Content retrieval

Structured vs. unstructured content

* Structured content
« Relational databases (SQL)
 NoSQL databases (JSON)

 Searching unstructured content in large databases
o Text |
» Images
* Video
» Sound

Overview

 Text retrieval
e Search using Boolean expressions
e Building search dictionary
« Document similarity
» Feedback loops

 Multimedia retrieval
e Search for visual media
e Search for audio

 Retrieval sysems evaluation

Conceptual model

 Content retrieval steps

user
» User submits a query

(how to use language to specify what we are query
looking for?)

L)

esult

search
engine

-

« Compose and rank results based on the data
(how to match query with documents?)

 User evaluates results
(how to optimize the query for better experience?)

e [teration of steps can improve results quality

ri content

Representation matching

result

Search engine challenges

 Data is unstructured
e Not suitable for direct retrieval
 Describing important content

* Multiple ways to set up the same query
» Recognize intent
» Handle ambiguity

* Large quantities (data and queries)

Document search engine

®-0>+C

query free text spelling correction

user query parser »

rﬁ"'b? 4y v 1

scoring and ranking result
Tiered

documents parsing & linguistics positional

ale [' -
Inexact v
| =S

Metadata

p
‘ retrieval
machine-learned training data

indexers relevance

Searching using Boolean expressions

* Shakespeare - The Complete Works

* Which plays contain words Brutus and
Caesar, but do not contain word Calpurnia?

* Naive approach:
 Sequentially scan text of all plays

 Takes a lot of time (especially on large
databases)

 Better approach: pre-index all documents

Incidence matrix

For each term remember which documents contain it

Documents
. ™
| 4
Antony Julius The Hamlet Othello Macbeth
B and Caesar Tempest
Cleopatra

Antony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0
Terms Caesar 1 1 0 1 1 1
Calpm’:ﬁa 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

1 0 1 1 1 0

v Worser

Retrieval example

e Query: »Brutus AND Caesar AND NOT Calpurnia«

* Obtain binary vectors for all three terms, negate the last one and join them
with AND:

Antony | Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra

- Antony 1 1 0 0 0 1
1 Brutus 1 1 a 1 0]
1 Caesar 1 1 0 1 1 1
0 | Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

1 0 0 1 0 0

 Limitation: computer memory

Inverted index

* Incidence matrix is sparse

* Per-term list of documents that include the
term

Brutus — | 1| 2| 4| 11 |31 |45 | 173 | 174

Caesar — (1] 2| 4 5| 6|16 | 57 | 132 | ..

Calpurnia | — | 2| 31 | 54 | 101

— — e =

Terms List of documents

Processing queries

* Query: »Brutus AND Calpurnia«

* Find lists of documents that include »Brutus«
and »Calpurnia«

» Compute intersection of lists (linear complexity
for ordered lists)

Brutus — 1[—| 2 |—|4d {11 |—| 31 |—|45 |—| 173 |—| 174

Calpurnia —s |2 |—|31 [—|54 [—{ 101

Intersechhon — 21— 31

Optimizing queries

* AND query: »Brutus AND Caesar AND Calpurnia«
» Reduce number of comparisons - start with two least frequent terms

[Brutws | — [I] 2| 4] 11 [31[45]

[Caesar | — [1] 2] 4] 5] 6[16] 57132 |

[Calpurnia | — [2 [31 [54 [101]

e Optimized: »(Calpurnia AND Brutus) AND Ceasar«

* OR query: »(madding OR crowd) AND (killed OR slain)«

e Sum terms in OR relation to obtain conservative estimates of
combined lists

» Sort AND queries based on the estimates

Choosing the »document« unit

* Granularity
e Are documents files? (MS Word, LibreOffice, ...)
e What about mailbox file full of emails? (Thunderbird, Outlook)
» Attachments in email messages?

