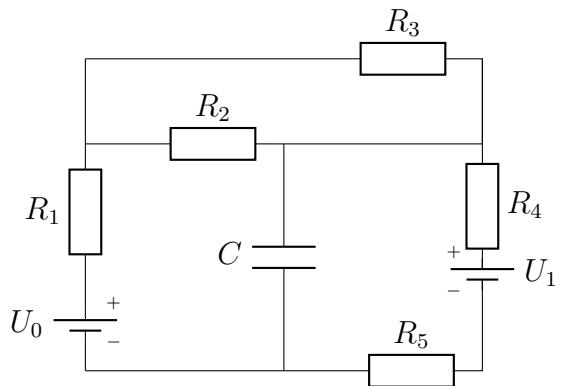
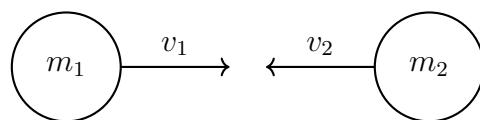

1. Nina synchronized two lasers (labeled S_1 and S_2 in the sketch), both with a wavelength of $\lambda = 632 \text{ nm}$, which she treats as two coherent point light sources (i.e. they emit waves in-phase). She then places them $d = 3 \text{ mm}$ apart and observes their interference pattern on a $a = 10 \text{ cm}$ wide screen that is $L = 3 \text{ cm}$ away. Note that the center point of the screen lies on the symmetrical line between the two sources.

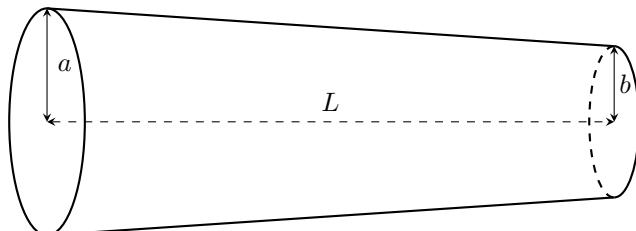
- Write down the condition for constructive interference.
- At what angle does she observe the first maximum on the screen? How far from the center of the screen is this maximum?
- How many maxima can she observe on the screen?


2. In a closet, we have a rod ($m_p = 0.8 \text{ kg}$, $L = 1.3 \text{ m}$) that is attached at both ends (see sketch). We hang a towel on the rod, which we treat as a rod with mass $m_b = 600 \text{ g}$ and length $b = 0.6 \text{ m}$, and a shirt, which we treat as a point mass $m_m = 150 \text{ g}$. All distances ($a = 0.1 \text{ m}$, $c = 0.2 \text{ m}$, $d = 0.4 \text{ m}$) are marked on the sketch.

- What is the force needed to support the left end of the rod, and what is the force needed to support the right end?
- The support at the right end of the rod breaks. The rod falls in a way that it rotates around the left attachment point. What is the angular acceleration at the moment when the support breaks?



3. From resistors ($R_1 = 1\Omega$, R_2 , $R_3 = 3\Omega$, $R_4 = 4\Omega$, $R_5 = 5\Omega$), a capacitor ($C = 3\text{ pF}$) and two batteries ($U_0 = 12\text{ V}$, $U_1 = 6\text{ V}$), we assemble a circuit as shown in the figure. Assume that the capacitor is already fully charged.


- Calculate the resistance R_2 so that a current of $I = 0.5\text{ A}$ flows through resistor R_1 after a long time.
- How much power is dissipated on resistor R_2 after a long time?
- How much charge is stored on the capacitor after a long time?

4. From the left, a ball with mass $m_1 = 3\text{ kg}$ and velocity $v_1 = 7\text{ m/s}$ flies in and collides with a ball of mass $m_2 = 5\text{ kg}$, which is moving in the opposite direction with velocity $v_2 = 2\text{ m/s}$. During the collision, 30 % of the initial energy of the balls is lost. What are the velocities of the balls after the collision (magnitude and direction)?

5. Calculate the resistance of a $L = 4\text{ cm}$ long section of germanium wire in the shape of a truncated cone with radii of its bases $a = 17\text{ mm}$ and $b = 6\text{ mm}$ (see the sketch below)! Specific resistivity of germanium is $\zeta = 0.46\Omega\text{ m}$.

