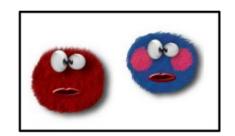
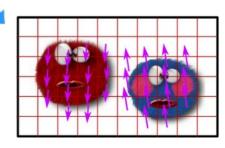
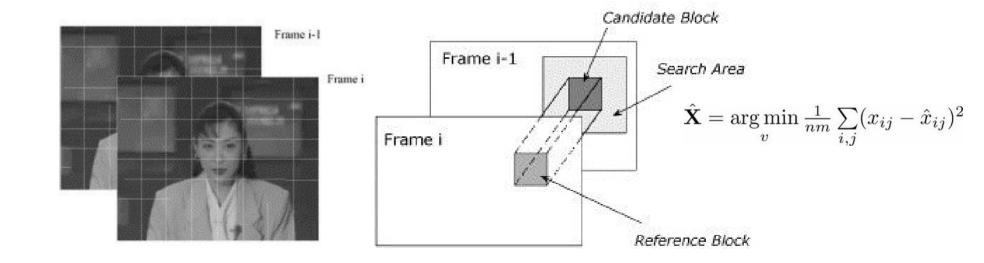

Encoding spatial correlation


- Processing 8x8 pixel blocks
 - Encoding using 2D DCT
 - Fast hardware implementation possible
- Motion JPEG
 - Simple to implement, well supported
 - Tolerance to rapid motion
 - Interframe encoding (each frame encoded separately)
 - Low compression ratios (e.g. 1:20, excellent quality 1:10)


Encoding temporal correlation

- Determining translation vector for each block
 - Translation for each block
 - Grouping blocks together (macroblocks)
- Frame reconstruction
 - Move blocks from previous frame
 - Visual difference encoded separately


t-1

7

Temporal correlation with blocks

- Determining block translation
 - Block matching method
 - Assume uniform motion within block
 - Searching for translation v, that minimizes distance between blocks

Video codec selection

- Compression level
- Losing information during compression
- Transfer speed (bit-rate) vs. distortion/loss
- Algorithm complexity
- Fixed / variable bit rate
- Communication channel characteristics
- Standard compatibility

Motion Picture Expert Group (MPEG)

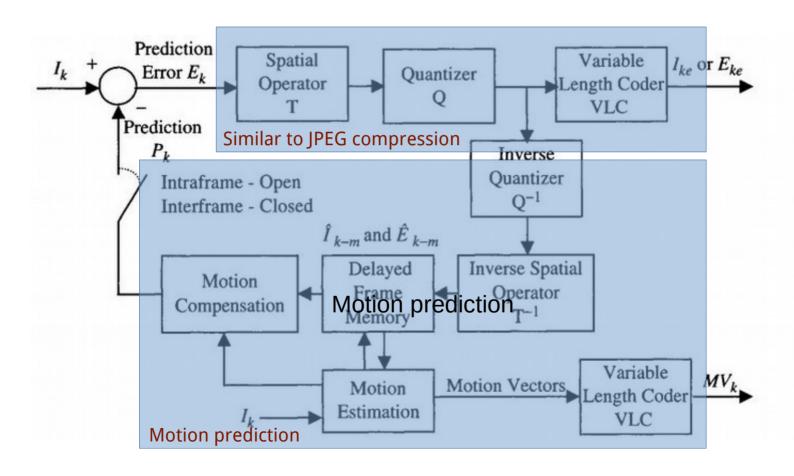
- Working group that proposes standards for video and audio compression and transmission
 - Established in 1988 (ISO + IEC)
- Proposes MPEG-X phases with multiple parts
 - Each part covers a certain aspect of the whole specification
 - Some standards are later revisited and amended

MPEG parts

- MPEG-1: Video and audio for digital media
- MPEG-2: Generic video coding
- MPEG-4: Interactive video, audio, 3D graphics, Web
- MPEG-H: High Efficiency Coding and Media Delivery in Heterogeneous Environments
- MPEG-I: Coded Representation of Immersive Media

MPEG profiles and levels

- Standard defines wide range of applications
 - In many cases support for entire standard is unrealistic or expensive
 - Profiles and levels formalize support constraints
- Profile subset of specification
 - Picture coding
 - Chroma format
- Level limit parameters
 - Maximum resolution
 - Framerate
 - Bitrate

