdict

d = defaultdict(int)

3]

d["Ana"] =
d["Berta"]

[}
[#%)

d

defanltdict(int, {'4na’': 5, 'Berta': 3})
d["Cilka"]

0

d

defaultdict(int, {'Ana': 5, 'Berta': 3, 'Cilka': 0})
We can even, say, increase the value of a non-existent key.

. d["Dani"] += 1

d

defaultdict(int, {'Ana': 5, 'Berta': 3, 'Cilka': 0, 'Dani': 1})
Let's count how many times the author of the bicycle.txt file has ridden which bicycle and how far he
has travelled on it. Let's remember: the lines of the file represent individual journeys and contain the

name of the bike, the distance in kilometres and something else that we are not interested in here
(the height).

uporaba = defaultdict(int)
pot = defaultdict(int)

for vrstica in open("kolesa.txt"):
kolo, razdalja, _ = vrstica.split(",")
uporaba [kolo] += 1
pot[kolo] += int(razdalja)

print (uporaba)
print (pot)

defaultdict(<class 'int'>, {'Nakamura': 22, 'Cube': 43, 'Canyon’: 26, 'Stevens':
9

defaultdict(<class 'int'>, {'Nakamura': 439, 'Cube': 3174, 'Canyon': 2766,
'Stevens': 607})

Uporaba = use
pot = way
razdalja = distance

You could do the same with normal dictionaries, but it would require some if statements or methods
like setdefault or get.

Now let's turn to the auction: we want to build a dictionary whose keys will be objects, the values of
which will be the bid lists for that object. Again we will use defaultdict, but the values will not be ints,
but lists. The list function, if called without arguments, conveniently returns an empty list.

d = defaultdict(list)
d["foo"]
[]

We can even add to such a list with append!

d["bax"].append(12)
d["bax"].append(5)

d

defaultdict(list, {'foo’': [1, 'bax': [12, 51})
Now for real.

ponudbe = defaultdict(list)

for vrstica in open("../domace-naloge/03-drazba-brez-anonimmosti/zapisnik.txt"):
predmet, oseba, cena = vrstica.split(",")
ponudbe [predmet] . append(int (cena))

for predmet, cene in ponudbe.items():
print(predmet, cene)

slika [31, 33, 35, 37, 40, 45]

pozlaéen deznik [29]

Meldrumove vaze [44, 46, 48, 53, 57, 60, 61, 63, 67, 71, 76, 78]

skodelice [50, 55, 60, 61, 62, 65, 68, 70, 74, 76, 80, 83]

kip [30, 32, 37, 39, 43, 44, 45, 50, 53, 55, 58, 61, 63, 68, 72, 768, 77, 81, 85,
86, 00, 92, 94, 97, 98, 99, 100, 103, 107]

gajnik [15]

srebrn jedilni servis [27, 30, 35, 39, 40, 45, 47, 49, 53, b5, 58, 59, 62, 63]
perzijska preproga [16, 21]

Ponudbe = offers
predmet = subject

1.7.2 Counter

For some reason we write Counter with a capital. (The reason is not a very good one. For the same
reason, we could also capitalize defaultdict. Counter is related to defaultdict and sometimes replaces
it. We don't currently have a good example of its use at hand, or, more accurately, to use it effectively
we would need to know something we don't know yet. However, we can show what it does. Let's say
we have a list of names of people who have been telephoned.

klici = ["Ana", "Ana", "Berta", "Cilka", "Ana", "Cilka", "Dani", "Ema"]

Of course, we want to count how many times he called who. We could do this trivially with
defaultdict, but with Counter it's even more trivial:

from collections import Counter
stevci = Counter(klici)
stevci

Counter({'Ana’': p, 'Cilka': 2, 'Berta': 1, 'Dani': 1, 'Ema': 1})

Stevci =counters

Often we will want to know who he called most often - or which three - and there is a method for
this.

stevci.most common(3)
[('Ana', 3), ("Cilka', 2), ('Berta', 1)]
This is the list, ordered by frequency.

1.8 The csv module

You'll like this one. Files containing comma-separated data, like our minutes.txt, are quite common.
This form of notation is called comma separated values or, in abbreviation,

Excel can also save in this format - with the caveat that it will lose all formatting and whatnot. (I once
promised that we would learn how to read Excel files. That's not it yet. We will also read .xlsx. But not
yet.) Our auction minutes and all the other files were in that format. Python therefore has a csv
module that can read such things.