 Fine-grained - bad recall of relevant documents
* Coarse-grained - recall opacity

e Document selection depends on the use-case

e We can also search at multiple granularity levels

Decoding content
i & T ola Jd

* Text is a sequence of bytes itabun e book’

* Different encoding schemes: ASCII, UTF-8, ...

e Is text a linear, unambiguous sequence of characters?

(i Al AN a Lale 132 33 1962 dine i il) culiil
- & «— START
“Algeria achieved its independence in 1962 after 132 years of French occupation.’

* Other modalities even more complicated (e.g. images)

Building inverted index

* Split each document into a list of
tokens

e Linguistic processing, tokens
normalization

* Build a list of (token, document) pairs
* Sort the list alphabetically by token

* Group occurrences of same token
into list

 Remember document frequency

Friends, Romans, countrymen.

So let it be with Caesar.

friend countryman

friend 1
friend 2

countryman a0

S0 3
S0 5

S0 8

caesar 3

caesar 2

caesar 7

S0 caesar

caesar

countryman

friend

S0

Building term dictionary

* Tokenization (sequence
to tokens)

Friends, Romans, countrymen, lend me your ears.

* Exclude »stop«
tokens/words

Friends Romans countrymen lend me your ears

 Normalization
(equivalence classes)

Friends, Romans, countrymen, lend ears.

e Stemming and
lemmatization

friend roman countryman lend ear

Tokenization

* Punctuation marks:

 US.A=USA, O'Niel = Oniel

e Problems: C.AT. = CAT ?? ... Civil Air Transport (C.A.T)
* Connected words:

» lower-case = lowercase,

e San Francisco = SanFrancisco

 San Francisco-Los Angeles =?

» Lebensversicherungsgesellschaftsangestellter = ?

* Numbers:
e (800) 234-2333, (Mar 11 1983), (3/11/1983)

* More language-specific definitions (East Asia - no spaces)

Token normalization

* Removing accent marks (diacritics)
« cliché = cliche
e pefia = pena
 Universitat = Universitaet
e Convert to lower-case
« Father = father
« General Motors = general motors (company name - phrase)

* Language specific conversions

o colour = color
e 30.10.1978 =10.30.1978

Removing stop words

* Words that occur very often in all documents and
therefore do not have any retrieval value

an and are as at be by for from
has he in is it its of on that the
to was were will with

* How to query “Let It Be"” or “The Who"?

* Some search engines do not use stop words to
support phrase search

Stemming and lemmatization

* Lemmatization - transformation based on language rules
e am, are = be
e Car, cars, car's, cars' = car
» »the boy's cars are different colors« = »the boy car be differ color«

* Stemming is heuristic approach where we only cut parts of
words (faster)
» Porter Stemming Algorithm

« »boy’s car are differ color«

Querying phrases

* How to search for »multimedia systems«?
* Most engines support use of quotes to convey phrases

* Option 1: Biword-index
» Use each sequential pair of terms as a combined term

« Friends, Romans, Countrymen = [friends romans] [romans countrymen]

e QOption 2: Positional index
« For each term also store its positions in the document

» Use positions to determine relations between words

Positional index example

Term »to« occurs 993427 times in the entire corpus. It occurs in documents {1,2,4,5,7}.
In document 1 it occurs six times at places <7,18,33,72,86,231>.

to, 993427:
{ 1,6:{7,18,83,72, 86,231)
9, 5: (1,17, 74, 222, 255);
4,5: (8,16,190, 429, 433);
5,2: {363,367);
Zooe 415,25, 391 12 o)

be, 178239:

Positional index

* Proximity constraint
(documents where word A and
B are in distance Xx).

* Example:

» Query: »to be or not to be«
e Terms: to, be, or, not

e Intersection of lists for »to« and
»he«

8,33,72,86,231);

23,191); ...

1

(1,17, 74,222, 255);
. (8, 16|190 429, 433);

2: (363,

3: (13,

to, 993427
L 1.6
2.5
367);
be, 178239:
1.2:41%,25)

4,b: (17]191

o 1, 19, 10005 ...