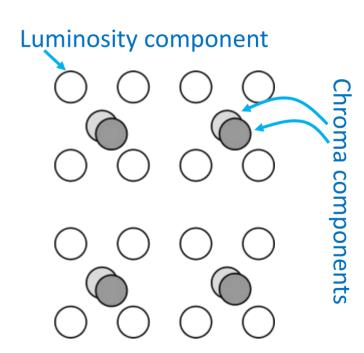

Video compression standards

Compression Standard	Publish Date	Application
H.261	1990	Video Conferencing, Video Telephony
MPEG 1 Part 2	1993	Video CD
H.262/MPEG 2 Part 2	1995	DVD Video, Blu-Ray, DVB, SVCD
H.263	1996	Video Conferencing, Videotelephony, Video on Mobile Phones(3GP)
MPEG 4 Part 2	1999	Video on the Internet
H.264/MPEG-4 AVC	2003	Blu-Ray, DVB, HD DVD
HEVC: <i>MPEG-H Part 2</i> ITU-T <i>H.265</i>	2013	Double data compression ratio compared to H.264
VVC: MPEG-I Part 3 ITU-T H.266	2020	Higher resolutions, omnidirectional, HDR

MPEG-1

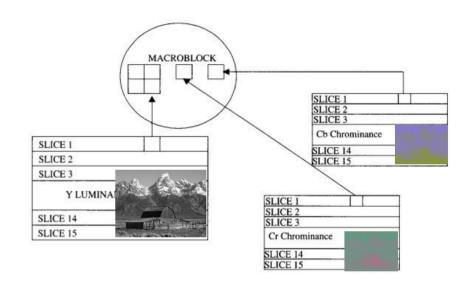
- Audio-video storage and playback for VHS-quality video
 - Transfer rate ~1.5Mbit/s
 - Compression rate 26:1 (video), 6:1 (audio) without excessive loss
- Five parts: video, audio, compliance, reference implementation, system
- Asymmetric application
 - Compress once, decompress many times
 - Encoder can be complex, encoding slow
 - Decoded is simpler, decoding fast

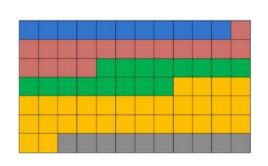
MPEG compression overview



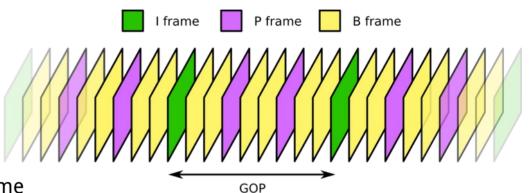
Requirements

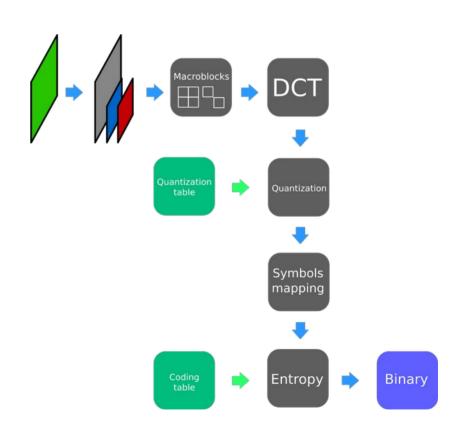
- Normal playback with random access
- Support for video editing
- Reverse playback and fast playback
- Different resolution, frame rate
- Cheap hardware implementation of decoders


Video resolution

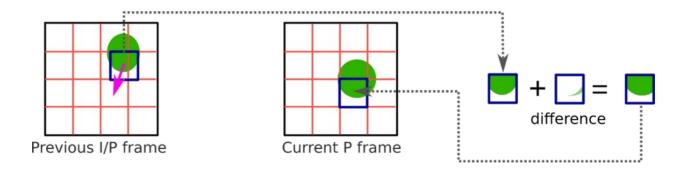

- Using YCrCb color space
 - Luminosity and two chroma channels
 - Chroma subsampling (Cr, Cb)
 - 8 bit values, 2:1:1 subsampling
- Common resolutions
 - 352x240, 352x288, 320x240
 - 352x240 (Y channel), 176x120 (Cr, Cb channels)

