

Content retrieval

Structured vs. unstructured content
● Structured content

● Relational databases (SQL)
● NoSQL databases (JSON)

● Searching unstructured content in large databases
● Text
● Images
● Video
● Sound

Overview
● Text retrieval

● Search using Boolean expressions
● Building search dictionary
● Document similarity
● Feedback loops

● Multimedia retrieval
● Search for visual media
● Search for audio

● Retrieval sysems evaluation

Conceptual model
● Content retrieval steps

● User submits a query
(how to use language to specify what we are
looking for?)

● Compose and rank results based on the data
(how to match query with documents?)

● User evaluates results
(how to optimize the query for better experience?)

● Iteration of steps can improve results quality

Representation matching

Search engine challenges
● Data is unstructured

● Not suitable for direct retrieval
● Describing important content

● Multiple ways to set up the same query
● Recognize intent
● Handle ambiguity

● Large quantities (data and queries)

Document search engine

Searching using Boolean expressions
● Shakespeare – The Complete Works
● Which plays contain words Brutus and

Caesar, but do not contain word Calpurnia?
● Naive approach:

● Sequentially scan text of all plays
● Takes a lot of time (especially on large

databases)
● Better approach: pre-index all documents

Incidence matrix
For each term remember which documents contain it

Terms

Documents

Retrieval example
● Query: »Brutus AND Caesar AND NOT Calpurnia«
● Obtain binary vectors for all three terms, negate the last one and join them

with AND:

● Limitation: computer memory
1 0 0 1 0 0

-
1
1
0
-
-
-
...

Inverted index
● Incidence matrix is sparse
● Per-term list of documents that include the

term

Terms List of documents

Processing queries
● Query: »Brutus AND Calpurnia«
● Find lists of documents that include »Brutus«

and »Calpurnia«
● Compute intersection of lists (linear complexity

for ordered lists)

Optimizing queries
● AND query: »Brutus AND Caesar AND Calpurnia«

● Reduce number of comparisons – start with two least frequent terms

● Optimized: »(Calpurnia AND Brutus) AND Ceasar«
● OR query: »(madding OR crowd) AND (killed OR slain)«

● Sum terms in OR relation to obtain conservative estimates of
combined lists

● Sort AND queries based on the estimates

Choosing the »document« unit
● Granularity

● Are documents files? (MS Word, LibreOffice, ...)
● What about mailbox file full of emails? (Thunderbird, Outlook)
● Attachments in email messages?

● Fine-grained – bad recall of relevant documents
● Coarse-grained – recall opacity
● Document selection depends on the use-case
● We can also search at multiple granularity levels

Decoding content
● Text is a sequence of bytes
● Different encoding schemes: ASCII, UTF-8, ...
● Is text a linear, unambiguous sequence of characters?

● Other modalities even more complicated (e.g. images)

Building inverted index
● Split each document into a list of

tokens
● Linguistic processing, tokens

normalization
● Build a list of (token, document) pairs
● Sort the list alphabetically by token
● Group occurrences of same token

into list
● Remember document frequency

Building term dictionary
● Tokenization (sequence

to tokens)
● Exclude »stop«

tokens/words
● Normalization

(equivalence classes)
● Stemming and

lemmatization

Tokenization
● Punctuation marks:

● U.S.A = USA , O‘Niel = Oniel
● Problems: C.A.T. = CAT ?? … Civil Air Transport (C.A.T)

● Connected words:
● lower-case = lowercase,
● San Francisco = SanFrancisco
● San Francisco-Los Angeles = ?
● Lebensversicherungsgesellschaftsangestellter = ?

● Numbers:
● (800) 234-2333, (Mar 11 1983), (3/11/1983)

● More language-specific definitions (East Asia – no spaces)

Token normalization
● Removing accent marks (diacritics)

● cliché = cliche
● peña = pena
● Universität = Universitaet

● Convert to lower-case
● Father = father
● General Motors = general motors (company name - phrase)

● Language specific conversions
● colour = color
● 30.10.1978 = 10.30.1978

Removing stop words
● Words that occur very often in all documents and

therefore do not have any retrieval value

● How to query “Let It Be“ or “The Who”?
● Some search engines do not use stop words to

support phrase search

Stemming and lemmatization
● Lemmatization – transformation based on language rules

● am, are = be
● car, cars, car's, cars' = car
● »the boy's cars are different colors« = »the boy car be differ color«

● Stemming is heuristic approach where we only cut parts of
words (faster)

● Porter Stemming Algorithm
● »boy ’ s car are differ color«

Querying phrases
● How to search for »multimedia systems«?
● Most engines support use of quotes to convey phrases
● Option 1: Biword-index

● Use each sequential pair of terms as a combined term
● Friends, Romans, Countrymen = [friends romans] [romans countrymen]

● Option 2: Positional index
● For each term also store its positions in the document
● Use positions to determine relations between words

Positional index example
Term »to« occurs 993427 times in the entire corpus. It occurs in documents {1,2,4,5,7}.
In document 1 it occurs six times at places <7,18,33,72,86,231>.