291

)

430,434);

)

Bi-word vs. positional index

* Bi-word index
e More terms in index
e Limited relations
* Positional index
 Increased index size and complexity
e Increased query time
* Combined approach:

 Bi-word index for common phrases, e.g., »The Who«
» Positional index for other terms

Typographical errors

* Example: »Britian Spears« instead of »Britney Spears«

* Correcting errors:
 For each term separately: »padna« = »panda«
» Based on neighbor terms (context) »Flew form Heathrow«

 Suggest corrections for terms that are not in dictionary
* Offer the most likely:

« String distance (Levenshtein)
e Phonetic distance (Soundex)

* Optional: with multiple equal possibilities offer the one that users use
most often

Ranking documents

* Boolean queries only determine if a documents
matches the query or not

» Can generate large number of document
e Time-consuming to check all of them
e Show more relevant documents first

Ranking with term frequency

* Document that includes a queried term multiple
times should be more relevant than the rest

tf; ¢ = #£ occurences of term ¢ in document d
* Bag-of-words model

* Problem - no context:

» »Mary is quicker than John« equals to »John is quicker
than Marry«

Problems of term frequency

e Some terms do not discriminate between documents because they
occur in all of them

« Corpus of documents in automotive industry will include term »auto« a lot

* Reduce weights of frequent terms - document frequency
df; = # of document in which term ¢ appears at least once

e Inverse document frequency:

N

e N - number of all documents in corpus idft — 10g10 ET
t

o idfis low for frequent terms and high for scarce ones

Composite weights

N

 Term weight computed as: tf-idf; 4 = tf; 4 - 1df; = t1; 4 log ar,

* Weight is:
 High:if tis frequent only in a small number of documents

e Low: iftis rare or occurs in many documents

« Very low: if term t occurs in almost all documents

* Compute document weight for query g

Score(q,d) = > tf-idfy 4

teq

Ranking example

We have corpus of N=100 documents, in which we search for query
g=»white pig«. We know in advance that »white« occurs in ten
documents and that it occurs in document d1 five times. We also know
that the word »pig« occurs in fifty documents and that it occurs in
document d1 three times. Compute ranking weight of document d1 for

query g.

tfidfy g = tfyq - idf; = tf; g logo 2

Score(q,d) =) tf-idf; 4

teq

Document similarity

Vector of weights for all terms in the dictionary (histogram)

V(d) = [tf-idf;, g, tf-idfy, 4, ..., tfidf,, 4

Customers Who Bought This Item Also Bought

'u,fJ SecondWorld Threshaold (Jack Sigler) Instinct (Chess Team
b » Jeremy Robinsaon » Jeremy Robinson Adventure)
*rdrindryy (40) Fodrindnly (28) » Jeremy Robinson

Vector space

* Similarity as dot product dq
V(d) = [tf-idfy, g, tf-idf,, 4, ..., tf-idf;,, 4]

sim(dy, d2) = V(dy) - V(d2) do

* Vector normalization

» Longer vectors will have larger norm
e Longer documents are not more important
e Euclidean normalization v(d) = V(d) / [|[V(d)], where [V (d)]| = /32, 2?

« Similarity interpreted as cosine of angle between vectors

Similarity example

* Left table shows tf values (not weighted with idf) for dictionary of
three terms for three books: Sas, PaP, and WH.

* Which document is most similar to document SaS?

