Assignment 4

Implement the following three algorithms described below. Each algorithm is
worth up to five points. Solutions must be submitted by 25.5.2025. Use the link
on e-ucilnica to submit your work. The report must be in .pdf format with an
additional .py file for code submission.

Continuous optimization

This assignment is an introduction to continuous optimization using functions
available in opfunu[3] Python package. This is also a warm-up for Assignment
5. By completing this, you should have a basis for starting the next assignment.

The assignment consists of finding values at specific points in the 2D space
of five functions from Cec2022[1] benchmark, namely F12022, F22022, F32022,
F42022 and F52022. Cec challenges are well know and an example of a Cec2022
challenge can be found here[2]. You need to implement three basic search al-
gorithms, namely grid search, random search, and first descent local
optimization.

Each algorithm must be implemented as a function in Python. You should
submit a PDF report with the required information described later, and your
source code as a separate .py file.

This section describes the algorithms you are implementing. The second
section has instructions on how to run the selected functions in Python.

Grid search

Implement a grid search algorithm to evaluate the three selected 2D functions
on a discrete grid of points with a grid size of 1, within the specified default
bounds for each function. The point (0.5, 0.5) should always be included in
the search, meaning you should align the grid appropriately. See the appendix
or the provided Python code to see how to find the default bounds for each
function.

For each of the selected functions, the report should include:

a) Number of points tested

b) Coordinates and objective values for the minimum and maximum found

Random search

Implement a random search function that searches the 2D space uniformly ran-
domly within the specified bounds for each function.
For each of the selected functions, the report should include:

a) Mean objective value found over 100.000 calls

b) Coordinates and objective value for the minimum found

Local search

Implement a local search using first descent, which means that you move to
the next solution as soon as the first neighbor you find is better than the current



solution instead of checking all the neighbors and moving to the best one. Let
the algorithm run for a maximum of 1000 iterations with a neighborhood size of
100. Define a neighbor of a solution (x,y) as (xtrand(0.1), y£rand(0.1)), where
rand(0.1) returns a uniformly random number from 0 to 0.1. The initial solution,
from which you start the search, should be generated uniformly randomly inside
the bounds of the function. The algorithm should stop after 1000 iterations or
if it gets stuck in a local optimum. Meaning that none of the 100 generated
neighbors are a better solution.
For each of the selected functions, run the algorithm 10 times and report:

a) Best coordinates and objective value found over the 10 runs
b) Mean objective value found over the 10 runs

¢) For each run, report the local minimum found, the number of iterations
before reaching the local minimum, and the number of calls to the objec-
tive function.



© W N o o«

10

11

12

13

14

15

16

17

18

19

20

21

Appendix

Python example

References

(1] Opfunu Cec2022 based module. https://opfunu.readthedocs.io/en/
latest/pages/cec_based.html#module-opfunu.cec_based.cec2022.
Accessed: 2025-05-05.

[2] Wenjian Luo, Xin Lin, Changhe Li, Shengxiang Yang, and Yuhui Shi. Bench-
mark functions for cec 2022 competition on seeking multiple optima in dy-
namic environments. arXiv preprint arXiv:2201.00523, 2022.

[3] Nguyen Van Thieu. Opfunu: an open-source python library for optimization
benchmark functions. Journal of Open Research Software, 12(1), 2024.