1.8.1 reader
Are we interested in the names of all the participants in the auction?

import cav

udelezenci = set()
for predmet, oseba, cema in csv.reader(open("../domace-naloge/04-analiza-drazbe/
zapisnik.txt")):

udelezenci.add(oseba)
udelezenci
{'Ana', 'Berta', 'Cilka', 'Dani', 'Ema', 'FanZi', 'Greta', 'Helga'}

Give the csv.reader function the file (not just the name, you also need to call open). It returns
something that can be passed over with a for loop, and we get the data from the lines. No split.

csv.reader defaults to comma separated data. If they are by something else, we tell it that with an
additional delimiter argument. The delimiter in the "wheels.txt" file from the fifth homework
assighnment was -.

ime_dat = "../domace-naloge/0b-druzabno-omrezje-drazbe/kolesa.txt"
for v in csv.reader(open(ime_dat), delimiter="-"):
print(v)

['Cube', '5031', '159', 'Janez', '2017']

['Stevens', '3819', '1284', 'Ana', '2012']

['Focus', '3823"', '1921', 'Benjamin', '2019']
In addition to punctuation, a file can have a bunch of other properties. Suppose a set of Louis XIV
spoon, knife and fork is being sold at auction. In the file, you would get the line Louis XIV spoon, knife
and fork,Ana, 12945 and s.split(",") would return four things instead of three, just because of the
comma between the spoon and the knife. Excel, in this case, would write something like "Louis XIV's
spoon, knife and fork",Ana, 12945

By enclosing the first field in quotation marks, it would say that there is a single thing and that the
comma within it should be ignored. Different programs and systems have different rules; this is called
a dialect in the language of the csv.reader function. The default dialect is "excel" and this will usually
work for Excel files. For others you can use Sniffer.

sniffer = csv.Sniffer()

The .read() method reads the entire contents of the file.

open(ime_dat) .read()

' Cube-5031-159-Janez-2017\nStevens-3819-1284-Ana-2012\nFocus-3823-1921-Benjamin-
2019\n"'

sniffer has a sniff method, which takes as argument the contents of a file (or at least a chunk big
enough to show how the file is formatted). The sniffer will guess what style the file is written in.

dialect = sniffer.sniff(open(ime dat).read())

Then call csv.reader and give it the dialect along with the file. To make it easier to see, let's do it all
again.

import csv

ime_dat = "../domace-naloge/05-druzabno-omrezje-drazbe/kolesa.txt"
sniffer = csv.Sniffer() # vrne novega "snifferja”
dialect = sniffer.sniff(open(ime_dat).read()) # preberemo vsebino datoteke ing
.jo damo posmiffati :)
for v in csv.reader(open(ime_dat), dialect):
print(v)

['Cube', '5031', '159', 'Janez', '2017']

['Stevens', '3819', '1284', 'Ana', '2012']
['Focus', '3823', '1921', 'Benjamin', '2019']

1.8.2 DictReader
Suppose you had a file like this with wheels:

bike,distance,height,owner,year of purchase
Cube,5031,159,Janez,2017
Stevens,3819,1284,Ana,2012
Focus,3823,1921,Benjamin,2019

Unlike the previous files (and all the ones we have seen so far), this file has column names in the first
line. Therefore, instead of using a reader, it can be read with DictReader, which returns not a list but a
dictionary for each line, the keys of which are the column names. That's great.

import cav

for vrstica in csv.DictReader(open("kolesa-z-glavo.txt")):

print{vrstica["kolo"], ":", vrstica["leto nakupa"])

fube : 2017
Stevens : 2012
Focus : 2019

As your files will often have a header, you will mainly use DictReader. This is practical, as dictionaries
are easier to work with than lists. Column names such as bike, owner and year of purchase are easier
to read than indexes 0, 3 and 4, and you won't make any mistakes when counting.

1.9 Statistics module

We will not discuss the statistics module too much. Personally, | never use it, because all this and
much more can be found in the numpy library modules, which also make it much easier to do much
more - but only if you know how. Python only has this module because numpy is a huge extra library
that you don't get with Python. (On the other hand, any serious Python user will install numpy.)

In short: statistics contains mean, median, mode, stdev and a bunch of other functions that can
calculate mean, median, mode, standard deviation and a bunch of other things for a given list.
import statistics
visine = [185, 192, 160, 173, 180]
statistics.mean(visine)
178
statistics.stdev(visine)

12.227019260637483

He also knows about correlation and linear regression, but that's where it stops. Anyone who wants
to know more should consult the statistics module documentation.