Term frequency

term
affection
jealous

gossip

Sa$s
115
10
2

PaP
58
7

0

WH
20
11

Normalized term frequency

term
affection
jealous

gossip

Sa$s

0.996
0.087
0.017

PaP
0.993
0.120
0

WH

0.847
0.466
0.254

Matching query with documents

* Vector space can be used to rank documents
 Similarity of query g and document d:
* Example: g = »jealous gossip« score(q,d) = v(q) - v(d)

Vi(g) =[0,1,1] — v(q) = [0,0.707, 0.707]

score(q,SaS) =7, score(q, PaP) =7, score(q, WH) =7

Weighting schemes

» Other interpretations of tf and idf also exist
» Can be different for query and documents
» Proportional to the tf and idf qualities

"

0,1 (binary) 1 (unary)
ft d lo N

Y g [
log(1 + ft,4) 4t

| (N >+1
(@)
S\1+af,

Weighting vectors example

Query g=»best car insurance« in corpus of
documents (N=100000)

Corpus Query (unary-idf)
term df idf f w -
auto 5000 13 0 0 -
best 50000 0.3 1 03 -
car 10000 1.0 1 10 -
insurance 100 3.0 1 3.0 -

*

appearances in query # appearances in document

score(q, d) =0 + 0 + 0.16 + 2.89 = 3.04

Document retrieval algorithm

» Cosine similarity between query sample and all
documents

e Order documents by similarity
e Return top K documents
* Weighting with tf-idf requires:
» For each term also store its document frequency
 For every term in every document store term frequency

Feedback loops

* Multiple »words«, same concept

» User does not know how to form a sufficiently specific query
« Examples: »aircraft« vs. »plane; »ship« vs. »boat«

* Global methods:

» Expand query to as many possibilities with as many possible terms
with error correction, synonyms, etc.

* Local methods:

» Based on interaction between the user and the system
 Relevance feedback

Relevance feedback

User reports information about relevance of individual results back to
the system to improve the query

* Forming good queries is hard
if the entire corpus is not

known to the user (—

. . . . USER _} IR System
e Assessing individual documents A — < > pata

M M A Documen ts index
IS simple l 1

Information Revised results
Need

Feedback N——

Rocchio algorithm

Documents represented in vector space
Known query and some relevant and irrelevant samples

Formulate new query that is
Maximally similar to relevant results
Minimally similar to irrelevant results

Use new query to retrieve better results

—ozqo+ﬁ— Zd Z d;
| Dy d;eD, dED

® (o - user query
e D, - set of known relevant results
e D, - set of known nonrelevant results

e o, 3,7 - weights (e.g. a=1,8=0.75,v = 0.15)

@ Non-Relevant Documents

¥ Relevant Documents

* ¥ Modified Vector

@.@
* | *

Original Vector

Blind/pseudo relevance feedback

* Use default method to find most relevant documents
e Assume that K highest ranked documents are relevant
* Compute relevance feedback (Rocchio)

Example TREC ad hoc task (Buckley et al. 1995)

Precision at k = 50
Term weighting no RF pseudo RF
lnc.ltc 64.20/0 72.70/0
Lnu.ltu 74.2% 87.0%

Multimedia Retrieval

Overview

* Visual information retrieval
 Audio information retrieval

» Making retrieval efficient
e Hierarchical methods
o Vector databases

As text retrieval

* Documents can be queried using
o Metadata (text)
e User annotations (tags)
« Manual annotations (tags, captions)

* Problems
» Metadata is not complete/informative/available
« User annotations not supported, unreliable
» Captioning is selective / biased

Images and text queries

* Images in web documents
» Use text around image (URL element name, neighborhood)
« Same principles as in text retrieval systems

» Example of searching for images with word
»Sunset«

Sunset at Rocky Point Frank Smiles Sunset Beach
at Sunset

Problems with text queries

* Avoid using image content
« Annotation bias
» Metadata ambiguity

* Perceptual relevance
» Impossible to describe composition

 Abstract shapes

Querying image content

* Extract image content
 Detecting object and categories
 Describing relations, actions
« Ambiguous problem

* Low-level features
» Color
e Texture
 Shape
o Structural elements

Image retrieval systems

—

- Abstract Query by keyword
Thcughts /

iu:“—» ELE,

oo B

Query by conept byout

Wengang Zhou, Hougiang Li, Qi Tian, Recent Advance in Content-based Image Retrieval: A Literature Survey, 2017

Image retrieval system

Image database Feature database

Feature extraction

: (0.1,0.03,0.04, - ,0.01)
= (0,1, 0003, 0,04, - -, 0.01)

‘ ﬁ = (0.03,002,01, -, 0.02) ‘ (0.03,0.02,0.1,- - ,0.02)
“ = (005,001,001, -, 0.03)

.
.
*

(0.05,0.01,0.1, - ,0.05)

I Finding best match .