Macroblocks

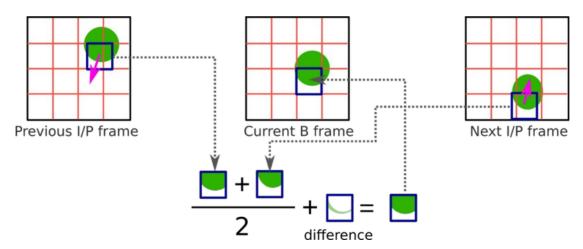

- YCrCb color space
 - Y channel 16x16 blocks
 - Cr, Cb channels 8x8 blocks
- Macroblock contains
 - Four 8x8 Y blocks
 - One 8x8 Cr block
 - One 8x8 Cb block
- Slice is sequence of macroblocks
 - Each slice can have different compression parameters
 - Easier error recovery (each slice encoded separately)


Frame types

- Group of pictures (GOP)
- Intra frame (I frame)
 - Encoded similarly than JPEG image
 - Approximately 12 frames apart
- Predictive frame (P frame)
 - Encoded with motion from previous I or P frame
- Bi-directional frames (B frames)
 - Encoded with prediction from previous and next I or P frames
- Low-resolution frame (frame D)
 - Fast video navigation
 - Only DC coefficients of DCT
 - Rarely used


Type I frames

- Each macroblock is encoded statically
 - Chroma subsampling
 - Macroblocks
 - Similar approach than JPEG (different quantization tables)
- Enables random access to video content

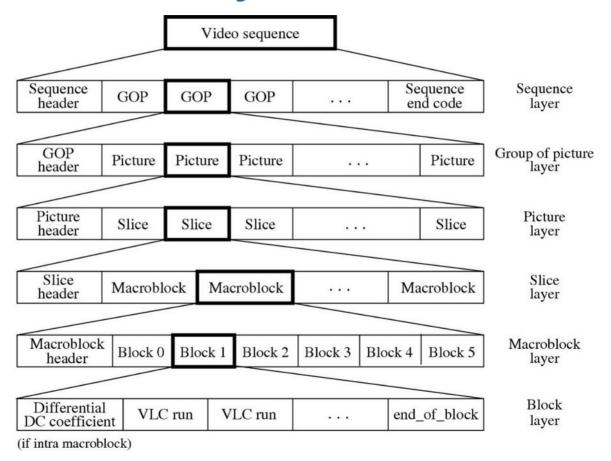

Type P frames

- Use information from previous I or P frame
 - Motion vector of each macroblock computed based on Y channel
 - Encode visual difference between the previous and current macroblock
 - If difference too big encode entire macroblock

Type B frames

- Encoded using previous and next I or P frame
 - Averaging motion-compensated images
 - Encoding only difference
 - Delayed decoding

Example of decoding a frame

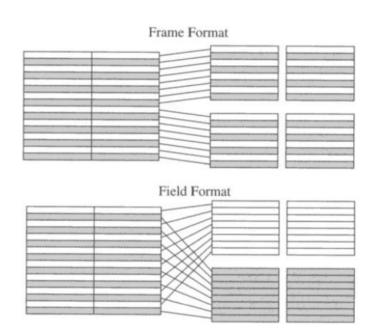

Our video stream contains frames

$$\{I_1, B_1, B_2, P_1, B_3, B_4, P_2, B_5, B_6, I_2, B_7, B_8, P_3, B_9, B_{10}, P_4, B_{11}, B_{12}, I_3\}$$

Which frames do we have to read to reconstruct the following frames

- I2 only I2
- P2 I1, P1, P2
- P3 I2, P3
- B4 I1, P1, P2, B4

Datastream hierarchy


MPEG-2

- Higher resolution video (HDTV) for 4-15Mb/s channels
 - Suitable for digital broadcast TV
 - Support for interlaced video
 - Better robustness (errors)
 - Scalability (various bitrates)
- MPEG-2 decoders should also decode MPEG-1 streams
- Excellent quality compression rate 1:30
- Two interlaced video formats
 - Frame format
 - Field format

Field/frame format

- Frame format
 - Odd and even lines are encoded as single image
 - Image encoded using single header
- Field format
 - Odd and even lines encoded separately, every field encoded as separate image
 - Each field has its own header
- Interleaved format can switch between two modes for each image
- Progressive mode uses only frame format

Scalability

- Different profiles for various applications and quality levels (e.g., DVD, recordings from two cameras)
- Video separated in multiple layers
 - Base layer: information for coarse image reconstruction
 - Enhancement layers: information for improving coarse image quality
 - Separate transmission of basic (high priority) and enhancement (lower priority) layers