Positional index
● Proximity constraint

(documents where word A and
B are in distance x).

● Example:
● Query: »to be or not to be«
● Terms: to, be, or, not
● Intersection of lists for »to« and

»be«

Bi-word vs. positional index
● Bi-word index

● More terms in index
● Limited relations

● Positional index
● Increased index size and complexity
● Increased query time

● Combined approach:
● Bi-word index for common phrases, e.g., »The Who«
● Positional index for other terms

Typographical errors
● Example: »Britian Spears« instead of »Britney Spears«
● Correcting errors:

● For each term separately: »padna« = »panda«
● Based on neighbor terms (context) »Flew form Heathrow«

● Suggest corrections for terms that are not in dictionary
● Offer the most likely:

● String distance (Levenshtein)
● Phonetic distance (Soundex)

● Optional: with multiple equal possibilities offer the one that users use
most often

Ranking documents
● Boolean queries only determine if a documents

matches the query or not
● Can generate large number of document
● Time-consuming to check all of them
● Show more relevant documents first

Ranking with term frequency
● Document that includes a queried term multiple

times should be more relevant than the rest

● Bag-of-words model
● Problem - no context:

● »Mary is quicker than John« equals to »John is quicker
than Marry«

Problems of term frequency
● Some terms do not discriminate between documents because they

occur in all of them
● Corpus of documents in automotive industry will include term »auto« a lot

● Reduce weights of frequent terms – document frequency

● Inverse document frequency:
● N – number of all documents in corpus
● idf is low for frequent terms and high for scarce ones

Composite weights
● Term weight computed as :
● Weight is:

● High: if t is frequent only in a small number of documents
● Low: if t is rare or occurs in many documents
● Very low: if term t occurs in almost all documents

● Compute document weight for query q

Ranking example
We have corpus of N=100 documents, in which we search for query
q=»white pig«. We know in advance that »white« occurs in ten
documents and that it occurs in document d1 five times. We also know
that the word »pig« occurs in fifty documents and that it occurs in
document d1 three times. Compute ranking weight of document d1 for
query q.

Document similarity
Vector of weights for all terms in the dictionary (histogram)

Vector space
● Similarity as dot product

● Vector normalization
● Longer vectors will have larger norm
● Longer documents are not more important
● Euclidean normalization
● Similarity interpreted as cosine of angle between vectors

Similarity example
● Left table shows tf values (not weighted with idf) for dictionary of

three terms for three books: SaS, PaP, and WH.
● Which document is most similar to document SaS?

term SaS PaP WH

affection 115 58 20

jealous 10 7 11

gossip 2 0 6

Term frequency

term SaS PaP WH

affection 0.996 0.993 0.847

jealous 0.087 0.120 0.466

gossip 0.017 0 0.254

Normalized term frequency

Matching query with documents
● Vector space can be used to rank documents
● Similarity of query q and document d:
● Example: q = »jealous gossip«

Weighting schemes
● Other interpretations of tf and idf also exist

● Can be different for query and documents
● Proportional to the tf and idf qualities

Weighting vectors example

Query q=»best car insurance« in corpus of
documents (N=100000)

Corpus Query (unary-idf) Document (tf-idf)

term df idf tf w tf w nw

auto 5000 1.3 0 0 1 1.3 0.21

best 50000 0.3 1 0.3 0 0 0

car 10000 1.0 1 1.0 1 1.0 0.16

insurance 100 3.0 1 3.0 2 6.0 0.96

appearances in query # appearances in document

Document retrieval algorithm
● Cosine similarity between query sample and all

documents
● Order documents by similarity
● Return top K documents
● Weighting with tf-idf requires:

● For each term also store its document frequency
● For every term in every document store term frequency

Feedback loops
● Multiple »words«, same concept

● User does not know how to form a sufficiently specific query
● Examples: »aircraft« vs. »plane«; »ship« vs. »boat«

● Global methods:
● Expand query to as many possibilities with as many possible terms

with error correction, synonyms, etc.
● Local methods:

● Based on interaction between the user and the system
● Relevance feedback

Relevance feedback
User reports information about relevance of individual results back to
the system to improve the query
● Forming good queries is hard

if the entire corpus is not
known to the user

● Assessing individual documents
is simple

Rocchio algorithm
● Documents represented in vector space
● Known query and some relevant and irrelevant samples
● Formulate new query that is