Query result

Query image

Feature extraction

How to describe images?

S,
l:‘ll' -'

Color Texture Shape

Color description

* Average color
e Ha b
 Parametric distribution

(Gaussian) (har0a) (o)
« Signle mode
* Color histogram
» Multi-modal
e Illumination change sensitivity

Describing texture

e Texture = spatial arrangement of color or
intensities in an image or a selected
region of an image

e Fourier Transform
» Local Binary Patterns
e Co-occurence Matrix

Including spatial information

* Divide image into sub-regions
 Stack histograms

l "ﬂ —nfr{‘ : i“[g% ;M :

| ;i’l’”{ﬁ

Bag of words

* Inspired by text retrieval systems

e General object categories
» No clear spatial consistency

» Objects composed of important parts
- words

e Ignoring relationships between
parts

« Dictionary - list of known parts

 Descriptor - histogram of part
occurrences

Visual words

Word Feature
Token Centroid/Cluster
Document Image/Frame

Corpus Video/Collection

Local regions

* Detecting stable regions
» Robustness
» Corners, blobs

e Describing neighborhood

o Invariance (illumination, rotation, scale)

SIFT features

* Scale invariant feature transform

» Divide region into 4x4 sub-regions:
16 cells

« Compute gradients in each sub-
region

o Discretize orientation (8 directions)

» Compute orientation histogram
based on magnitude

« Stack histograms and normalize:
4x4x8 = 128

Building a dictionary

* Unsupervised learning
« Large number of different local descriptors
 Finite amount of words

e Clustering

wy] we Wz Wy Ws
) |

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR 2005

Example of visual words

Sivic, Josef, and Andrew Zisserman. "Video Google: A text retrieval approach to object matching in videos." IEEE CVPR, 2003

Deep learning

Human expert
era

Machine learning
era

Deep learning
era

i Output
Handcrafted | ! | Trained || Trained
model 1| classifier || classifier
Handcrafted E Handcrafted E Trained
features : features ' | features
: :
: Input :

-
r

CNN example - VGG16

I L p U p2 3 p3 ps s ps fifa fs3 my

. convolutional layer . max-pooling layer . fully-connected layer soft-max layer

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014

Image retrieval with inverted index

* Multi-object detector (semantic tokens)

* Use Boolean queries to per-process database

Bear cub

(score) “gg° “o8
Semantic

Ice bear

" B
feature 3 (score) ﬁ BN Result A
i e B : look-up

extraction Eiswer n il

(score) 09 0.8 0.6

Reranking index
q {0.1,03,..,0.7)
W ©60.1..09)

05,0.2,..,0.8
R]

- =>0Online processing - {0.4,0.3, ..., 0.8)
—= Offline processing

Reranking
feature
extraction

A. Popescu, A, Ginsca, H. Le Borgne, “Scale-free content based image retrieval (or nearly so)”, ICCV 2017 Workshops

Towards image understanding

* Semantic segmentation

 Spatial relationships

* Describing scene

‘man in black shirt is playing ‘construction worker in orange “two young girls are playing with "boy is doing backflip on person ride dog person on top of traffic]igh[
guitar” safety vest is working on road.” lego toy.” wakeboard.”

cs.stanford.edu/people/karpathy/deepimagesent/ www.di.ens.fr/willow/research/unrel/

Connecting text and images

\

Pepper the I Toxt

aussie pup > Ehcoder
v v vy

1
L

/ Tl T2 T3 i TN
—> L LTy | LT | LT | o [Iy

\ —>» I, LT | Ty | LT . | IyTy
Image I LTy | 1T, IR LT,
Encoder » I3 371y | 1371y | 13713 3" IN
— IN IN'Tl IN'TZ IN'T3 IN'TN