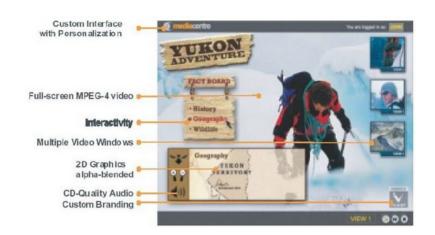
Spatial and frequency scalability

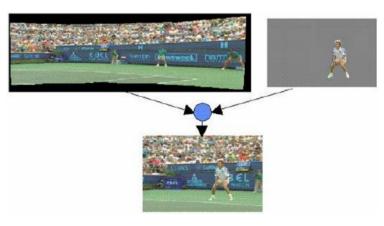
- Spatial scalability (image size)
 - Base layer: Images encoded with lower resolution
 - Enhancement layers: Missing high-resolution information, base layer used for prediction
- Frequency scalability (DCT coefficients)
 - Base layer: lower-frequency DCT (e.g. DC + motion vectors)
 - Enhancement layers: higher frequencies DCT (AC)

SNR and temporal scalability

- SNR scalability (signal-to-noise ratio)
 - Base layer: Heavily quantized intensity, coded in original resolution
 - Enhancement layers: residual information
- Temporal scalability
 - Base layer: images with lower framerate (e.g. I frames)
 - Enhancement layers: missing images in between, using motion prediction to reconstruct them (e.g. B frames)

MPEG-4


- Focus on interactive multimedia content
 - Better compression rate with higher throughput (bitrates).
 - Robust in environments with frequent errors
- Object oriented content representation media objects
 - Interactivity on object level
 - Random access to objects


Media objects

- Different media sources
 - Real and synthetic images, sound, graphics
 - Interaction, manipulation, indexing, retrieval
- Hierarchical organization of media objects
 - Objects form dynamic/composed scenes
 - Objects separated in channels and encoded separately
 - Objects are transferred in separate streams
 - Composition occurs on the decoding device
 - Scene description language (BIFS)

Scene hierarchy

- Video-object Sequence (VS)
 - Complete visual scene
- Video Object (VO)
 - Arbitrary non-rectangular shape
- Video Object Layer (VOL)
 - Scalable coding support
- Video Object Plane (VOP)
 - Snapshot of VO at time t
 - MPEG1, 2: Entire frame is one VOP
- Group of Video Object Planes (GOV)
 - Optional group of VOPs

H.263/MPEG 4 Part 2

- 21 profiles various applications
- Quarter Pixel motion compensation (Qpel)
 - Quarter pixel size for encoding motion vectors
 - Interpolation of blocks
- Global motion compensation (GMC)
 - Motion of scene based on affine transformation
 - Each macroblock encoded using global or local transformation
- Notable implementations: DivX and Xvid

H.264/MPEG-4 Part 10

- First version finished in 2003
 - Intended for storing high-definition video (Blu-Ray)
- Most widely used video codec
 - Used for HDTV, DVB-T
 - Included in Adobe Flash Player, Microsoft Silverlight
 - De-facto standard in HTML5
- Increased compression against MPEG-2
- Number of profiles available, from video-conference to highresolution stereoscopic streams

H.264 improvements

- Variable Length entropy coding of blocks
 - Context-adaptive variable length coding (CAVLC)
 - Context-adaptive binary arithmetic coding (CABAC)
- Flexible block size
- Motion compensation
 - Larger range
 - More accurate (Qpel)
- Intra-frame prediction
 - Prediction of blocks using neighboring blocks
- Signal-adaptive deblocking filters
 - Smoothing edges of blocks
 - Increases subjective quality

Excellent quality compression ratio 1:50

H.265 – High Efficiency Video Coding

- Part of MPEG-H phase (heterogeneous environments)
- Boost video streaming
 - Various block sizes, organized hierarchically (CTU)
 - Better intra- and inter-frame prediction
 - Parallel processing (WPP)
- 50% smaller streams than H.264
- Limited acceptance
 - Patents
 - Higher computational requirements (10x)

H.266 - Versatile Video Coding

- Part of MPEG-I phase
- Resolutions from 4K to 16K
- Support for 360° videos
- High dynamic range support
- Auxiliary channels (depth, transparency)
- Variable frame rate (0 to 120 Hz)
- Encoding complexity up to ten times that of H.265