● Maximally similar to relevant results
● Minimally similar to irrelevant results

● Use new query to retrieve better results

Blind/pseudo relevance feedback
● Use default method to find most relevant documents
● Assume that K highest ranked documents are relevant
● Compute relevance feedback (Rocchio)
● Example TREC ad hoc task (Buckley et al. 1995)

Multimedia Retrieval

Overview
● Visual information retrieval
● Audio information retrieval
● Making retrieval efficient

● Hierarchical methods
● Vector databases

As text retrieval
● Documents can be queried using

● Metadata (text)
● User annotations (tags)
● Manual annotations (tags, captions)

● Problems
● Metadata is not complete/informative/available
● User annotations not supported, unreliable
● Captioning is selective / biased

Images and text queries
● Images in web documents

● Use text around image (URL element name, neighborhood)
● Same principles as in text retrieval systems

● Example of searching for images with word
»Sunset«

Problems with text queries
● Avoid using image content

● Annotation bias
● Metadata ambiguity

● Perceptual relevance
● Impossible to describe composition
● Abstract shapes

Development of retrieval systems that

encode image content directly

Querying image content
● Extract image content

● Detecting object and categories
● Describing relations, actions
● Ambiguous problem

● Low-level features
● Color
● Texture
● Shape
● Structural elements

Image retrieval systems

Wengang Zhou, Houqiang Li, Qi Tian, Recent Advance in Content-based Image Retrieval: A Literature Survey, 2017

Image retrieval system

How to describe images?

Color description
● Average color
● Parametric distribution

(Gaussian)
● Signle mode

● Color histogram
● Multi-modal
● Illumination change sensitivity

Describing texture
● Texture = spatial arrangement of color or

intensities in an image or a selected
region of an image

● Fourier Transform
● Local Binary Patterns
● Co-occurence Matrix

Including spatial information
● Divide image into sub-regions
● Stack histograms

Bag of words
● Inspired by text retrieval systems
● General object categories

● No clear spatial consistency
● Objects composed of important parts

- words
● Ignoring relationships between

parts
● Dictionary – list of known parts
● Descriptor – histogram of part

occurrences

Object Bag of words

Visual words

Local regions
● Detecting stable regions

● Robustness
● Corners, blobs

● Describing neighborhood
● Invariance (illumination, rotation, scale)

rotate scale

SIFT features
● Scale invariant feature transform

● Divide region into 4x4 sub-regions:
16 cells

● Compute gradients in each sub-
region

● Discretize orientation (8 directions)
● Compute orientation histogram

based on magnitude
● Stack histograms and normalize:

4x4x8 = 128

Building a dictionary
● Unsupervised learning

● Large number of different local descriptors
● Finite amount of words
● Clustering

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". CVPR 2005

Example of visual words

Sivic, Josef, and Andrew Zisserman. "Video Google: A text retrieval approach to object matching in videos." IEEE CVPR, 2003

Deep learning

CNN example – VGG16

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014

Image retrieval with inverted index
● Multi-object detector (semantic tokens)
● Use Boolean queries to per-process database

A. Popescu, A, Ginsca, H. Le Borgne, “Scale-free content based image retrieval (or nearly so)”, ICCV 2017 Workshops

Towards image understanding
● Semantic segmentation
● Spatial relationships
● Describing scene

cs.stanford.edu/people/karpathy/deepimagesent/ www.di.ens.fr/willow/research/unrel/

Connecting text and images

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML, 2021.

Sketch-Based Image Retrieval
● Query = sketch

● Specify composition
● Large variance
● Ambiguity

● Documents = images
● Cross-modal scenario

Handling ambiguity

Demić and Čehovin Zajc, “Back To The Drawing Board: ​Rethinking Scene-Level Sketch-Based Image Retrieval” BMVC 2025

Describing video content
● Structure: frame, shot, scene
● Content

● Dynamics: still, moving objects, camera movement
● Activity in a frame interval, e.g. jumping, robbery, horse race
● Categories, e.g. cats, horses, cars
● Object instances: e.g. Harry Potter, Jack Sparrow, Han Solo

MPEG-7
● Efficient access and manipulation of multimedia

content
● Complementary to MPEG-4
● Standardized text-less object retrieval

● D – Object descriptors (audio and video)
● DS – Description schemes
● DDL – Description definition language (XML)

Examples of descriptors

● Color
● Color space
● Color layout
● Dominant color
● Color structure
● GoP color

● Texture
● Homogenous
● Non-homogenous

● Shape
● Shape descriptor
● Contour
● 2D-3D shape

● Motion
● Activity
● Camera motion
● Warping parameters
● Trajectory
● Parametric motion

● Localization
● Spatio-temporal
● Region

Structure description
Describing content at the level of video segment

Example: three moving objects, describe relations ...