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Sketch-Based Image Retrieval

* Query = sketch
» Specify composition

e Large variance
o Ambiguity

* Documents = images
e Cross-modal scenario

Handling ambiguity

U—D EEER e

shared weights
\‘ >
loss
—

d) o
/ qe(J | 1) = p(j i) =

__oxp(sim(fo(@.).fo(u)/7) ()bt
T Yo exp(sim(fo (@) fo(ye))/T) (' (.Y) 63' At T N

AS

Demi¢ and Cehovin Zajc, “Back To The Drawing Board: Rethinking Scene-Level Sketch-Based Image Retrieval” BMVC 2025

Describing video content

e Structure: frame, shot, scene

* Content
e Dynamics: still, moving objects, camera movement
 Activity in a frame interval, e.g. jumping, robbery, horse race
» Categories, e.g. cats, horses, cars
» Objectinstances: e.g. Harry Potter, Jack Sparrow, Han Solo

MPEG-/

» Efficient access and manipulation of multimedia
content

 Complementary to MPEG-4

» Standardized text-less object retrieval
e D - Object descriptors (audio and video)
e DS - Description schemes

» DDL - Description definition language (XML)

Examples of descriptors

* Shape
* Color « Shape descriptor
« Color space « Contour
 Color layout » 2D-3D shape
« Dominant color * Motion
 Color structure « Activity
e GoP color « Camera motion

o Warping parameters
 Texture PIng p

 Trajectory
« Homogenous

e Parametric motion

* Non-homogenous » Localization

« Spatio-temporal
* Region

Structure description

Describing content at the level of video segment

Moving Region: Helicopter Moving Region: Person ~ Moving Region: Boat

Example: three moving objects, describe relations ...

Three forms of sound

e Speech
e Words and grammar
» Can be converted to text
* Music
 Vocal and/or instrumental sounds
» Can be represented by a score

* Waveform
» No dedicated semantic representation

o Superset

Retrieval in Audio

* Identification
e Exact match

 Versions, variations
* Segment matching
 Finding motives, quotations
* Category-based retrieval

« Genre, mood, tempo

e Recommendation
 Finding audio with similar qualities

%

E Remix / Remaster retrieval
g . Music / speech segmentation
§ Version {
Identification _
Year / epoch discovery
Cover song detection
Version identification Key / mode discovery
E‘ Loudness-based retrieval
=3
© ,
2| Plagiarism detection Variation / motif Category-based
S plscousiy Retrieval
o Copyright monitoring Audio ; .
\ Matchin Tag / metadata inference
Audio - Mood classification
Musical al i 1Tl I
Identification s Aplations ,_ .
discovery Genre / style similarity
Atdio matchin :

Audio fingerprinting ’ 9 Recommendation
1=
@ o e
g | Audioidentification Instrument-based retrieval
&
™ || high Specificity low

Example-based music search

» Dataset of audio samples (music recordings)
* Look for most similar sample

* Identification
 High specificity

* Variations
» Low specificity
« Semantic meaning

Shazam

* Query by example
 Short fragments

e Identification
 High specificity
 Large database

* Fast, noise resistant
» Fingerprinting
» Hashing

track data
. O
Jser m SHazaMm

query ‘

track 1
track 2

track N

Peak fingerprinting

* Spectrogram
* Local peaks - features (time, frequency)

Clip / query Track / document

Combinatorial Hashing

* Combinations of peaks

T
e Target zone ssoof@ @Y g lri
» Triplet: F1, F2, dT ool e f
» 30bit hash (+ onset time, song ID) Ezl: K{[Fl:zi :]:'-
* Performance 500} ; | LT
» Lower survival (specific) n 5 YR At o el

e Much higher speed

Query matching

* {(H_i, T_i)} = query fingerprints
 Foreach (H_i, T i)

e For each {(T_j, S_j) where H_j == H_i} in database:
Tij=Tj-T
votes[(S_j, T_ij)] +=1

* Sort by number of votes
* Select top K matches (can be in same song)

Retrieval Evaluation

Objective retrieval performance

How many of the retrieved documents are relevant?