Evaluating video/image compression

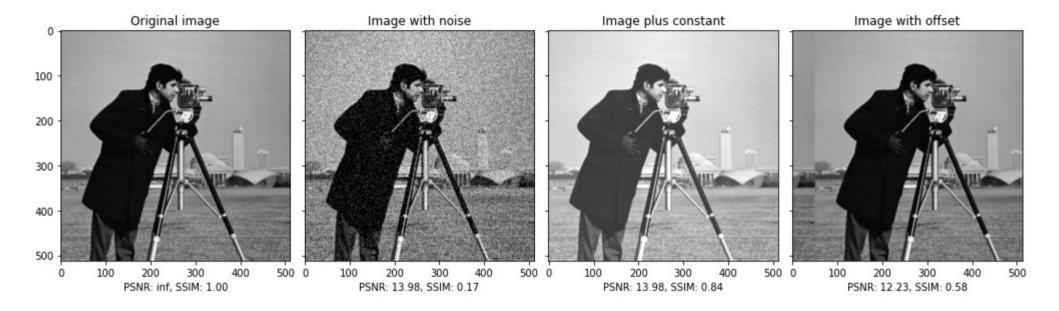
- Qualitative evaluation
- Quantitative evaluation
 - Evaluation datasets (Kodak, Xiph, CDVL)
 - Evaluation measures (PSNR, SSIM)

Peak Signal-to-Noise Ratio (PSNR)

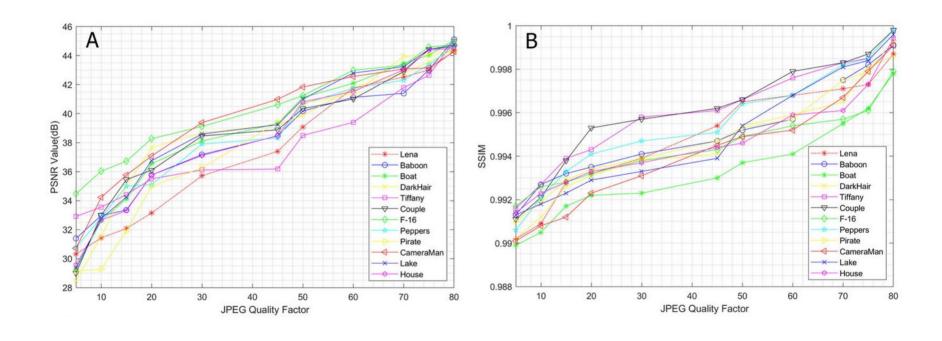
- Based on Mean Squared Error
 - Measured in dB
 - MAX = 255 for 8 bit image

$$PSNR = 10 \cdot \log_{10} \left(\frac{MAX_I^2}{MSE} \right)$$

$$= 20 \cdot \log_{10} \left(\frac{MAX_I}{\sqrt{MSE}} \right)$$


$$= 20 \cdot \log_{10} \left(MAX_I \right) - 10 \cdot \log_{10} \left(MSE \right)$$

Structural Similarity Index (SSIM)


- Perceived change in structural information
 - Luminance, contrast, structure
- Neighborhood pixels have strong dependencies
- MS-SSIM multi scale variant
- Calculated on a fixed local window (m x n)

$$SSIM(x,y) = \frac{(2\mu_x \mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

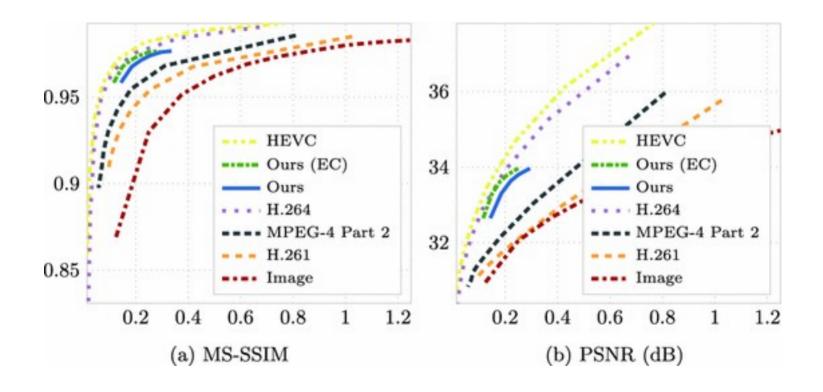

PSNR and **SSIM** examples

Image compression (JPEG)

Video compression comparison