Three forms of sound
● Speech

● Words and grammar
● Can be converted to text

● Music
● Vocal and/or instrumental sounds
● Can be represented by a score

● Waveform
● No dedicated semantic representation
● Superset

Retrieval in Audio
● Identification

● Exact match
● Versions, variations

● Segment matching
● Finding motives, quotations

● Category-based retrieval
● Genre, mood, tempo

● Recommendation
● Finding audio with similar qualities

Example-based music search
● Dataset of audio samples (music recordings)
● Look for most similar sample
● Identification

● High specificity
● Variations

● Low specificity
● Semantic meaning

Shazam
● Query by example

● Short fragments
● Identification

● High specificity
● Large database

● Fast, noise resistant
● Fingerprinting
● Hashing

Peak fingerprinting
● Spectrogram
● Local peaks – features (time, frequency)

Track / documentClip / query

Combinatorial Hashing
● Combinations of peaks

● Target zone
● Triplet: F1, F2, dT
● 30bit hash (+ onset time, song ID)

● Performance
● Lower survival (specific)
● Much higher speed

[F1,F2,dT]

[F1,F2,dT]

Query matching
● {(H_i, T_i)} = query fingerprints
● For each (H_i, T_i)

● For each {(T_j, S_j) where H_j == H_i} in database:
● T_ij = T_j – T_i
● votes[(S_j, T_ij)] += 1

● Sort by number of votes
● Select top K matches (can be in same song)

Retrieval Evaluation

Objective retrieval performance
How many of the retrieved documents are relevant?
● Precision – percentage of relevant documents among retrieved

documents
● Recall – percentage of returned relevant documents with respect to all

relevant documents

Retrieval as classification

Precision vs. recall
● Precision and Recall are related measures

● Precision typically falls if the number of retrieved
documents is increased

● Recall increases if the number of retrieved documents is
increased

● F-measure as a compromise
● Typical weight

● Higher value is better (maximum is 1)

Similarity threshold
● Decide which documents to

return
● Document similarity
● Threshold

● Depending on the threshold
we get different precision and
recall

Retrieval performance analysis
● Dataset with ground-truth

● Compute similarity for all documents
● Compute TPR and FPR for threshold

True condition: 1 1 0 1 0 1

Similarity: 1.0 0.2 0.1 0.8 0.9 0.8

For threshold 0.3: 1(TP) 0(FN) 0(TN) 1(TP) 1(FP) 1(TP)

Precision=3/4=0.75
Recall=3/4=.75
TPrate=3/4=0.75
FPrate=1/2=0.5

Plotting performance
● For each threshold we get a point

in 2D space
● Visualize performance as plot for

all thresholds
● Average Precision (AP) - Averaging

over multiple thresholds (k)

● MAP (average of AP for multiple
queries)

The ROC curve
● Receiver operating

characteristic with respect
to criterion (threshold)

● True positive rate
● False positive rate

● Interpretable measures
● Distance to (0, 1)
● Area under the curve (AUC)

ROC analysis example
● Documents are scored for relevance by their similarity to the query

● Calculate the ROC curve and determine optimal threshold
● Sort documents by similarity
● Set of unique similarity scores is threshold pool
● For each threshold in pool calculate TPrate and FPrate
● Each pair (FPrate, TPrate) is a point on a ROC curve
● Select threshold that maximizes chosen criteria (e.g. point closest to (0,1))

Q T1 T2 T3 T4 T5 T6 T7 T8

scores: 0.6 0.2 0.5 0.2 0.5 0.35 0.3 0.4
groundtruth: 1 1 0 0 1 0 0 1

Reading a ROC curve
● What is the percentage of

retrieved relevant documents if we
allow 20% of irrelevant documents
in the result?

● What percentage of irrelevant
results do we get if we want at
least 90% of relevant documents
in the results?

Efficient retrieval
● Most descriptors are dense

● Inverted index not efficient
● Comparison is slow

● Approximate nearest neighbor
● Accuracy vs. speed

Approximate nearest neighbor
● Random projection

● Low-dimensional space
● Structure the space

● Hierarchical Clustering
● Product Quantization
● Hierarchical Navigable Small Worlds

● Locality-sensitive hashing
● Similar descriptors have the same hash value

Vector databases
● Efficient storage of representations

● Organization
● Metadata

● Management
● Sharding
● Monitoring
● Access