1.10 Time, datetime, calendar modules

In your work you will probably often come across dates, times and so on. The functions related to
these are spread over three modules. It's all a mess. It is not so much Python's fault as, above all, the
fact that it refers to various standardised functions of different systems.

Some things work differently on Windows than they do on macOS or Linux, and then we get what we
get.

1.10.1 time

The time module (documentation) deals with the current time and other times and the conversion
between them.

The main function is time, which returns the number of seconds elapsed since 1 January 1970
according to Greenwich.

.| import time
time.time ()

1699905222 8740501
This is useful if you want to measure the (real) time elapsed between two events in the programme.
But ... well, not really. There are better functions for that.

For our purposes, gmtime and localtime are perhaps more useful.

print(time.gmtime())
print(time.localtime())

time.struct_time(tm_year=2023, tm_mon=11, tm_mday=13, tm hour=19, tm_min=53,
tm_sec=43, tm_wday=0, tm_yday=317, tm_isdst=0)
time.struct_time(tm_year=2023, tm_mon=11, tm_mday=13, tm_hour=20, tm_min=53,
tm_sec=43, tm_wday=0, tm_yday=317, tm_isdst=0)

You both return a miracle of the same type. It is called struct_time. Both the name and the format
come from the C language.

The name is not important, what matters are the names of the fields containing the current year,
month and day, hour, minutes and seconds, and the day of the week and year, with a field to tell
whether it is the time of year (1) or not (0).

zdaj = time.localtime()

print("Danes je ", zdaj.tm_mday, ". ", zdaj.tm_momn, ". ", zdaj.tm_year, ".",.
sep="")

Danes je 13. 11. 2023.
The module also contains a date formatting function, which can be used as follows:
time.strftime("Danes je Yd. Ym. %Y, ura pa je UH.YM", zdaj)

'Danes je 13. 11. 2023, ura pa je 20.59'

It is given a string containing characters such as %d, %m, %Y and so on, and a time. The function will
replace these characters with the corresponding values.

The full list of possible characters can be found at
https://docs.python.org/3/library/time.html#time.strftime.

time.strftime("Danes je %A, %d. %B %Y", zdaj)
'Danes je Monday, 13. November 2023°

This one didn't turn out so well. Apparently he didn't choose Slovenian. He could have been prepared
for this.

import locale
locale .setlocale(locale .LC_ALL, "sl_SI")
'sl_SI'
Now it will be.
time.strftime("Danes je %A, Yd. 4B %Y", zdaj)
'Danes je ponedeljek, 13. november 2023°

We've also used the locale module here, which contains everything related to the different usages of
different languages - from the names of days and months, to whether they use a decimal point or a
period, to how currencies are written.

locale.currency(42.19)
'42,19 SIT!
1.10.2 datetime

The core of the datetime (documentation) module is date manipulation. It allows you to subtract two
times and find out how many years, months, days, hours, minutes, seconds there are between them.
Or you can create a timedelta object, which will be, say, two months and three days, and add that to

a date. More importantly: the module can convert times from strings.

from datetime import datetime
datetime.strptime("13. november 2023, 21:14", "%d. %B XY, VH:UM")
datetime.datetime (2023, 11, 13, 21, 14)

First, a strange import: we import a "function" datetime from the datetime module. (It's not really a
function, it's a type, but there's no time for that right now. :)

The strptime function requires a string containing the date, and a string telling the format of the
string - again in letters, as we saw in strftime. Parts of the result are again accessed by field names.

https://docs.python.org/3/library/time.html#time.strftime

cas = datetime.strptime("13. november 2023, 21:14", "¥d. ¥B %Y, WH:¥%M")
cas.day

13

cas.hour

21

This will be able to break up the date for you in any format you like. Here's how we do it with the
Americans

datetime.strptime("11/13/2023", "im/%d/%Y")
datetime.datetime (2023, 11, 13, 0, 0)
And so it is with the Americans, who are writing a year without centuries.
datetime.strptime("11/13/23", "Un/%d/%y")
datetime.datetime (2023, 11, 13, 0, 0)
1.10.3 calendar

The last of the three time-related modules is the simple calendar (documentation). This contains
things like names of days, months and so on.

1.11 The urllib module

(In progress. To be added. Sooner or later. Maybe. Probably.)

