
Programming (Cognitive Science), August 18, 2025 60 minutes → 90 minutes

A dictionary of stations is given, where the keys are the names of Bicikelj stations and the values are dictionaries with
the geographical coordinates of the stops, capacity (number of stands), and the current number of bikes at the
station. (See the dictionary in the tests.)

A function razdalje(postaja1, postaja2) is also given, which takes the names of two stations and returns the distance
between them.

1. Data Retrieval

Write a function prenesi() that reads data from the address https://ucilnica.fri.uni-
lj.si/mod/resource/view.php?id=59478 (for convenience, the address is stored in the variable URL in the tests),
processes it into a dictionary in the same format as the given dictionary postaje, and returns it. (This is a copy of actual data
from https://api.jcdecaux.com/vls/v3/stations?apiKey=frifk0jbxfefqqniqez09tw4jvk37wyf823b5j1i&contract=ljubljana, inaccessible during exam.)

2. Alternative Stations

The author of the exam is not a Bicikelj user (once was enough), but knows that at a certain station you sometimes
cannot get or return a bike, so it is necessary to look for nearby stations. Write a function najblizje3(postaja) that,
for a given station, finds the three closest stations and returns a list of (three) pairs (distance, name). The list should
be sorted by distance. The call najblizje3("ŽIVALSKI VRT") returns [(0.73687236710574, 'VIŠKO POLJE'),
(0.9639016462683163, 'TEHNOLOŠKI PARK'), (1.0760703913614853, 'SOSESKA NOVO BRDO')].

3. Station Table

Write a function zapisi(ime_datoteke) that writes into the given
file the station names (padded to 40 characters), followed by the
number of available bikes and the number of stands. The output
must be sorted alphabetically by station names (characters with
diacritics will come last; use the default Python sorting) and in the
format shown in the box excerpt.

4. Bike Returns

We have a NumPy matrix representing bike transfers between stations over a certain
period: the element at index [i][j] indicates how many bikes were taken from the i-th
station and returned to the j-th station. The matrix in the figure shows that at station 1, 3
bikes were taken and returned to station 1; 7 bikes were taken and returned to station 2;
and 5 bikes were returned to station 4.

• In total, 15 bikes were taken from station 1, and 10 were returned (where do we see this?). At station 1 there are
five bikes fewer than before. Write a function spremembe(prevozi) that takes such an array and returns a vector
with as many elements as there are stations. Each element indicates how many more (positive numbers) or fewer
(negative) bikes are at the station than before. For the matrix in the figure, it returns [-6, -5, 12, -6, 9, -4].

• From station 1 to station 4, 5 bikes were returned, and from station 4 to 1 only 1 bike. The difference is 4. From
station 4 to 5, 3 bikes were returned, and vice versa also 3, so the difference is 0. The largest difference is between
stations 1 and 2: 1 bike went in one direction 1 and 7 in the other; the difference is 6. Write a function
asimetrija(prevozi) that returns the pair of stations with the largest difference. For the example above, it should
return [1, 2] or [2, 1]. If there are multiple pairs with the largest difference, it may return any of them.

You are supposed to solve the task using clever use of NumPy – in one or two lines, without Python loops.

5. Downhill

By some coincidence, the matrix in the figure also represents the altitudes of certain points on a grid. The cyclist only
goes downhill: if they are at cell [1][1] (value 3), they can go up (to 2), left (to 0), or down (to 1), but not right, because
there is 7 there. Diagonal moves are not allowed.

KONGRESNI TRG-ŠUBIČEVA ULICA 9/20
KOPALIŠČE ILIRIJA 0/20
KOPALIŠČE KOLEZIJA 19/20
KOPRSKA ULICA 3/8
KOSEŠKI BAJER 14/20

[[1, 2, 1, 0, 3, 0],
 [0, 3, 7, 0, 5, 0],
 [0, 1, 0, 2, 3, 0],
 [0, 3, 0, 0, 4, 2],
 [0, 1, 5, 0, 0, 3],
 [0, 0, 5, 1, 3, 0]]

https://api.jcdecaux.com/vls/v3/stations?apiKey=frifk0jbxfefqqniqez09tw4jvk37wyf823b5j1i&contract=ljubljana

Write a function spust_na_0(matrika, x, y) that, for the given x (column) and y (row),
returns how many zeros are reachable from that cell. If a zero can be reached in
multiple ways, count it multiple times, because the cyclist is not smart and does not
notice when they reach the same target by a different path.

From the mentioned 3, five zeros can be reached: one directly, two via the 1 below, and
if going up to the 2, one can then go left or right to the 1 in the first row and then to the
zero next to them. The zero in the first row is counted twice because it can be reached in two ways.

Tip: don’t worry about “multiple ways”: the task is designed this way to make it easier, not harder. If you tackle the
task normally, you will already accidentally count multiple paths multiple times.

[[1, 2, 1, 0, 3, 0],
 [0, 3, 7, 0, 5, 0],
 [0, 1, 0, 2, 3, 0],
 [0, 3, 0, 0, 4, 2],
 [0, 1, 5, 0, 0, 3],
 [0, 0, 5, 1, 3, 0]]