* Precision - percentage of relevant documents among retrieved
documents

 Recall - percentage of returned relevant documents with respect to all
relevant documents

user
query EEEENEN
HEEEEBERN
HEEEEEDB
irrelevant a a a
WWW¥ relevant
EEEEEE g EEEEEE

EEEEEE e |[EEEEEE

Retrieval as classification

predicted condition
abandoned retrieved

true condition
relevant irrelevant

Precision = = PT+P =P
Recall = = P:’ED ~
TPra,te — ij_]_PFN
FP'rate — FPF_EFN

Precision vs. recall

* Precision and Recall are related measures

 Precision typically falls if the number of retrieved
documents is increased

e Recall increases if the number of retrieved documents is

increased
. I = 1
* F-measure as a compromise T oa 4 loa
« Typical weight a=05—F =241k

* Higher value is better (maximum is 1)

Similarity threshold

e Decide which documents to
return

e Document similarity

« Threshold sim(q,d;) > €

e Depending on the threshold
we get different precision and
recall

Retrieval performance analysis

* Dataset with ground-truth Precision = 7 PT+P 7P
. TP
 Compute similarity for all documents Recall = 757w
_ _ TP
« Compute TPR and FPR for threshold I'Prate = 7p1pn
FP?“ate — FPZ%N

True condition:
1 1 0 1 0 1 Precision=3/4=0.75

Similarity: 1.0 0.2 0.1 0.8 0.9 0.8 i> Recall=3/4=.75
TPrate=3/4=0.75

For threshold 0.3: 1(TP) Own Oy Tam Ter Tar FPrate=1/2=0.5

Plotting performance

* For each threshold we get a point
in 2D space

* Visualize performance as plot for
all thresholds

* Average Precision (AP) - Averaging
over multiple thresholds (k)
AP = 1/|M| 3", cps Precision(Ry)

* MAP (average of AP for multiple
queries)

Precision

-
o

o
co
|

o
()]
I

o
Y
|

o
[\
|

o
o

o
o

0.2

0.4

Recall

0.6

0.

The ROC curve

* Receiver operating
characteristic with respect
to criterion (threshold)

e True positive rate
» False positive rate
* Interpretable measures

e Distance to (0, 1)
e Area under the curve (AUQ)

TP rate

FP rate

ROC analysis example
* Documents are scored for relevance by their similarity to the query

Ql [T T T T T,)] T
scores: 06 0.2 05 02 05 035 03 04
groundtruth: 1 1 0 0 1 0 0 1

* Calculate the ROC curve and determine optimal threshold
 Sort documents by similarity

« Set of unique similarity scores is threshold pool

 For each threshold in pool calculate TPrate and FPrate

 Each pair (FPrate, TPrate) is a point on a ROC curve

« Select threshold that maximizes chosen criteria (e.g. point closest to (0,1))

Reading a ROC curve

* What s the percentage of
retrieved relevant documents if we
allow 20% of irrelevant documents
in the result?

* What percentage of irrelevant
results do we get if we want at
least 90% of relevant documents
in the results?

TP rate

Y

Efficient retrieval

* Most descriptors are dense
 Inverted index not efficient
» Comparison is slow

* Approximate nearest neighbor
» Accuracy vs. speed

Approximate nearest neighbor

e Random projection
» Low-dimensional space

e Structure the space
 Hierarchical Clustering
e Product Quantization
 Hierarchical Navigable Small Worlds

* Locality-sensitive hashing
 Similar descriptors have the same hash value

Vector databases

* Efficient storage of representations
» Organization
» Metadata

* Management
e Sharding

¢33 Pinecone

e Monitoring

¢ chroma

e AcCcess

